

NUESTRA GAMA

TORNILLOS PARA MADERA

ÍNDICE

INFORMACIONES BÁSICAS	TORNILLO DE SISTEMA BLUE-POWER	160–165
Tornillos para proyectos de construcción de madera		
personalizados4-5		
Nuestras posibilidades de producción6-7	OTROS TORNILLOS	
Control de calidad8-11	Hobotec	166–171
Estructura de un tornillo para construcciones	EcoTec	172–176
de madera12-13	Tornillo de construcción LBS	177–179
Material y revestimiento14–19	Tornillo de unión madera-hormigón	
Distancia mínima entre tornillos20–25	Tornillo para escuadras de ángulo	
	Tornillo para madera-metal con	
	punta autotaladrante	190-193
PANELTWISTEC	Tornillo distanciador/Mini	191-197
Paneltwistec AG30–41	Justitec	
Paneltwistec azul/amarillo galvanizado42-55	OSB Fix	
Paneltwistec acero inoxidable endurecido		
Paneltwistec acero inoxidable A4/A260-71	Tornillos para el anclaje de transporte	
Paneltwistec 1000	Tornillos de unión para postes	202–203
Paneltwistec TK AG Stronghead78–81		
	ACCECODIOC	
	ACCESORIOS	22 / 225
BRUTUS VARILLA ROSCADA82-83	Limitador de par	204–205
	Herramienta de atornillado	204–205
TORNILLO TODO ROSCA KONSTRUX		
KonstruX ST, galvanizado84-87	ESTANTE DE VENTAS	206–207
KonstruX, acero inoxidable A4		
Ejemplos de aplicación		
Tablas técnicas		
Construcción de estructuras de madera		
con KonstruX ST		
KonstruX DUO		
KonstruX, 13 mm E12134–139		
SAWTEC 140–144		
JAWIEC 140-144		
TORNILLOS ENCINTADOS		
Paneltwistec, acero azul galvanizado145–148		
Paneltwistec, acero inoxidable endurecido		
HBS, tornillo para construcciones de madera universal149		
Paneltwistec, acero azul galvanizado150-151		
TOPDUO 152–159		
19199910Z 107		

TORNILLOS VERSÁTILES PARA PROYECTOS DE CONSTRUCCIÓN DE MADERA PERSONALIZADOS

La construcción profesional en madera requiere soluciones de fijación de alta calidad que cumplan los requisitos más exigentes en cuanto a calidad y versatilidad. Aquí es precisamente donde destacan los tornillos para madera para uso personalizado de nuestra amplia gama. Con una amplia selección de tornillos, ofrecemos a nuestros clientes la solución ideal para cualquier construcción de madera, sea para la construcción de edificios complejos de varios pisos como para casas de madera, cercas, naves industriales, revestimiento de techos o construcciones de tejados.

Una característica destacada de los tornillos para madera Eurotec es la amplia selección de dimensiones y tipos de tornillos disponibles para una gran variedad de aplicaciones en la construcción de madera. Tanto si necesita tornillos para tableros de aglomerado para uniones precisas en paneles de madera, tornillos todo rosca para fijaciones firmes y seguras en piezas de montaje o tornillos especiales para la construcción de techos, en este catálogo encontrará el tornillo adecuado para proyectos de este tipo. También hay disponibles tornillos para madera encintados. Nuestros tornillos se caracterizan por diversos aspectos particulares que definen su rendimiento y fiabilidad. Así, p. ej. se puede elegir entre una amplia variedad de dimensiones, formas de cabeza, puntas de tornillo o tipos de rosca. Para satisfacer los requisitos particulares de los proyectos de construcción en madera, los tornillos para madera están disponibles con diferentes variantes de dureza y revestimientos superficiales.

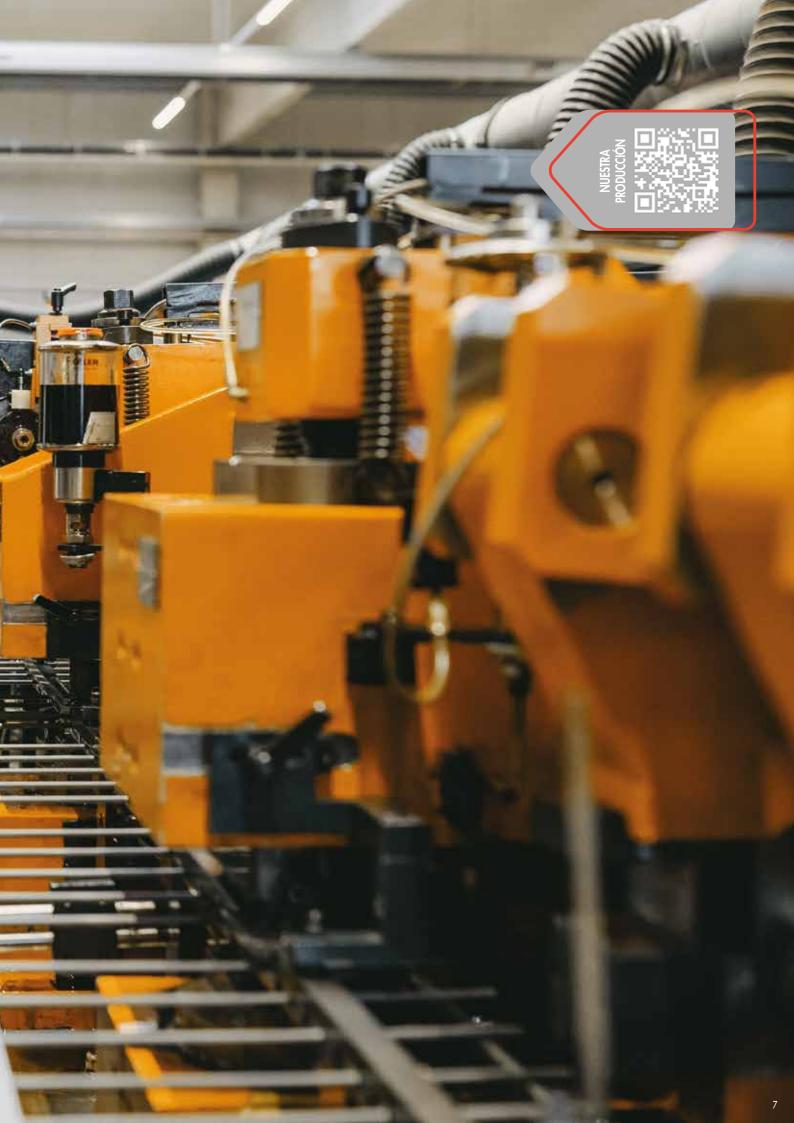
Otro aspecto importante es el certificado ETA, del que está provista la mayoría de nuestros tornillos. Esta certificación establece la conformidad de los tornillos con las normas europeas más estrictas sobre productos de construcción y garantiza su excelente rendimiento y seguridad. Apostamos por la máxima calidad y unas soluciones de fijación a medida para usted y sus proyectos. Con nuestra selección de productos ponemos a su disposición una amplia gama para que sus construcciones sean seguras, estables y duraderas con los tornillos para madera necesarios.

NUESTRAS POSIBILIDADES DE PRODUCCIÓN

Sean cuales sean sus necesidades, se lo ofrecemos todo de un solo proveedor. Producimos mediante diversos procesos, como la tecnología de punzonado y plegado, el conformado en frío, el moldeo por inyección y la extrusión. Los tornillos de hasta 3000 mm de longitud se fabrican en máquinas totalmente automáticas.

POSIBILIDADES DE PRODUCCIÓN

- Tornillos de 40-4000 mm, con un diámetro de 3-14 mm
- · Rosca simple, doble o reducida
- · Puntas de fresado
- Diversos materiales
- · Diferentes revestimientos
- Personalizados

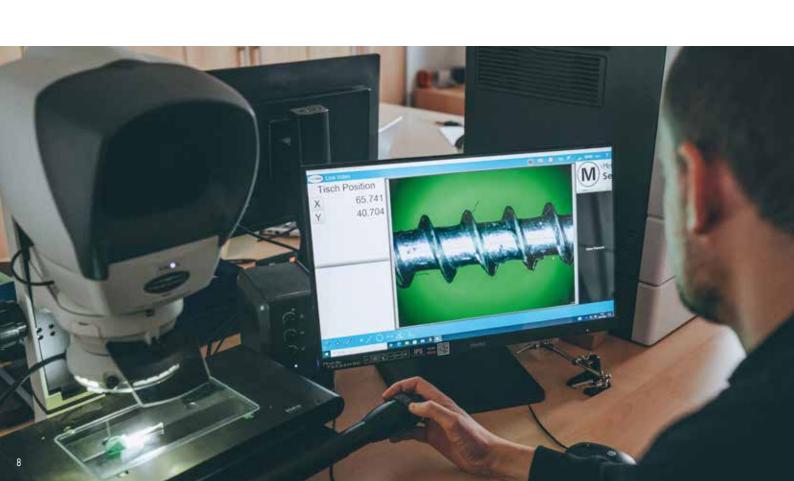

TRATAMIENTO DE SUPERFICIES

Galvanizado de zinc a azul para una resistencia a largo plazo en zonas expuestas a la intemperie (C4-C5).

CONCIENCIA MEDIOAMBIENTAL

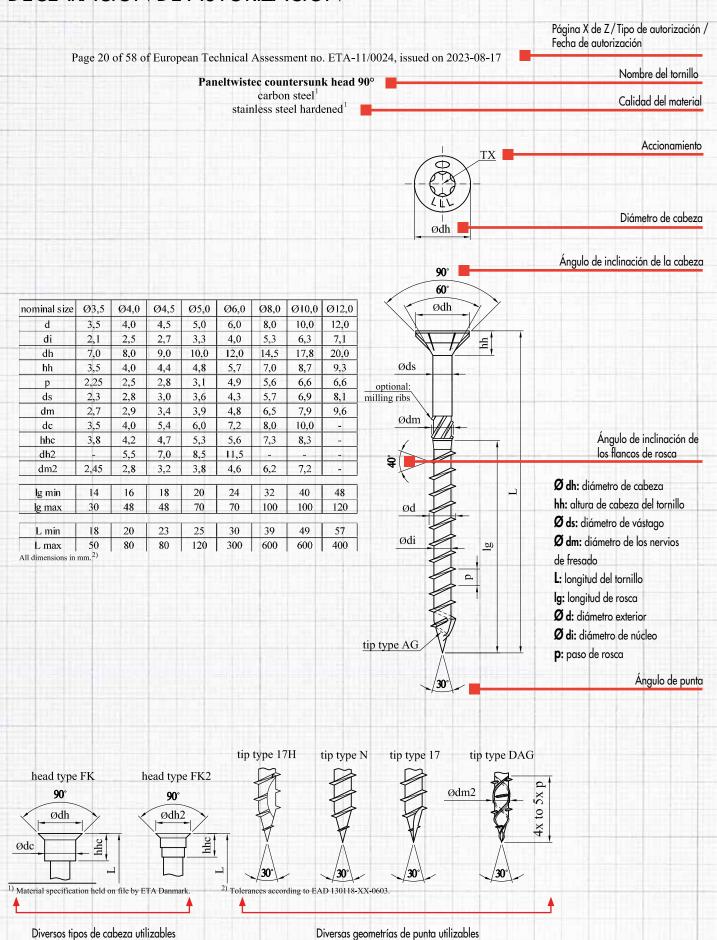
Sin aceite en el suelo ni gases de escape, y energía generada en el techo propio. Para nosotros, el cumplimiento de los requisitos legales y oficiales en un marco de rentabilidad y el fomento de un comportamiento respetuoso con el medio ambiente son una obligación.

CONTROL DE CALIDAD


Ofrecer a nuestros clientes productos y servicios impecables y garantizar al 100% el cumplimiento de los plazos de entrega es nuestro principal objetivo. Esperamos de cada uno de nuestros empleados un compromiso sin reservas con la calidad. La formación y el perfeccionamiento del pensamiento y la acción orientados al cliente y a la calidad están siempre en primer plano.

Nos comprometemos a cumplir los requisitos legales y oficiales dentro de un marco de rentabilidad, fomentando al mismo tiempo un comportamiento respetuoso con el medio ambiente.

Estamos orgullosos de que la práctica totalidad de nuestros productos de los segmentos de madera, fachadas y hormigón cuenten con la certificación ETA. Naturalmente, nuestro departamento de control de calidad comprueba a diario los lotes producidos para verificar la conformidad de los dibujos, la funcionalidad, el aspecto y el cumplimiento de las especificaciones del cliente.


Solo así podemos estar seguros de ofrecer la alta calidad constante que nuestros clientes esperan de nosotros.

LA CALIDAD ES LA BASE DE TODAS NUESTRAS ACTIVIDADES.

DECLARACIÓN DE AUTORIZACIÓN

CERTIFICACIONES

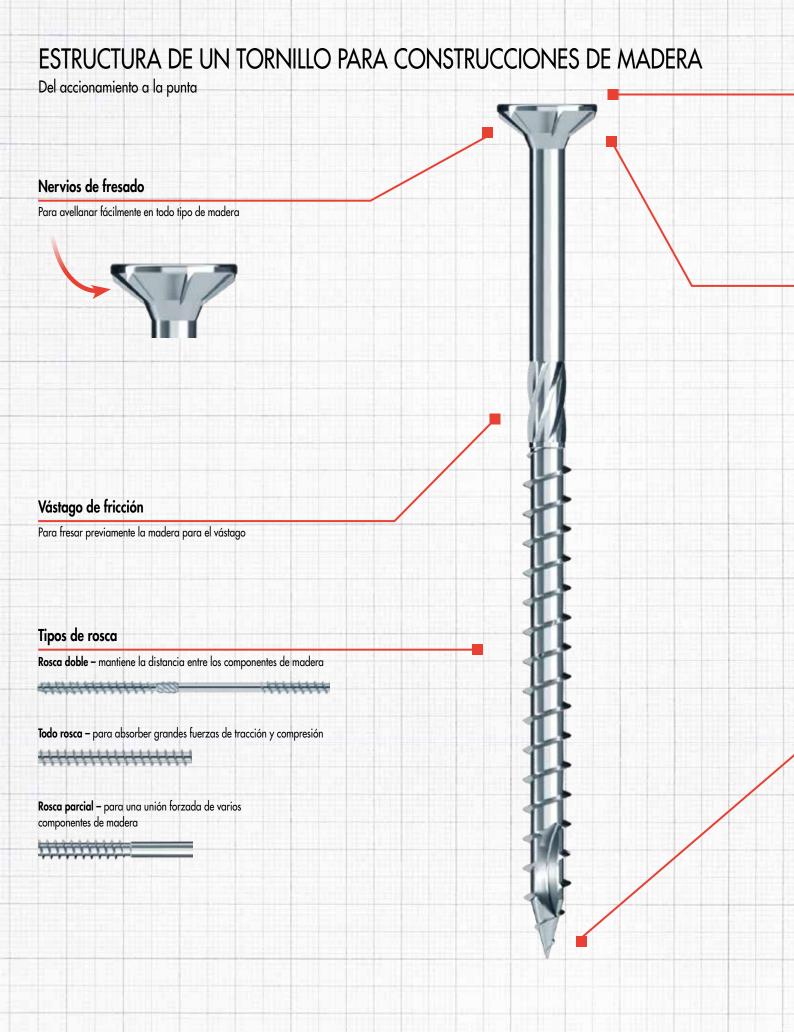
La Evaluación Técnica Europea, ETE o ETA (del inglés European Technical Assessment) es un certificado de prestaciones de producto que conduce al marcado CE y permite comercializar los productos en todo el Espacio Económico Europeo, Suiza y Turquía, y a menudo también en todo el mundo.

Se puede solicitar una ETA para cualquier producto de construcción que no esté cubierto total o parcialmente por una norma armonizada. A diferencia de la norma armonizada, la ETA puede adaptarse individualmente al producto. Además, las características de rendimiento que faltan en las normas armonizadas existentes también pueden documentarse en la ETA.

A diferencia de la autorización nacional, el mayor alcance geográfico de la ETA resulta más ventajoso. Sin embargo, si existe un certificado ETA debe compararse siempre entre el rendimiento declarado y los requisitos de construcción nacionales.

ETA-11/0024 - Tornillos para construcciones de madera portantes

Tornillos de rosca parcial y completa para aplicaciones de unión de madera con madera y de acero con madera, fijación de sistemas de aislamiento de cabrios, doblado de vigas, conexiones de vigas principales y secundarias, refuerzos de tracción transversal y compresión transversal, etc. en madera blanda (madera aserrada, madera maciza para construcción, madera laminada encolada, madera laminada cruzada (CLT), madera de chapa laminada), madera laminada de chapa de haya y otros materiales derivados de la madera.



ETA-16/0864 – Tornillos para estructuras de unión madera-hormigón

Los tornillos de unión madera-hormigón TCC-II 7.3 y TCC-II 9 son tornillos especiales parcialmente roscados que se utilizan para la unión flexible entre estructuras portantes de placas de hormigón y estructuras portantes de madera formadas por vigas o paneles. Los tornillos de unión se utilizan para el saneamiento de techos de vigas de madera y la nueva construcción de estructuras portantes híbridas de madera y hormigón.

Accionamiento TX

- · Los tornillos no se golpean al atornillarlos
- · Alta transmisión de par

Forma de cabeza

Cabeza avellanada

V

- · Queda oculto en la madera
- Queda al ras de la superficie

Cabeza plana

 Amplía la superficie de contacto, lo que permite mayores valores de paso de la cabeza

Cabeza decorativa

- · Cabeza pequeña y discreta
- Ideal para atornilladuras visibles

Cabeza cilíndrica

- · Queda oculto en la madera
- Cabeza discreta para tornillos de rosca doble y completa

Cabeza hexagonal

 Buena transmisión de fuerza incluso con un alto par de apriete

Puntas de tornillo

Ranura rascadora

- Atornillado rápido y sencillo
- AG

- Menor par de atornillado
 - · Menor efecto de separación

DAG

- Menor par de atornillado
- · Menor efecto de separación
- Mejor «mordida» del tornillo

Punta de taladrado

- Menor par de atornillado
- · Sin necesidad de pretaladrar

MATERIAL Y REVESTIMIENTO

Sinopsis

Eurotec apuesta por los materiales y revestimientos superficiales de alta calidad para garantizar la durabilidad a largo plazo y la resistencia a la corrosión. Estas propiedades son de vital importancia, ya que prolongan la vida útil de los elementos de fijación y mejoran su rendimiento en diversos campos de aplicación, para conseguir conexiones duraderas desde proyectos de construcción en madera hasta aplicaciones industriales.

Acero al carbono endurecido + galvanizado, zincado azul/amarillo

- · Puede emplearse en las clases de utilización 1 y 2 según la norma DIN EN 1995 (Eurocódigo 5)
- · Buena r
 - · Buena resistencia a los esfuerzos mecánicos
 - · No apto para maderas que contengan tanino

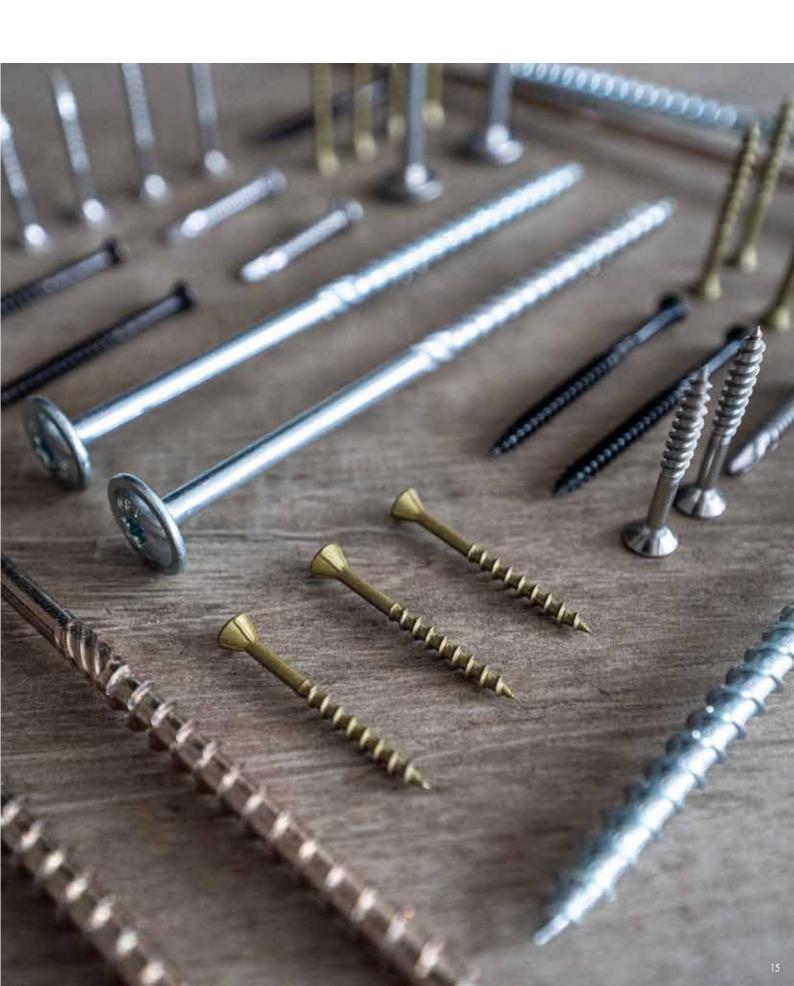
Acero al carbono endurecido + revestimiento especial 1000 + Acero al carbono endurecido, recubrimiento negro

- Puede emplearse en las clases de utilización 1 y 2 según la norma DIN EN 1995 (Eurocódigo 5)
- Soporta hasta 1000 horas de prueba de niebla salina según la norma DIN EN ISO 9227 NSS
- Categoría de corrosividad C4 largo/C5-M largo según la norma DIN EN ISO 12944-6
- · Buena resistencia a los esfuerzos mecánicos
- · No apto para maderas que contengan tanino

Acero inoxidable endurecido

- · Acero inoxidable conforme a DIN 10088 (magnetizable)
- Resistente a los ácidos bajo ciertas condiciones
- · Diez años de experiencia sin problemas de corrosión con maderas adecuadas
- Par de rotura un 50 % superior a A2 y A4
- · Aplicable en las clases de utilización 1, 2 y 3
- No apto para maderas con alto contenido en taninos como cumarú, roble, Merbau, robinia, etc.
- · No apto para atmósferas salinas o cloradas

Acero inoxidable A2


- · Apto para atmósferas salinas bajo ciertas condiciones
- · Resistente a los ácidos bajo ciertas condiciones
- · No apto para atmósferas cloradas
- Aplicable en las clases de utilización 1, 2 y 3
- · Apto para maderas que contengan altas cantidades de tanino bajo ciertas condiciones

Acero inoxidable A4

- · Apto para maderas que contengan tanino
- Apto para atmósferas salinas
- · Resistente a los ácidos
- Aplicable en las clases de utilización 1, 2 y 3
- · No apto para atmósferas cloradas

PRÁCTICOS SISTEMAS DE REVESTIMIENTO PARA TORNILLOS PARA MADERA

La vida útil estimada durante la que deberán resistir los tornillos para madera en la construcción estructural de madera si se utilizan debidamente es de 50 años. Para construcciones previstas para una vida útil más corta o para componentes que pueden sustituirse son posibles las categorías adicionales T3 (15) y C4 (15) para una vida útil prevista de 15 años si se utilizan revestimientos alternativos.

A la hora de definir qué tornillo es el adecuado para cada ocasión hay varios factores a tener en cuenta.

El primero de ellos son las clases de utilización, que describen el contenido de humedad (humedad de equilibrio) que tendrá un componente de madera durante un largo período de tiempo en unas condiciones ambientales determinadas (intemperie, interiores secos, etc.).

CLASES DE UTILIZACIÓN

NKL

NKL 2

NKL:

NKL 1-2

NKL 1–3

El segundo factor es la categoría C, que describe la corrosividad causada por diferentes condiciones ambientales atmosféricas (urbanas, rurales, industriales, costeras, etc.). Para los aceros inoxidables se aplican las clases CRC (clases de resistencia a la corrosión) en lugar de la categoría C.

CATEGORÍA C

C2

C3

C4

C5

CRC II

CRC III

CRC IV

CRC V

El tercer factor es la categoría T, que describe la corrosión causada por la madera (tipo de madera, tratamiento con agentes protectores, etc.).

CATEGORÍA T

T2

T3

T4

T5

CLASES DE UTILIZACIÓN CONFORME AL EUROCÓDIGO 5 EN 1995-1-1:2010-12

Las clases de utilización (NKL, por sus siglas en alemán) indican la posición del componente de madera en una construcción respecto a su posible contenido de humedad o al contenido de humedad de equilibrio que se producirá en el componente de madera en esta posición durante un período de tiempo más prolongado. La humedad de equilibrio prevista viene determinada por la humedad relativa del aire, la temperatura y el tiempo de exposición.

Dependiendo del acero del tornillo (acero al carbono revestido o acero inoxidable), un tornillo para madera solo puede utilizarse en estructuras portantes de las clases de utilización 1-2 o en las tres clases de utilización. En la mayoría de los casos especificamos NKL 1-2, que significa que se aplican las primeras clases de utilización, o NKL 1-3, que significa que se aplican las tres clases de utilización.

Con ayuda de la siguiente tabla puede determinar la clase de utilización correcta en función de los factores mencionados y seleccionar en consecuencia el tornillo adecuado para cada situación.

Clase de utilización	Lugar	Humedad del aire		Humedad de la madera	
		Promedio anual	Valor máx.	Promedio anual	Valor máx.
NKL 1	Interior	50 %	65 %	10 %	12 %
NKL 2	Exterior, con protección constructiva	75 %	85 %	16 %	20 %
NKL 3	Exterior sin protección	85 %	95 %	18 %	24 %

CATEGORÍAS C CONFORME A DIN EN 14592:2022

La categoría C describe la categoría de corrosión atmosférica para tornillos con revestimiento de zinc, revestimiento de zinc por inmersión en caliente y revestimientos alternativos. Por ello, resulta decisiva para la parte del tornillo que no se atornilla en la madera. En la mayoría de los casos se trata de la cabeza del tornillo. El efecto corrosivo de la atmósfera depende de la humedad relativa del aire, la contaminación atmosférica, el contenido de cloruro (contenido de sal en el aire) y de si el compuesto está expuesto o no a la intemperie. Con ayuda de la siguiente tabla puede determinar la categoría C correcta en función de los factores mencionados y seleccionar en consecuencia el tornillo adecuado para cada situación.

Cate	Categoría de atmósfera Clima/Humedad		Exposición a los cloruros		Exposición a sustancias	nocivas
			Entorno típico	Tasa de deposición de cloruro $[mg/m^2 \times d]^1$	Entorno típico	Grado de contaminación Contenido de SO2 [µg/m³]
(1	insignificante	Seco/escasa humedad	Regiones alejadas del litoral	~ 0	Habitaciones calefactadas	~ 0
C2	escaso	Templado/condensación inusual	> 10 km del litoral	≤3	Zonas rurales poco contaminadas, ciudades pequeñas	<5
C 3	moderado	Templado/condensación ocasional	10 km-3 km del litoral	3-60	Zonas urbanas e industriales moderadamente contaminadas	5-30
C 4	elevado	Templado/condensación frecuente	3 km-0,25 km del litoral (sin niebla de pulverización)	60-300	Zonas urbanas e industriales altamente contaminadas	30-90
C5	muy elevado	Templado, subtropical/muy alta frecuencia de condensación permanentemente	< 0,25 km del litoral, niebla de pulverización ocasional, alta frecuencia de condensación	300-1500	Entorno con contaminación industrial muy elevada	90-250

CATEGORÍAS CRC SEGÚN LA NORMA DIN EN 1993-1-4:2015-10

La categoría CRC describe la clase de resistencia a la corrosión atmosférica del acero inoxidable. Por ello, resulta decisiva para la parte del tornillo que no se atornilla en la madera. En la mayoría de los casos se trata de la cabeza del tornillo. Se basa en el factor de resistencia a la corrosión CRF, que describe el riesgo de exposición y, por tanto, la distancia al litoral debido al contenido de cloruro en la atmósfera.

Además de la categoría CRC, a nuestros tornillos de acero inoxidable se les ha asignado una categoría C que permita una comparación directa entre los tornillos inoxidables y los revestidos. En este caso, este valor C solo debe considerarse teniendo en cuenta el contenido de cloruro. Dado que nuestros aceros inoxidables se clasifican en las categorías CRC II y CRC III, los explicaremos en la siguiente tabla.

Clase de resistencia a la corrosión CRC	Clase de resistencia a la corrosión CRC	Riesgo de exposición	Distancia al mar
CRCI	1	Interiores	
CRCII	Entre 0 y -7	Bajo a alto	> 0,25 km
CRC III	Entre -7 y -15	Alto a muy alto	≤ 0,25 km
CRC IV	Entre -15 y -20	Muy alto	≤ 0,25 km
CRC V	< - 20	Muy alto	≤ 0,25 km

AMBIENTE DE PISCINA CUBIERTA

El cloro presente en la atmósfera puede provocar grietas por corrosión bajo tensión en los metales. Para evitar este riesgo, los componentes portantes solo pueden ser de acero inoxidable. En la siguiente tabla puede ver qué categoría CRC es la adecuada para cada situación:

Componentes portantes en ambiente de piscina cubierta	Clase CRC necesaria
Componentes portantes que se limpian regularmente 1)	CRC III, CRC IV
Componentes portantes que no se limpian regularmente	CRC V
Todos los elementos de fijación, conectores y piezas roscadas	CRC V

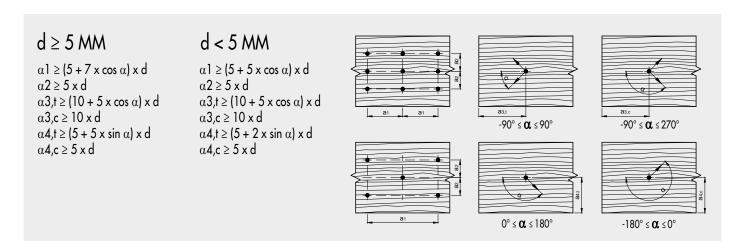
¹⁾ Cuanto más frecuente sea la limpieza, mayor será el beneficio. El tiempo entre limpiezas no debe ser superior a una semana. Un plan preciso de limpieza e inspección siempre debe ser revisado por un experto en función de la situación. Una vez establecida la limpieza, debe aplicarse a todas las partes de la construcción y no solo a los componentes fácilmente accesibles y visibles.

CATEGORÍAS T SEGÚN LA NORMA DIN EN 14592:2022

La categoría T describe la corrosión causada por la madera. Solo afecta a la parte del tornillo que se atornilla en la madera. El efecto corrosivo de la madera depende de la humedad, el tipo de madera, el valor del pH y el tratamiento con agentes protectores. Las clases T pueden asignarse aproximadamente a las clases de utilización con ayuda del valor de humedad. En la mayoría de las zonas climáticas, el contenido medio anual de humedad de la madera de coníferas no supera los siguientes valores:

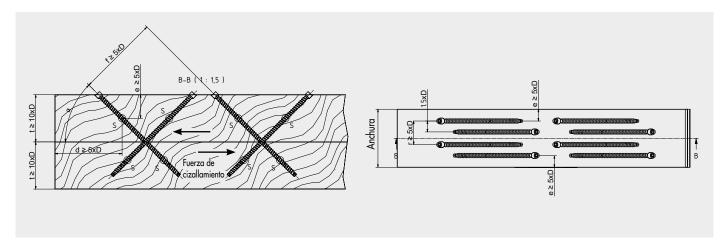
- ω = 10 % en zonas calefactadas \rightarrow T1 se debe asignar aproximadamente a la clase de utilización 1
- ω = 16 % en zonas calefactadas con protección constructiva ightarrow T2 se debe asignar aproximadamente a la clase de utilización 2
- ω = 20 % en zonas expuestas a la lluvia pero que no están en contacto con el suelo \rightarrow T3 y T4 se deben asignar aproximadamente a la clase de utilización 3
- ω > 20 % T5 se aplica a todas las demás estructuras asignadas a la clase de utilización 3

Con ayuda de la siguiente tabla puede determinar la categoría T correcta en función de los factores mencionados y elegir en consecuencia el tornillo adecuado para cada situación.


Categoría de madera	Humedad media anual	Tipos de madera según valor de pH	Ejemplos de tipos de madera	Tratamiento con agentes protectores
TI	ω < 10 %	Todos	Todos	Con y sin tratamiento
T2	$10 \le \omega \le 16 \%$	Todos	Todos	Con y sin tratamiento
T3	$16<\omega\leq 20~\%$	pH > 4	Alerce, pino, abedul, pícea, abeto	Sin tratamiento
T4	$16<\omega\leq 20~\%$	pH ≤ 4	Roble, castaño, cedro rojo, abeto de Douglas, haya	Con y sin tratamiento
15	Continuo (1) > 20 %	Todos	Todos	Con v sin tratamiento

DISTANCIAS MÍNIMAS ENTRE TORNILLOS

Estas distancias mínimas entre tornillos ayudan a distribuir la carga uniformemente y evitan que los tornillos se coloquen demasiado juntos, lo que podría comprometer la integridad estructural. Estas normas pueden establecerse en diversos estándares de construcción, reglamentos de construcción o directrices de diseño. Si se cumplen estas normas es posible reducir riesgos como roturas, fallos o deformaciones inesperadas, lo que se traduce en una construcción más segura y fiable.


REGLAS DE DISTANCIA MÍNIMA PARA CARGAS DE CIZALLAMIENTO

Distancias mínimas y distancias de borde de los tornillos para cargas de cizallamiento y axiales. Las siguientes distancias mínimas, basadas en la norma EN 1995-1-1, se refieren a tornillos de carga lateral, no pretaladrados, con un diámetro nominal específico para uniones madera-madera cuando la madera tiene una densidad característica de 420 kg/m³ como máximo. En las siguientes fórmulas, α corresponde al ángulo entre la fuerza y la dirección de la fibra de madera. En las uniones entre acero y madera, las distancias mínimas a₁ y a₂ pueden reducirse mediante un factor multiplicador de 0,7.

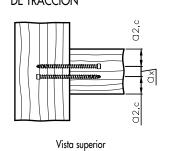
REGLAS DE DISTANCIA MÍNIMA PARA CARGAS AXIALES

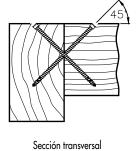
Para tornillos Eurotec en agujeros pretaladrados sometidos solamente a cargas axiales y para tornillos con punta de taladrado (modelo KonstruX ST) se aplican las siguientes distancias mínimas de acuerdo con ETA-11/0024, teniendo en cuenta un espesor mínimo del material t = 10 · d y una anchura mínima w = máx. (8 · d; 60 mm). La distancia entre los tornillos Phillips debe ser de al menos 1,5 d.

DISTANCIAS MÍNIMAS PARA TENSIONES DE CIZALLAMIENTO EN ORIFICIOS PRETALADRADOS

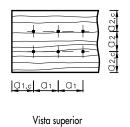
				α:	= 0, conexión m	adera-madera					
Diámetro	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
al	15	17,5	20	22,5	25	30	33	40	50	57	65
α2	9	10.5	12	13.5	15	18	20	24	30	34	39
a3,t	36	42	48	54	60	72	78	96	120	136	156
a3,c	21	24.5	28	31,5	35	42	46	56	70	79	91
a4,t	9	10,5	12	13,5	15	18	20	24	30	34	39
a4,c	9	10.5	12	13,5	15	18	20	24	30	34	39
		lpha = 90, conexión madera-madera									
Diámetro											
Diuitieiro	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
a]	3	3,5	4 16	4,5	5 20	6 24	6,5 26	8 32	10 40	11,3 45	1 3 52
		•		,			•				
al	12	14	16	18	20	24	26	32	40	45	52
al a2	12 12	14 14	16 16	18	20 20	24 24	26 26	32 32	40 40	45 45	52 52
a1 a2 a3,t	12 12 21	14 14 24,5	16 16 28	18 18 31,5	20 20 35	24 24 42	26 26 46	32 32 56	40 40 70	45 45 79	52 52 91
a1 a2 a3,t a3,c	12 12 21 21	14 14 24,5 24,5	16 16 28 28	18 18 31,5 31,5	20 20 35 35	24 24 42 42	26 26 46 46	32 32 56 56	40 40 70 70	45 45 79 79	52 52 91 91

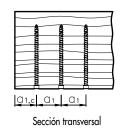
DISTANCIAS MÍNIMAS PARA TENSIONES DE CIZALLAMIENTO SIN ORIFICIOS PRETALADRADOS

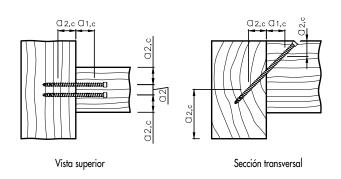

				α	= 0, conexión r	nadera-madera					
Diámetro	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
\mathfrak{a}_1	30	35	40	45	60	72	78	96	120	136	156
\mathfrak{a}_2	15	17,5	20	22,5	25	30	33	40	50	57	65
a _{3,t}	45	52,5	60	67,5	75	90	98	120	150	170	195
a _{3,c}	30	35	40	45	50	60	65	80	100	113	130
$\mathfrak{a}_{4,t}$	15	17,5	20	22,5	25	30	33	40	50	57	65
a _{4,c}	15	17,5	20	22,5	25	30	33	40	50	57	65
				α =	= 90, conexión	madera-madera					
Diámetro	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
$\mathfrak{a}_{\mathfrak{l}}$	15	17,5	20	22,5	25	30	33	40	50	57	65
\mathfrak{a}_2	15	17,5	20	22,5	25	30	33	40	50	57	65
a _{3,t}	30	35	40	45	50	60	65	80	100	113	130
a _{3,c}	30	35	40	45	50	60	65	80	100	113	130
a _{4,t}	21	24,5	28	31,5	50	60	65	80	100	113	130
a _{4,c}	15	17,5	20	22,5	25	30	33	40	50	57	65

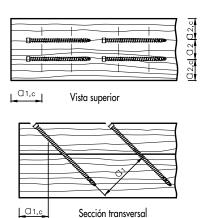

Nota: Para una conexión acero-madera, solo tiene que multiplicar los valores por 0,7.

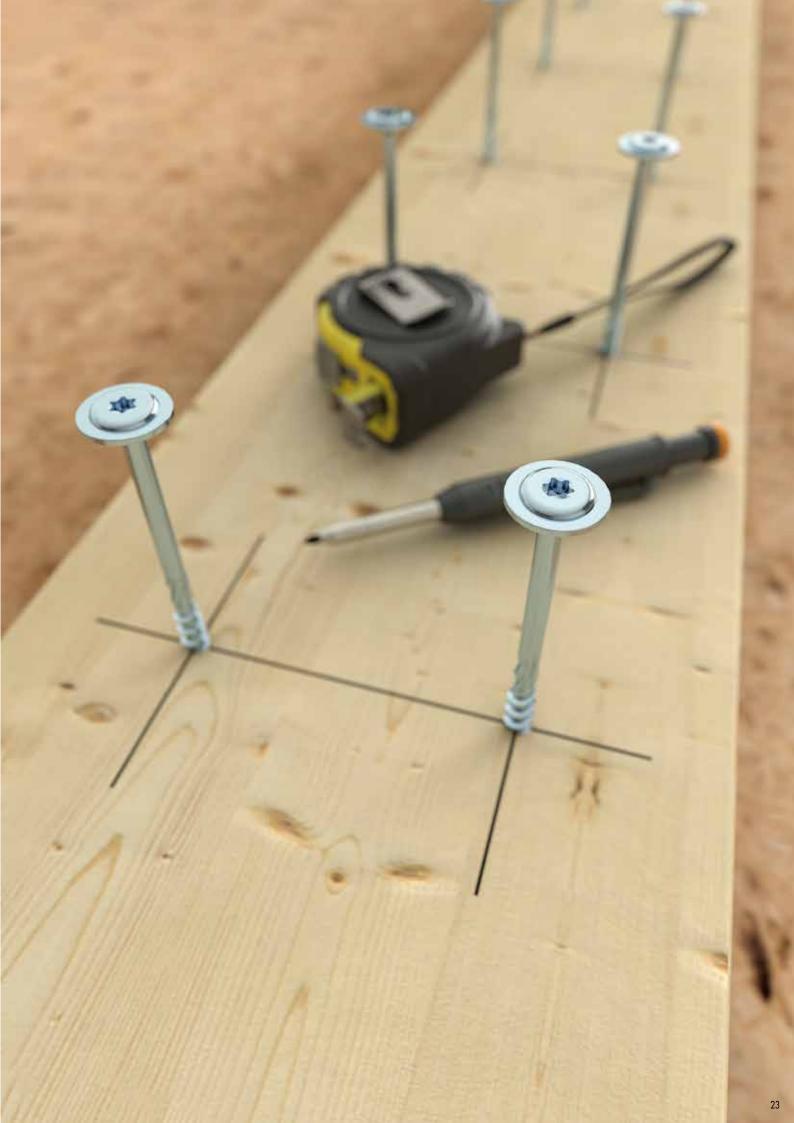
DISTANCIAS MÍNIMAS PARA CARGAS AXIALES


	Punta de taladrado						Punto	a AG					
	Con y sin orificios pretaladrados			Orif:	icios pretaladrad	OS	Sin or	rificios pretaladro	ados				
Ø [mm]	Normas de distancia	6,5	8	10	Normas de distancia	11,3	13	Normas de distancia	11,3	13			
$\mathfrak{a}_{\mathfrak{l}}$	5 · d	33	40	50	5 · d	57	65	5 · d	57	65			
\mathfrak{a}_2	5 · d	33	40	50	5 · d	57	65	5 · d	57	65			
\mathfrak{a}_{2red}	2,5 · d	16	20	25	2,5 · d	29	33	2,5 · d	29	33			
$\mathfrak{a}_{l,c}$	5 · d	33	40	50	5 · d	57	65	5 · d	113	130			
a _{2,c}	$3\cdot d$	20	24	30	$3\cdot d$	34	39	$3\cdot d$	46	52			
alx	1,5 · d	10	12	15	1,5 · d	17	20	1,5 · d	17	20			

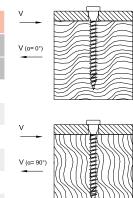

TORNILLOS DISPUESTOS TRANSVERSALMENTE BAJO CARGA DE TRACCIÓN




TORNILLOS INSERTADOS PERPENDICULARMENTE A LA VETA DE LA MADERA



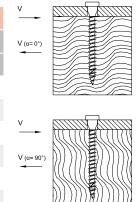
tornillos insertados en diagonal a la dirección de la veta de la madera y sometidos a una carga de tracción con un ángulo α


CASOS ESPECIALES

CLAVOS DE ANCLAJE

ST	Clave	os de anclaj	e	α = 0 °
ρk ≤ 420 kg/m ³	Pretal	adrado	No p	oretaladrado
ρ κ ≤ 420 kg/ III°	x d	4	x d	4
$\mathfrak{a}_{\mathfrak{l}}$	3,5	14	7	28
\mathfrak{a}_2	2,1	9	3,5	14
a _{3,t}	12	48	15	60
a _{3,c}	7	28	10	40
a _{4,1}	3	12	5	20
a _{4,c}	3	12	5	20

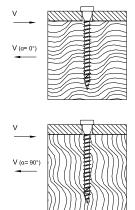
ST	Clava	s de anclaje)	α = 90 °
- le - 400 len /m3	Pretal	adrado	Nop	oretaladrado
ρ k \leq 420 kg/m ³	x d	4	x d	4
$\mathfrak{a}_{\mathfrak{l}}$	2,8	11	3,5	14
\mathfrak{a}_2	2,8	11	3,5	14
a _{3,t}	7	28	10	40
a _{3,c}	7	28	10	40
$\mathbf{q}_{4,t}$	5	20	7	28
a _{4,c}	3	12	5	20



TORNILLO PARA ESCUADRAS DE ÁNGULO

ST		WBS		α = 0 °
ale < 420 len/m³	Pretal	adrado	No p	oretaladrado
ρ k \leq 420 kg/m ³	x d	5	x d	5
$\mathfrak{a}_{\mathfrak{l}}$	3,5	18	8,4	42
a ₂	2,1	11	3,5	18
a _{3,†}	12	60	15	75
a _{3,c}	7	35	10	50
Q _{4,†}	3	15	5	25
a _{4,c}	3	15	5	25

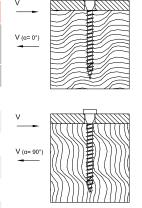
ST		WBS	α = 90 °			
ρ k \leq 420 kg/m ³	Pretal	adrado	No pretaladrado			
ρ κ ≤ 420 kg/III°	x d	5	x d	5		
$\mathfrak{a}_{\mathfrak{l}}$	2,8	14	3,5	18		
\mathfrak{a}_2	2,8	14	3,5	18		
a _{3,†}	7	35	10	50		
a _{3,c}	7	35	10	50		
a _{4,†}	7	35	10	50		
a _{4,c}	3	15	5	25		

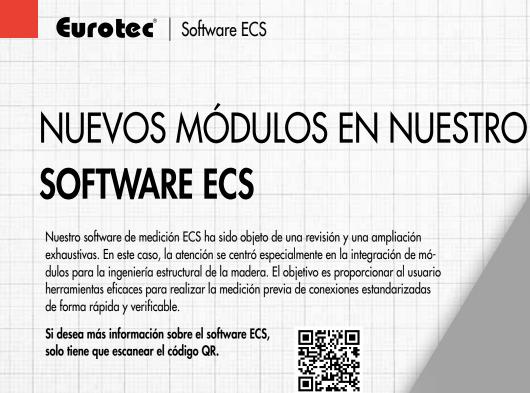


TORNILLO PARA ESCUADRAS DE ÁNGULO STRONG

ST		WBS	α = 0 °					
- le - 2 400 less /s=3	Pre	taladro	ıdo	No p	lo pretaladrado			
ρ k \leq 420 kg/m ³	x d	8	10	x d	8	10		
aı	3,5	28	35	8,4	67	84		
\mathfrak{a}_2	2,1	17	21	3,5	28	35		
a _{3,t}	12	96	120	15	120	150		
a _{3,c}	7	56	70	10	80	100		
a _{4,t}	3	24	30	5	40	50		
a _{4,c}	3	24	30	5	40	50		

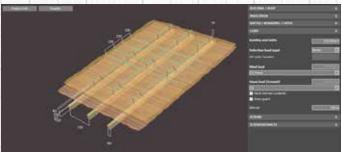
ST		WBS S		α = 90 °				
ale < 420 lea /m³	Pre	taladro	ıdo	No pretaladrado				
ρ k \leq 420 kg/m ³	x d	8	10	x d	8	10		
aı	2,8	22	28	3,5	28	35		
\mathfrak{a}_2	2,8	22	28	3,5	28	35		
a _{3,t}	7	56	70	10	80	100		
a _{3,c}	7	56	70	10	80	100		
a _{4,t}	7	56	70	10	80	100		
a _{4,c}	3	24	30	5	40	50		

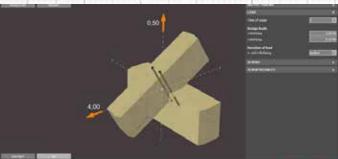



TORNILLO PARA ESCUADRAS DE ÁNGULO ZK HARDWOOD

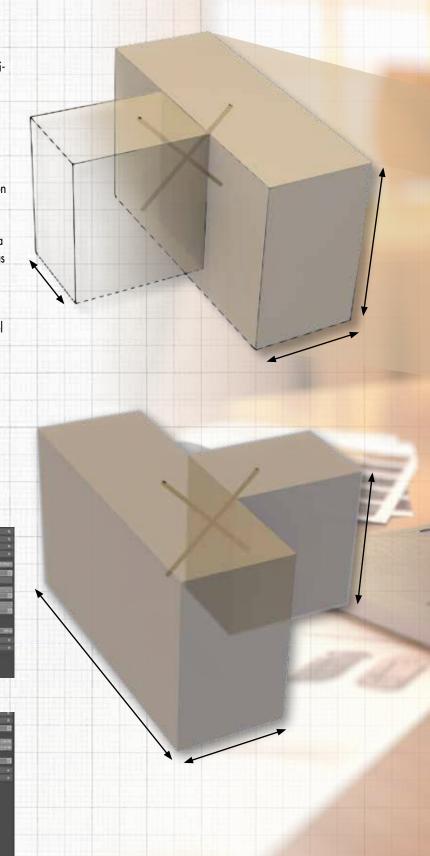
ST		WBS ZK I	α = 0 °				
ρ k	Pretal	adrado		aladrado 420	No pretaladrado $\rho k \leq 500$		
[kg/m ³]	x d	5,6	x d	5,6	x d	5,6	
a l	3,5	20	8,4	47	10,5	59	
\mathbf{q}_2	2,1	12	3,5	20	4,9	27	
a _{3,t}	12	67	15	84	20	112	
a _{3,c}	7	39	10	56	15	84	
a _{4,t}	3	17	5	28	7	39	
a _{4,c}	3	17	5	28	7	39	

ST		WBS ZK I	α = 90 °				
ρ k	Pretal	adrado		aladrado 420	No pretaladrado $\rho k \leq 500$		
[kg/m³]	x d	5,6	x d	5,6	x d	5,6	
\mathbf{q}_1	2,8	16	3,5	20	4,9	27	
\mathfrak{a}_2	2,8 16		3,5	20	4,9	27	
a _{3,t}	7	39	10	56	15	84	
a _{3,c}	7	39	10	56	15	84	
a _{4,t}	7	39	10	56	12	67	
a _{4,c}	3	17	5	28	7	39	



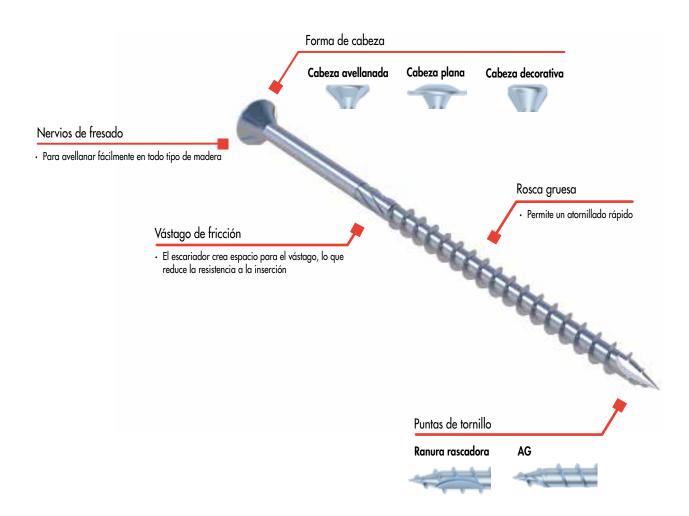

DESCUBRA MÁS INFORMACIÓN SOBRE NUESTRO SOFTWARE ECS

El software ECS es un programa gratuito y de fácil manejo para el predimensionado de los tornillos para madera Eurotec. Los módulos incluyen conexiones de vigas principales y secundarias, refuerzos de tracción transversal y compresión transversal, conexiones de cabrios y correas, fijaciones para sistemas de aislamiento en tejados y fachadas y muchas otras funciones.

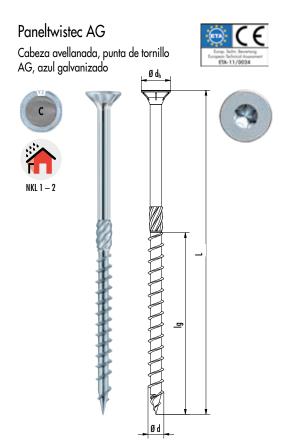

- El programa le permite personalizar completamente su aplicación de conexión modificando parámetros como la geometría, el tipo de material (por ejemplo, madera laminada encolada y madera maciza en diferentes clases de resistencia), los tamaños de carga (cargas variables y permanentes), la clase de carga y mucho más según sus necesidades..
- También permite optimizar la solución de fijación ajustando el diámetro y la longitud del tornillo y comprobando el factor de utilización de la fuerza, que se muestra en la esquina inferior derecha de la pantalla.
- Una vez seleccionada la solución de conexión, tendrá a su disposición un informe de cálculo conforme a ETA-11/0024 y EN 1995 (Eurocódigo 5), incluidos los planos asociados en formato PDF.

Módulo para fijar materiales aislantes a los cabrios con Topduo

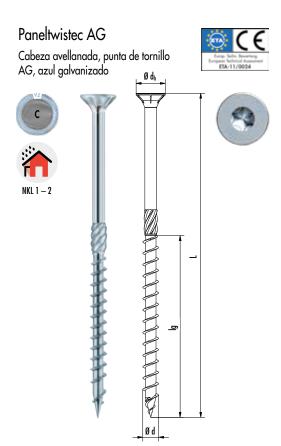
Módulo para conexiones entre cabrios y correas con Paneltwistec y KonstruX



PANELTWISTEC



El Paneltwistec es un tornillo para madera con una punta de tornillo especial y nervios de fresado por encima de la rosca. La muesca de corte de la punta del tornillo garantiza un agarre rápido y una menor generación de grietas al atornillar. En cambio, el Paneltwistec AG presenta una rosca plegada, que reduce la resistencia al atornillado. Los tornillos para madera Paneltwistec están disponibles en las variantes de cabeza avellanada, cabeza ornamental y cabeza plana, en acero al carbono revestido y en diferentes aceros inoxidables.



PANELTWISTEC AG CABEZA AVELLANADA

N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
945436	3,5	30	7,0	18	TX15 ●	1000
945838	3,5	35	7,0	21	TX15 •	1000
945437	3,5	40	7,0	24	TX15 •	1000
945490	3,5	50	7,0	30	TX15 •	500
945491	4,0	30	8,0	18	TX20 •	1000
945836	4,0	35	8,0	21	TX20 •	1000
945492	4,0	40	8,0	24	TX20 •	1000
945493	4,0		8,0	27	TX20 •	500
945494	4,0		8,0	30	TX20 •	500
945495	4,0	50 60	8,0	36	TX20 •	200
945496	4,0	70	8,0	42	TX20 •	200
945497	4,0	80	8,0	48	TX20 •	200
945498	4,5	40	9,0	24	TX25 •	500
945588	4,5	45	9,0	27	TX25 •	500
945499	4,5	50	9,0	30	TX25 •	500
945567	4,5	60	9,0	36	TX25 •	200
945568	4,5	70	9,0	42	TX25 •	200
945569	4,5	80	9,0	48	TX25 •	200
945574	5,0	40		24		200
945574-TX40*	5,0 5,0	40	10,0 9,5	24	TX25 ● TX40 ●	200
945837	5,0	45	10,0	27	TX25 •	200
945575		50				200
945575-TX40*	5,0	50	10,0	30 30	TX25 •	200
945576	5,0		9,5		TX40 •	
945576-TX40*	5,0	60	10,0	36	TX25 •	200
945577	5,0	60 70	9,5	36	TX40 •	200
945577-TX40*	5,0		10,0	42	TX25 •	200
	5,0	70	9,5	42	TX40 •	200
945578	5,0	80	10,0	48	TX25 •	200
945578-TX40*	5,0	80	9,5	48	TX40 •	200
945579	5,0	90	10,0	54	TX25 •	200
945579-TX40*	5,0	90	9,5	54	TX40 •	200
945580	5,0	100	10,0	60	TX25 •	200
945580-TX40*	5,0	100	9,5	60	TX40 •	200
945581	5,0	120	10,0	70	TX25 •	200
945600	5,0	50	10,0	30	TX30 •	200*
945601	5,0	60	10,0	36	TX30 •	200°
945602	5,0	70	10,0	42	TX30 •	200*
945603	5,0	80	10,0	48	TX30 •	200°
945604	5,0	90	10,0	54	TX30 •	200°
945605	5,0	100	10,0	60	TX30 •	200*
945607	5,0	120	10,0	70	TX30 •	200°
945581-TX40*	5,0	120	9,5	70	TX40 •	200
945583	6,0	60	12,0	36	TX30 •	200
945584	6,0	70	12,0	42	TX30 •	200
945632	6,0	80	12,0	48	TX30 •	200
945633	6,0	90	12,0	54	TX30 •	100
945634	6,0	100	12,0	60	TX30 •	100
945635	6,0	110	12,0	70	TX30 •	100
945636	6,0	120	12,0	70	TX30 •	100
945637	6,0	130	12,0	70	TX30 •	100
945638	6,0	140	12,0	70	TX30 •	100
945639	6,0	150	12,0	70	TX30 •	100
945640	6,0	160	12,0	70	TX30 •	100
945641	6,0	180	12,0	70	TX30 •	100
945642	6,0	200	12,0	70	TX30 •	100
945643	6,0	220	12,0	70	TX30 •	100
945644	6,0	240	12,0	70	TX30 •	100
945645	6,0	260	12,0	70	TX30 •	100
945646	6,0	280	12,0	70	TX30 •	100
945647	6,0	300	12,0	70	TX30 •	100

N.º de art.:	Ød[mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
945630-TX40*	6,0	60	12,0	36	TX40 ●	200
945631-TX40*	6,0	70	12,0	42	TX40 •	200
945632-TX40*	6,0	80	12,0	48	TX40 •	200
945633-TX40*	6,0	90	12,0	54	TX40 •	200
945634-TX40*	6,0	100	12,0	60	TX40 •	100
945636-TX40*	6,0	120	12,0	70	TX40 •	100
945638-TX40*	6,0	140	12,0	70	TX40 •	100
945640-TX40* 945641-TX40*	6,0 6,0	160 180	12,0 12,0	70 70	TX40 • TX40 •	100 100
945642-TX40*	6,0	200	12,0	70	TX40 •	100
945643-TX40*	6,0	220	12,0	70	TX40 •	100
945644-TX40*	6,0	240	12,0	70	TX40 •	100
945645-TX40*	6,0	260	12,0	70	TX40 •	100
945646-TX40*	6,0	280	12,0	70	TX40 •	100
945647-TX40*	6,0	300	12,0	70	TX40 •	100
945648	6,0	320	12,0	70	TX30 •	100
945649	6,0	340	12,0	70	TX30 •	100
945650	6,0	360	12,0	70	TX30 •	100
945651	6,0	380	12,0	70	TX30 •	100
945652 944715	6,0	400 80	12,0	70 48	TX30 •	100 50
944716	8,0 8,0	100	14,5 14,5	60	TX40 • TX40 •	50
944717	8,0	120	14,5	66	TX40 •	50
944718	8,0	140	14,5	95	TX40 •	50
944719	8,0	160	14,5	95	TX40 •	50
944720	8,0	180	14,5	95	TX40 •	50
944721	8,0	200	14,5	95	TX40 •	50
944722	8,0	220	14,5	95	TX40 •	50
944723	8,0	240	14,5	95	TX40 •	50
944724	8,0	260	14,5	95	TX40 •	50
944725	8,0	280	14,5	95	TX40 •	50
944726 944727	8,0	300 320	14,5	95 95	TX40 •	50 50
944728	8,0 8,0	340	14,5 14,5	95	TX40 • TX40 •	50
944729	8,0	360	14,5	95	TX40 •	50
944730	8,0	380	14,5	95	TX40 •	50
944731	8,0	400	14,5	95	TX40 •	50
944732	8,0	420	14,5	95	TX40 ●	50
944733	8,0	440	14,5	95	TX40 •	50
944734	8,0	460	14,5	95	TX40 •	25
944735	8,0	480	14,5	95	TX40 •	25
944736	8,0	500	14,5	95	TX40 •	25
944737	8,0	550	14,5	95	TX40 •	25
944739	8,0	600 100	14,5	95 60	TX40 •	25 50
945687 945688	10,0 10,0	120	17,8 17,8	70	TX50 ◆ TX50 ◆	50
945689	10,0	140	17,8	80	TX50 ●	50
945690	10,0	160	17,8	90	TX50 ●	50
945691	10,0	180	17,8	100	TX50 ●	50
945692	10,0	200	17,8	100	TX50 ●	50
945693	10,0	220	17,8	100	TX50 ●	50
945694	10,0	240	17,8	100	TX50 ●	50
945695	10,0	260	17,8	100	TX50 ●	50
945696	10,0	280	17,8	100	TX50 ●	50
945697	10,0	300	17,8	100	TX50 ●	50
945698	10,0	320	17,8	100	TX50 ●	50
945699 945703	10,0 10,0	340 360	17,8 17,8	100 100	TX50 ◆ TX50 ◆	50 50
945709	10,0	380	17,8	100	TX50 ●	50 50
945711	10,0	400	17,8	100	TX50 ●	50
100036	10,0	420	17,8	100	TX50 ●	25
100037	10,0	440	17,8	100	TX50 ●	25
100038	10,0	460	17,8	100	TX50 ●	25
100039	10,0	480	17,8	100	TX50 ●	25
100040	10,0	500	17,8	100	TX50 ●	25
100041	10,0	550	17,8	100	TX50 ●	25
100042	10,0	600	17,8	100	TX50 ●	25

*La cabeza puede diferir de la imagen.

INFORMACIÓN TÉCNICA PANELTWISTEC AG CABEZA AVELLANADA, AZUL GALVANIZADO

	Dimensi	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza Cizallamiento madera-madera					Cizallamiento acero-madera			
7			ET AD	Fax,90,Rk	Fax.head.Rk	V (α= 0°) V (α= 0°) V (α= 0°) V (α= 90°)	AD ET AD	V (a= 90°) V (a= 90°) V (a= 00°) V (a= 00°)		V —	α= 90°)		
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
				22				$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$.	
						α= 0 °	α= 90 °	$\alpha_{\rm H} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °	
3,5 x 30	7,0	12	18	0,84	0,59	u- u		,62	α _{EI}	1		0,86	
3,5 x 35	7,0	14	21	0,98	0,59			,67		1		0,92	
3,5 x 40	7,0	16	24	1,12	0,59			,70		ì		0,95	
3,5 x 45	7,0	18	27	1,26	0,59			,74		1		0,99	
3,5 x 50	7,0	20	30	1,40	0,59			,78		1		1,02	
4,0 x 30	8,0	12	18	0,93	0,77			,71		2		0,91	
4,0 x 35	8,0	14	21	1,08	0,77			,80		2		1,07	
4,0 x 40	8,0	16	24	1,24	0,77		0	,84		2		1,15	
4,0 x 45	8,0	18	27	1,39	0,77		0	,88		2		1,19	
4,0 x 50	8,0	20	30	1,55	0,77		0	,92		2		1,23	
4,0 x 60	8,0	24	36	1,86	0,77		1	,01		2		1,31	
4,0 x 70	8,0	28	42	2,17	0,77			,03		2		1,38	
4,0 x 80	8,0	32	48	2,48	0,77			,03		2		1,46	
4,5 x 40	9,0	16	24	1,35	0,97			,00		2		1,34	
4,5 x 45	9,0	18	27	1,52	0,97			,03		2		1,40	
4,5 x 50	9,0	20	30	1,69	0,97			,08		2		1,44	
4,5 x 60	9,0	24	36	2,03	0,97			,17		2		1,53	
4,5 x 70	9,0	28	42	2,36	0,97			,26		2		1,61	
4,5 x 80	9,0	32	48	2,70	0,97			,26		2		1,70	
5,0 x 40	10,0	16	24	1,45	1,20	1,11		2		1,44			
5,0 x 45	10,0	18	27	1,63	1,20	1,20		2		1,62			
5,0 x 50	10,0	20	30	1,82	1,20	1,24		2		1,67			
5,0 x 60	10,0	24	36	2,18	1,20			34		2		1,76	
5,0 x 70	10,0	28	42	2,54	1,20			,44		2		1,85	
5,0 x 80	10,0	32	48	2,90	1,20			,52		2		1,94	
5,0 x 90	10,0	36 40	54 40	3,27	1,20			52		2		2,03	
5,0 x 100 5,0 x 120	10,0 10,0	40 50	60 70	3,63 4,24	1,20 1,20			,52 ,52		2		2,12 2,27	
J,U X 12U	10,0	JU	70	7,44	1,20		l.	,JL		L		L _I LI	

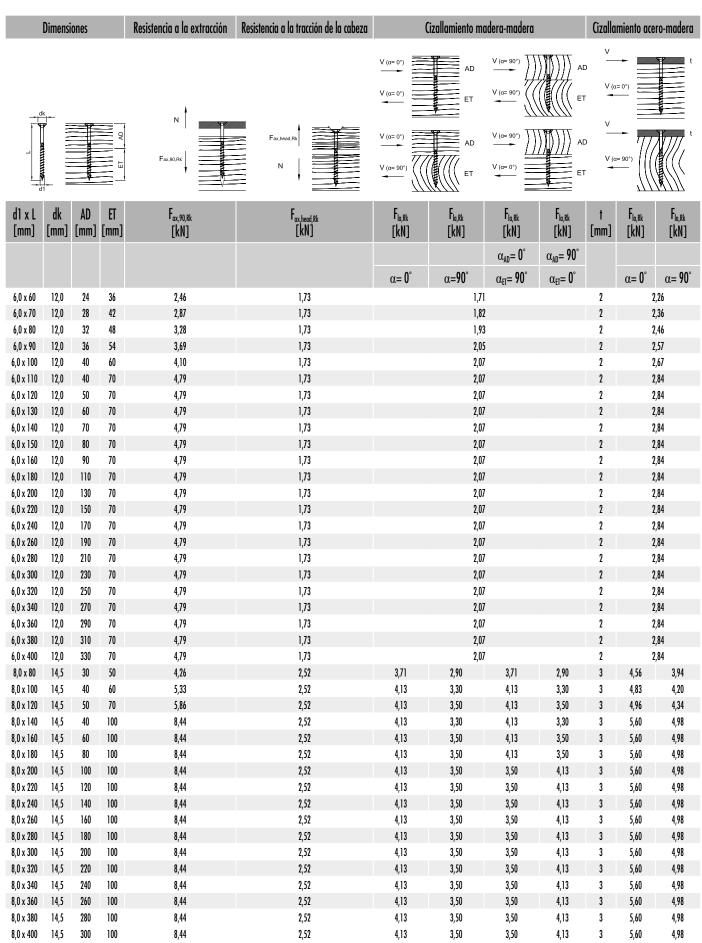
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la

duración de la carga a los valores nominales R_d : R_d = R_k · k_{mod} / γ_M . Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo

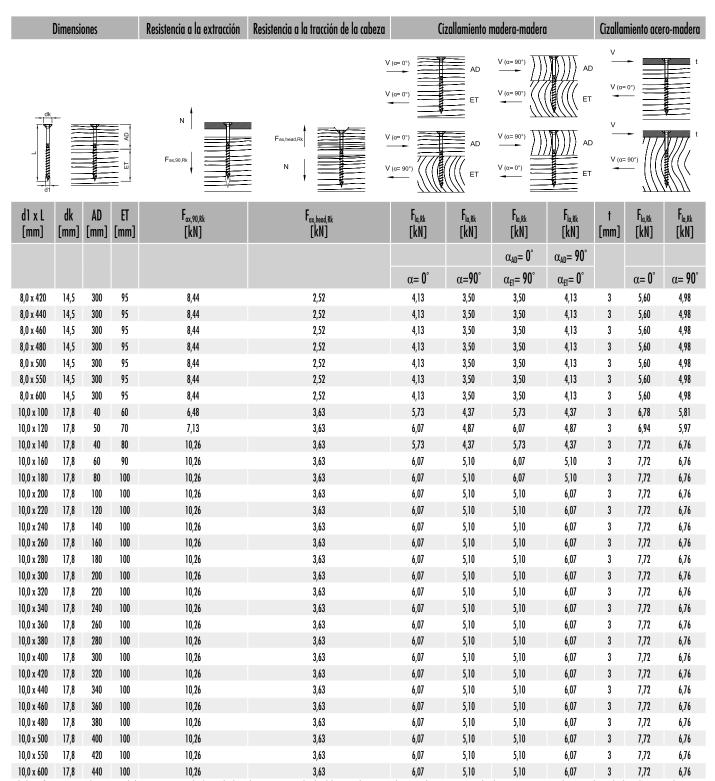

Valor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20~kN}$.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot γ_{M} / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_k \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Comparación con los valores de la tabla.}$

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

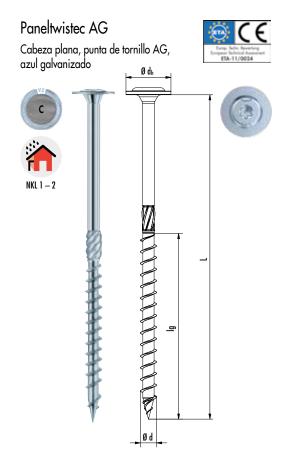

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la

INFORMACIÓN TÉCNICA PANELTWISTEC AG CABEZA AVELLANADA, AZUL GALVANIZADO

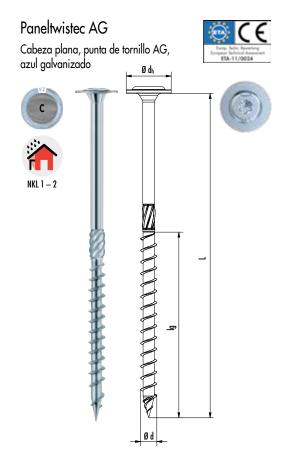
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión. Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = $R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).


Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \longrightarrow Valor nominal del efecto $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$. La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$ Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod}$ \longrightarrow $R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN}$ \longrightarrow Comparación con los valores de la tabla.

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas

PANELTWISTEC AG CABEZA PLANA


Azul galvanizado

N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
				_		
946158	4,0	40	10,0	24	TX20 -	500
946159	4,0	50	10,0	30	TX20 -	500
946160 946161	4,0	60 50	10,0	36 30	TX20 • TX20 •	500 200
946162	4,5	60	11,0		TX20 -	200
946163	4,5	70	11,0	36 42	TX20 •	200
946037	4,5 5,0	50	11,0 12,0	30	TX25 •	200
946038	5,0	60	12,0	36	TX25 •	200
946039	5,0	70	12,0	42	TX25 •	200
946040	5,0	80	12,0	48	TX25 •	200
946042	5,0	100	12,0	60	TX25 •	200
945947	6,0	30	14,0	30	TX30 •	100
945948	6,0	40	14,0	40	TX30 •	100
945712	6,0	50	14,0	30	TX30 •	100
945713	6,0	60	14,0	36	TX30 •	100
945713-TX40	6,0	60	15,0	36	TX40 •	100
945716	6,0	70	14,0	42	TX30 •	100
945717	6,0	80	14,0	48	TX30 •	100
945717-TX40	6,0	80	15,0	48	TX40 •	100
945718	6,0	90	14,0	54	TX30 •	100
945719	6,0	100	14,0	60	TX30 •	100
945719-TX40	6,0	100	15,0	60	TX40 •	100
945720	6,0	110	14,0	70	TX30 •	100
945721	6,0	120	14,0	70	TX30 •	100
945721-TX40	6,0	120	15,0	70	TX40 •	100
945722	6,0	130	14,0	70	TX30 •	100
945723	6,0	140	14,0	70	TX30 •	100
945723-TX40	6,0	140	15,0	70	TX40 •	100
945724	6,0	150	14,0	70	TX30 •	100
945725	6,0	160	14,0	70	TX30 •	100
945725-TX40	6,0	160	15,0	70	TX40 •	100
945726	6,0	180	14,0	70	TX30 •	100
945726-TX40	6,0	180	15,0	70	TX40 •	100
945727	6,0	200	14,0	70	TX30 •	100
945727-TX40	6,0	200	15,0	70	TX40 •	100
945728	6,0	220	14,0	70	TX30 •	100
945728-TX40	6,0	220	15,0	70	TX40 •	100
945729	6,0	240	14,0	70	TX30 •	100
945729-TX40	6,0	240	15,0	70	TX40 •	100
945730	6,0	260	14,0	70	TX30 •	100
945731	6,0	280	14,0	70	TX30 •	100
945732	6,0	300	14,0	70	TX30 •	100
945733	6,0	320	12,0	70	TX30 •	100
945734	6,0	340	12,0	70	TX30 •	100
945735	6,0	360	12,0	70	TX30 •	100
945736	6,0	380	12,0	70	TX30 •	100
945737	6,0	400	12,0	70	TX30 •	100
945806	8,0	60	22,0	48	TX40 •	50
944588	8,0	80	22,0	48	TX40 •	50
944589	8,0	100	22,0	60	TX40 •	50
944590	8,0	120	22,0	66	TX40 ●	50
944591	8,0	140	22,0	95	TX40 ●	50
944592	8,0	160	22,0	95	TX40 ●	50
944593	8,0	180	22,0	95	TX40 •	50

PANELTWISTEC AG CABEZA PLANA

100025

10,0

N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
944594	8,0	200	22,0	95	TX40 •	50
944595	8,0	220	22,0	95	TX40 •	50
944596	8,0	240	22,0	95	TX40 •	50
944597	8,0	260	22,0	95	TX40 •	50
944598	8,0	280	22,0	95	TX40 •	50
944599	8,0	300	22,0	95	TX40 •	50
944600	8,0	320	22,0	95	TX40 •	50
944601	8,0	340	22,0	95	TX40 •	50
944602	8,0	360	22,0	95	TX40 •	50
944603	8,0	380	22,0	95	TX40 •	50
944603	8,0	380	22,0	95	TX40 •	50
944604	8,0	400	22,0	95	TX40 •	50
944605	8,0	420	22,0	95	TX40 •	25
944606	8,0	440	22,0	95	TX40 •	25
944607	8,0	460	22,0	95	TX40 •	25
944608	8,0	480	22,0	95	TX40 •	25
944609	8,0	500	22,0	95	TX40 •	25
944610	8,0	550	22,0	95	TX40 •	25
944611	8,0	600	22,0	95	TX40 •	25
945750	10,0	80	25,0	50	TX50 ●	50
945751	10,0	100	25,0	60	TX50 ●	50
945752	10,0	120	25,0	70	TX50 ●	50
945753	10,0	140	25,0	80	TX50 ●	50
945754	10,0	160	25,0	90	TX50 ●	50
945755	10,0	180	25,0	100	TX50 ◆	50
945756	10,0	200	25,0	100	TX50 ●	50
945757	10,0	220	25,0	100	TX50 ●	50
945758	10,0	240	25,0	100	TX50 ●	50
945759	10,0	260	25,0	100	TX50 ●	50
945760	10,0	280	25,0	100	TX50 ◆	50
945761	10,0	300	25,0	100	TX50 ●	50
945762	10,0	320	25,0	100	TX50 ◆	50
945763	10,0	340	25,0	100	TX50 ◆	50
945764	10,0	360	25,0	100	TX50 ◆	25
945765	10,0	380	25,0	100	TX50 ◆	25
945766	10,0	400	25,0	100	TX50 ◆	25
100019	10,0	420	17,8	100	TX50 •	25
100020	10,0	440	17,8	100	TX50 •	25
100021	10,0	460	17,8	100	TX50 •	25
100021	10,0	480	17,8	100	TX50 ◆	25
100022	10,0	500	17,8	100	TX50 ●	25
100023		550		100	TX50 •	25
100024	10,0	JJU	17,8	100	1X50 •	25

17,8

100

TX50 ●

INFORMACIÓN TÉCNICA PANELTWISTEC AG CABEZA PLANA, AZUL GALVANIZADO

	Dimens	iones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	la cabeza Cizallamiento madera-madera				Cizalla	miento ac	ero-madera
] d	_ =			N Fax.90.Rk	Fax,head,ftk	V (a= 0°) V (a= 0°) V (a= 90°)	AD ET AD ET	V (α= 90°) V (α= 90°) V (α= 0°) V (α= 0°)	AL ET	V (a	= 90")	
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	α_{AD} = 90°			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
4,0 x 40	10,0	16	24	1,24	1,20		0,9			2		1,15
4,0 x 50	10,0	20	30	1,55	1,20		1,0	}		2		1,23
4,0 x 60	10,0	24	36	1,86	1,20		1,1	2		2		1,31
4,5 x 50	11,0	20	30	1,69	1,45		1,2)		2		1,44
4,5 x 60	11,0	24	36	2,03	1,45		1,2)		2		1,53
4,5 x 70	11,0	28	42	2,36	1,45	1,38				2		1,61
5,0 x 50	12,0	20	30	1,82	1,73		1,3	1		2		1,67
5,0 x 60 5,0 x 70	12,0	24	36	2,18 2,54	1,73 1,73		1,4			-		1,76
5,0 x 70 5,0 x 80	12,0 12,0	28 32	42 48	2,34 2,90	1,73		1,5 1,6	5		2		1,85 1,94
5,0 x 100	12,0	40	60	3,63	1,73		1,6	5		2		2,12
6,0 x 30	14,0	6	24	1,64	2,35		0,6			2		1,20
6,0 x 40	14,0	16	24	1,64	2,35		1,3	}		2		1,63
6,0 x 50	14,0	20	30	2,05	2,35		1,6	5		2		2,06
6,0 x 60	14,0	24	36	2,46	2,35		1,8	1		2		2,26
6,0 x 70	14,0	28	42	2,87	2,35		1,9			2		2,36
6,0 x 80	14,0	32	48	3,28	2,35		2,0)		2		2,46
6,0 x 90	14,0	36	54	3,69	2,35		2,2 2,2	1		2		2,57
6,0 x 100 6,0 x 110	14,0 14,0	40 44	60 66	4,10 4,79	2,35 2,35		2,2) }		2		2,67 2,77
6,0 x 120	14,0	50	70	4,79	2,35		2,2	, }		2		2,84
6,0 x 130	14,0	60	70	4,79	2,35		2,2	, }		2		2,84
6,0 x 140	14,0	70	70	4,79	2,35		2,2	}		2		2,84
6,0 x 150	14,0	80	70	4,79	2,35		2,2	}		2		2,84
6,0 x 160	14,0	90	70	4,79	2,35 2,35		2,2	}		2		
6,0 x 180	14,0	110	70	4,79	2,35		2,2 2,2	}		2		2,84 2,84
6,0 x 200	14,0	130	70	4,79	2,35		2,2	}		2		2,84
6,0 x 220	14,0	150	70	4,79	2,35		2,2	3		2		2,84
6,0 x 240	14,0	170	70	4,79	2,35		2,2	3		2		2,84
6,0 x 260	14,0 14,0	190 210	70 70	4,79 4.70	2,35		2,2))		2		2,84
6,0 x 280 6,0 x 300	14,0	230	70 70	4,79 4,79	2,35 2,35		2,2 2,2	1		2		2,84 2,84
6,0 x 300	14,0	250	70	4,79	2,35 2,35		2,2	}		2		2,84
6,0 x 340	12,0	270	70	4,79	2,35		2,2	, }		2		2,84
6,0 x 360	12,0	290	70	4,79	2,35		2,2	}		2		2,84
6,0 x 380	12,0	310	70	4,79	2,35		2,2	3		2		2,84
6,0 x 400	12,0	330	70	4,79	2,35		2,2	}		2		2,84

6,0 X 4000 12,0 330 70 4,79 2,35 Z_{L} 3 Calculo conforme a ETA-11/0024. Densidad aparente ρ_{k} = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la

duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

 $Valor\ característico\ para\ efecto\ permanente\ (carga\ muerta)\ G_k=2,00\ kN\ y\ acción\ variable\ (por\ ejemplo,\ carga\ de\ nieve)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{ik}=1,3.$

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot γ_M / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

INFORMACIÓN TÉCNICA PANELTWISTEC AG CABEZA PLANA, AZUL GALVANIZADO

	Dimensi	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	cabeza Cizallamiento madera-madera			Cizalla	miento ace	ero-madera	
dk			ET AD	N Fax,90,Rk	Fax,head,Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 90°)	AD ET ET	V (α= 90°) V (α= 90°) V (α= 0°)	AD ET	V (a=	- - -	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\rm H}$ = 90°	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 60	22,0	24	36	3,20	5,81	3,53	2,80	3,53	2,80	3	4,29	3,54
8,0 x 80	22,0	30	50	4,26	5,81	4,14	3,34	4,14	3,34	3	4,56	3,94
8,0 x 100	22,0	40	60	5,33	5,81	4,83	4,01	4,83	4,01	3	4,83	4,20
8,0 x 120	22,0	50	70	5,86	5,81	4,95	4,32	4,95	4,32	3	4,96	4,34
8,0 x 140	22,0	40	100	8,44	5,81	4,95	4,13	4,95	4,13	3	5,60	4,98
8,0 x 160	22,0	60	100	8,44	5,81	4,95	4,32	4,95	4,32	3	5,60	4,98
8,0 x 180	22,0	80	100	8,44	5,81	4,95	4,32	4,95	4,32	3	5,60	4,98
8,0 x 200	22,0	100	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 220	22,0	120	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 240	22,0	140	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 260	22,0	160	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 280	22,0	180	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 300	22,0	200	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 320	22,0	220	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 340	22,0	240	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 360	22,0	260	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 380	22,0	280	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 400	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 420	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 440	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 460	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 480	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 500	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 550	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 600	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

 $Todos \ los \ valores \ son \ valores \ m\'inimos \ calculados \ y \ est\'an \ sujetos \ a \ errores \ tipogr\'aficos \ y \ de \ impresi\'on.$

Los valores característicos de la capacidad de carga Ra no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Ra deben reducirse con respecto a la clase de utilización y a la clase de la

duración de la carga a los valores nominales Ra: $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\underline{7,20~kN}$.

La capacidad de carga de la conexión se considera probada si $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

INFORMACIÓN TÉCNICA PANELTWISTEC AG CABEZA PLANA, AZUL GALVANIZADO

	Dimensio	ones		Resistencia a la extracción	acción Resistencia a la tracción de la cabeza Cizallamiento madera-madera			Cizalla	miento ace	ero-madera		
dk Manmings	-		ET AD	Pax,90,Rk	Fax.head.Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD -	(a= 90°) (a= 90°) (a= 90°)	AC	V (α=	= 0°)	t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	α_{AD} = 90°			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		$\alpha = 0^{\circ}$	α= 90 °
10,0 x 80	25,0	30	50	5,40	7,50	5,44	4,40	5,44	4,40	3	6,51	5,54
10,0 x 100	25,0	40	60	6,48	7,50	6,44	5,08	6,44	5,08	3	6,78	5,81
10,0 x 120	25,0	50	70	7,13	7,50	6,94	5,74	6,94	5,74	3	6,94	5,97
10,0 x 140	25,0	40	100	10,26	7,50	6,70	5,34	6,70	5,34	3	7,72	6,76
10,0 x 160	25,0	60	100	10,26	7,50	7,03	6,07	7,03	6,07	3	7,72	6,76
10,0 x 180	25,0	80	100	10,26	7,50	7,03	6,07	7,03	6,07	3	7,72	6,76
10,0 x 200	25,0	100	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 220	25,0	120	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 240	25,0	140	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 260	25,0	160	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 280	25,0	180	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 300	25,0	200	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 320	25,0	220	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 340	25,0	240	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 360	25,0	260	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 380	25,0	280	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 400	25,0	300	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 420	17,8	320	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 440	17,8	340	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 460	17,8	360	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 480	17,8	380	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 500	17,8	400	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 550	17,8	450	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 600	17,8	500	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

duración de la carga a los valores nominales R_d : R_d = R_k · k_{mod} / γ_{M} . Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{NL} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2,20 \text{ kN}}$.

La capacidad de carga de la conexión se considera probada $\stackrel{\longrightarrow}{\text{si }R_d \geq E_d}$. \longrightarrow min R_k = $R_d \cdot \gamma_M$ / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

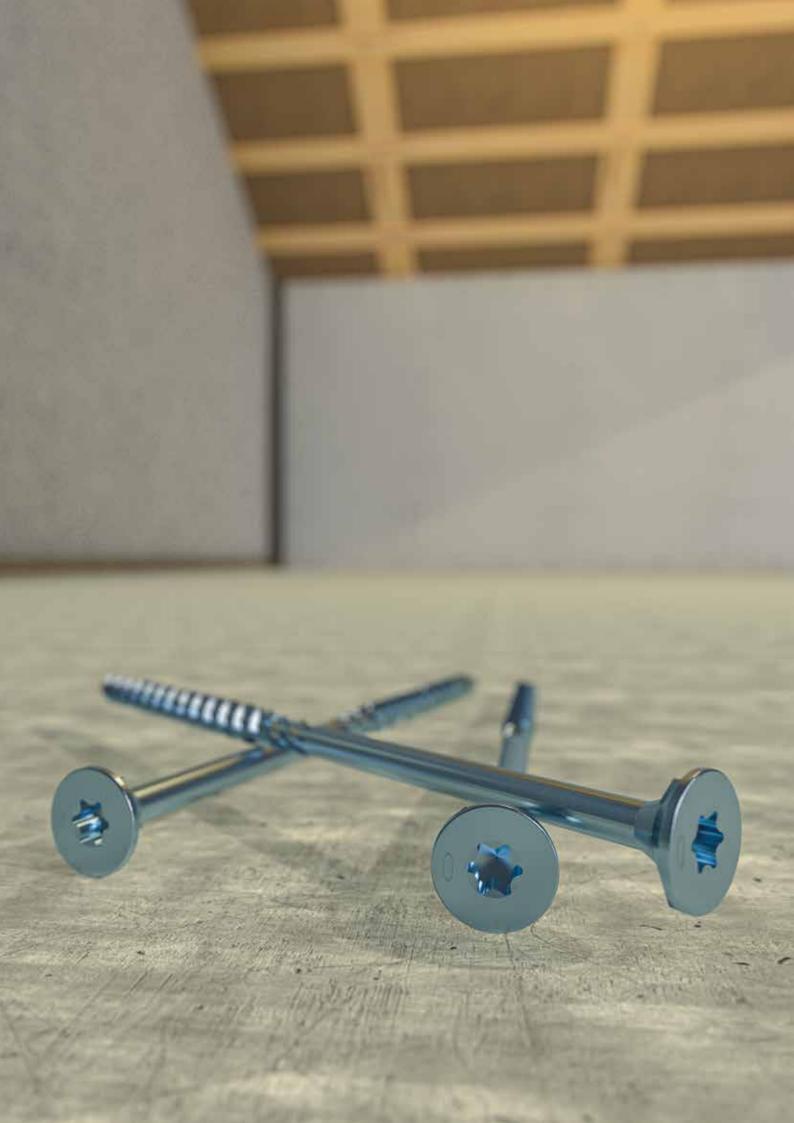
Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la

PANELTWISTEC

Acero, azul galvanizado

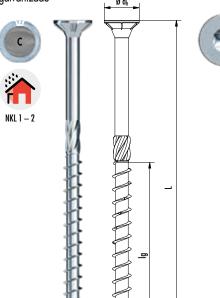
Paneltwistec

Cabeza avellanada, punta de tornillo conranura rascadora, acero azul galvanizado



N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
B903045	3,5	30	7,0	18	TX15 ●	1000
B903044	3,5	35	7,0	21	TX15 •	1000
B903001	3,5	40	7,0	24	TX15 •	1000
B903002	3,5	50	7,0	30	TX15 •	500
B903003	4,0	30	8,0	18	TX20 •	1000
B903603	4,0	35	8,0	21	TX20 •	1000
B903004	4,0	40	8,0	24	TX20 •	1000
B902089	4,0	45	8,0	27	TX20 •	500
B903005	4,0	50	8,0	30	TX20 •	500
B903006	4,0	60	8,0	36	TX20 -	200
B903007	4,0	70	8,0	42	TX20 •	200
B903008	4,0	80	8,0	48	TX20 -	200
B903009	4,5	40	9,0	24	TX25 •	500
B903087	4,5	45	9,0	27	TX25 •	500
B903010	4,5	50	9,0	30	TX25 •	500
B903088	4,5	55	9,0	36	TX25 •	500
B903011	4,5	60	9,0	36	TX25 •	200
B903012	4,5	70	9,0	42	TX25 •	200
B903013	4,5	80	9,0	48	TX25 •	200
B903014	5,0	40	10,0	24	TX25 •	200
B903015	5,0	50	10,0	30	TX25 •	200
B903016	5,0	60	10,0	36	TX25 •	200
B903017	5,0	70	10,0	42	TX25 •	200
B903018	5,0	80	10,0	48	TX25 •	200
B903578	5,0	90	10,0	54	TX25 •	200
B903019	5,0	100	10,0	60	TX25 •	200
B903020	5,0	120	10,0	70	TX25 •	200
B903021	6,0	60	12,0	36	TX30 •	200
B903022	6,0	70	12,0	42	TX30 •	200
B903023	6,0	80	12,0	48	TX30 •	200
B903163	6,0	90	12,0	54	TX30 •	100
B903024	6,0	100	12,0	60	TX30 •	100
B903025	6,0	120	12,0	70	TX30 •	100
B903026	6,0	130	12,0	70	TX30 •	100
B903027	6,0	140	12,0	70	TX30 •	100
B903030	6,0	150	12,0	70	TX30 •	100
B903029	6,0	160	12,0	70	TX30 •	100
B903031	6,0	180	12,0	70	TX30 •	100
B903032	6,0	200	12,0	70	TX30 •	100
B903033	6,0	220	12,0	70	TX30 •	100
B903034	6,0	240	12,0	70	TX30 •	100
B903035	6,0	260	12,0	70	TX30 •	100
B903036	6,0	280	12,0	70	TX30 •	100
B903037	6,0	300	12,0	70	TX30 •	100
					~	1 / 1

otros tamaños en la página siguiente



Eurotec | Paneltwistec

Paneltwistec

Cabeza avellanada, punta de tornillo con ranura rascadora, acero azul galvanizado $\emptyset d_h$

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903443	8,0	80	14,5	48	TX40 •	1000
903435	8,0	100	14,5	60	TX40 •	1000
903419	8,0	120	14,5	66	TX40 •	1000
903420	8,0	140	14,5	95	TX40 •	500
903421	8,0	160	14,5	95	TX40 •	1000
903422	8,0	180	14,5	95	TX40 •	1000
903423	8,0	200	14,5	95	TX40 •	1000
903424	8,0	220	14,5	95	TX40 •	500
903425	8,0	240	14,5	95	TX40 •	1000
903426	8,0	260	14,5	95	TX40 •	200
903427	8,0	280	14,5	95	TX40 •	200
903428	8,0	300	14,5	95	TX40 •	200
903429	8,0	320	14,5	95	TX40 •	500
903430	8,0	340	14,5	95	TX40 •	500
903431	8,0	360	14,5	95	TX40 •	500
903432	8,0	380	14,5	95	TX40 •	500
903433	8,0	400	14,5	95	TX40 •	200
975780	12,0	120	20,0	80	TX50 ●	25
975781	12,0	140	20,0	80	TX50 ●	25
975782	12,0	160	20,0	80	TX50 ●	25
975783	12,0	180	20,0	80	TX50 ●	25
975784	12,0	200	20,0	80	TX50 ●	25
975785	12,0	220	20,0	100	TX50 ●	25
975786	12,0	240	20,0	100	TX50 ●	25
975787	12,0	260	20,0	100	TX50 ●	25
975788	12,0	280	20,0	100	TX50 ●	25
975789	12,0	300	20,0	100	TX50 ●	25
975790	12,0	320	20,0	100	TX50 ●	25
975791	12,0	340	20,0	120	TX50 ●	25
975792	12,0	360	20,0	120	TX50 ●	25
975793	12,0	380	20,0	120	TX50 ●	25
975794	12,0	400	20,0	120	TX50 ●	25
975795	12,0	500	20,0	120	TX50 ●	25
975796	12,0	600	20,0	120	TX50 ●	25

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA AVELLANADA, ACERO AZUL GALVANIZADO

	Dimensi	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	cabeza Cizallamiento madera-madera				Cizalla	miento ac	ero-madera
dk dk dt			ET AD	N Fax,90,Rk	Fax.head.Rk	V (α= 0°) V (α= 0°) V (α= 0°)	AD ET ET	V (a= 90°) V (a= 90°) V (a= 0°) V (a= 0°)	AE ET	V (α=	- <u> </u> - <u> </u> -	t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{lo,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	α_{AD} = 90°			
						α= 0 °	α= 90 °	$\alpha_{\rm H} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
3,5 x 30	7,0	12	18	0,84	0,59	u- u	0,62		α _{EI} – υ	1		0,86
3,5 x 35	7,0	14	21	0,98	0,59		0,67			1		0,00
3,5 x 40	7,0	16	24	1,12	0,59	0,70				1		0,95
3,5 x 45	7,0	18	27	1,26	0,59	0,70			1		0,99	
3,5 x 50	7,0	20	30	1,40	0,59	0,74 0,78			1		1,02	
4,0 x 30	8,0	12	18	0,93	0,77		0,71			2		0,91
4,0 x 35	8,0	14	21	1,08	0,77		0,80			2		1,07
4,0 x 40	8,0	16	24	1,24	0,77		0,84			2		1,15
4,0 x 45	8,0	18	27	1,39	0,77		0,88			2		1,19
4,0 x 50	8,0	20	30	1,55	0,77		0,92			2		1,23
4,0 x 60	8,0	24	36	1,86	0,77		1,01			2		1,31
4,0 x 70	8,0	28	42	2,17	0,77		1,03			2		1,38
4,0 x 80	8,0	32	48	2,48	0,77		1,03			2		1,46
4,5 x 40	9,0	16	24	1,35	0,97		1,00			2		1,34
4,5 x 45	9,0	18	27	1,52	0,97		1,03			2		1,40
4,5 x 50	9,0	20	30	1,69	0,97		1,08			2		1,44
4,5 x 55	9,0	19	36	2,03	0,97		1,05			2		1,53
4,5 x 60	9,0	24	36	2,03	0,97		1,17			2		1,53
4,5 x 70	9,0	28	42	2,36	0,97		1,26			2		1,61
4,5 x 80	9,0	32	48	2,70	0,97		1,26			2		1,70
5,0 x 40	10,0	16	24	1,45	1,20		1,11			2		1,44
5,0 x 50	10,0	20	30	1,82	1,20		1,24			2		1,67
5,0 x 60	10,0	24	36	2,18	1,20		1,34			2		1,76
5,0 x 70	10,0	28	42	2,54	1,20		1,44			2		1,85
5,0 x 80	10,0	32	48	2,90	1,20		1,52			2		1,94
5,0 x 90	10,0	36	54	3,27	1,20		1,52			2		2,03
5,0 x 100	10,0	40	60	3,63	1,20		1,52			2		2,12
5,0 x 120	10,0	50	70	4,24	1,20		1,52			2		2,27

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_d = R_k \cdot k_{mod} / \gamma_{N^c}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo

 \dot{V} alor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $\dot{K}_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

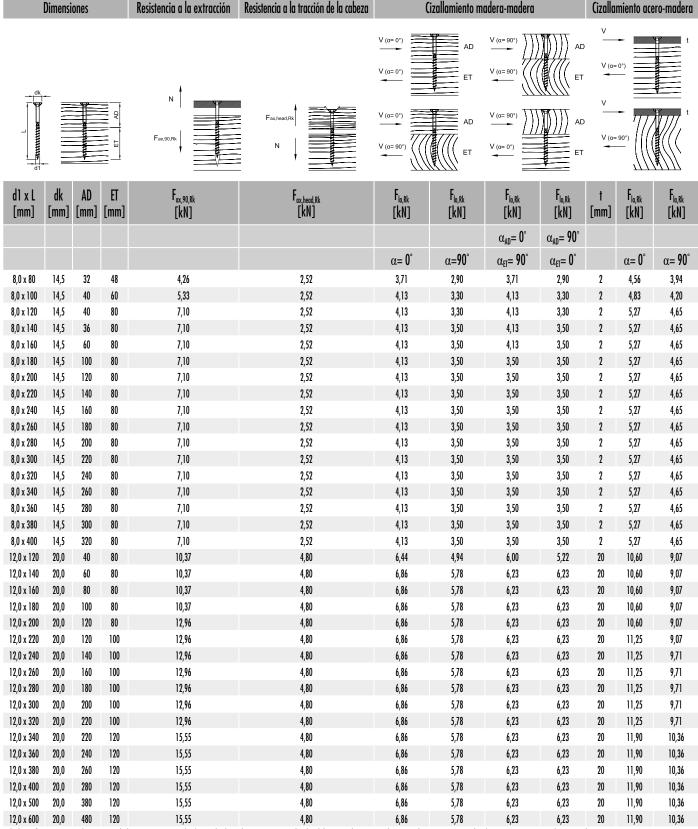
INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA AVELLANADA, ACERO AZUL GALVANIZADO

	Dimensio	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	(Cizalla	miento ace	ero-madera		
dk autummy d1			ET AD	N Fax,90,Rk	Faxhead,Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD ET ET	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)	AC ET	V (α= V V (α=	- - 77/	t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{\text{AD}} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{H}} = 0^{\circ}$		α = 0°	α= 90 °
6,0 x 60	12,0	24	36	2,46	1,73		1,7	l		2		2,26
6,0 x 70	12,0	28	42	2,87	1,73		1,85			2		2,36
6,0 x 80	12,0	32	48	3,28	1,73		1,93			2		2,46
6,0 x 90	12,0	36	54	3,69	1,73		2,0			2		2,57
6,0 x 100	12,0	40	60	4,10	1,73		2,07			2		2,67
6,0 x 110	12,0	40	70	4,79	1,73		2,07			2		2,84
6,0 x 120	12,0	50	70	4,79	1,73		2,07			2		2,84
6,0 x 130	12,0	60	70	4,79	1,73		2,07			2		2,84
6,0 x 140	12,0	70	70	4,79	1,73		2,07			2		2,84
6,0 x 150	12,0	80	70	4,79	1,73		2,07			2		2,84
6,0 x 160	12,0	90	70	4,79	1,73		2,07			2		2,84
6,0 x 180	12,0	110	70	4,79	1,73		2,07			2		2,84
6,0 x 200	12,0	130	70	4,79	1,73		2,07			2		2,84
6,0 x 220	12,0	150	70	4,79	1,73		2,07			2		2,84
6,0 x 240	12,0	170	70	4,79	1,73		2,07			2		2,84
6,0 x 260	12,0	190	70	4,79	1,73		2,07			2		2,84
6,0 x 280	12,0	210	70	4,79	1,73		2,07			2		2,84
6,0 x 300	12,0	230	70	4,79	1,73		2,07	1		2		2,84

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_i : R_i = R_k k_{mod} / γ_{ik} . Los valores nominales R_i : R_i = R_i k_{mod} / k_{mod} /


Eiemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M \ / \ k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Comparación con los valores de la tabla}$

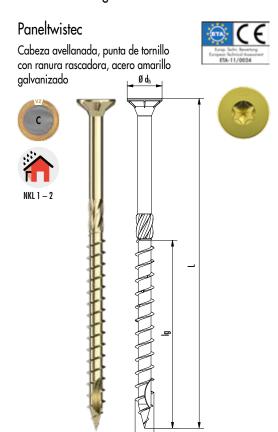
Cálculo conforme a ETA-11/0024. Densidad aparente ho_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : R_k : k_{mod} / γ_M . Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo:

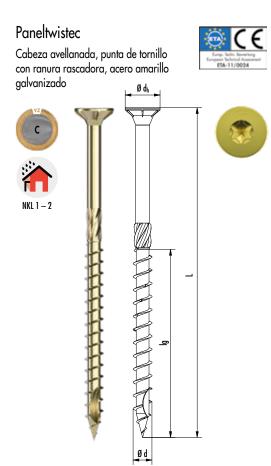
 $Valor\ característico\ para\ efecto\ permanente\ (carga\ muerta)\ G_k=2,00\ kN\ y\ acción\ variable\ (por\ ejemplo,\ carga\ de\ nieve)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{jk}=1,3.$


 \rightarrow Valor nominal del efecto $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$

La capacidad de carga de la conexión se considera probada si $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M \ / \ k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

PANELTWISTEC


Acero amarillo galvanizado

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903000	3,5	30	7,0	18	TX20 •	1000
903044	3,5	35	7,0	21	TX20 •	1000
903001	3,5	40	7,0	24	TX20 •	1000
903002	3,5	50	7,0	30	TX20 •	500
903003	4,0	30	8,0	18	TX20 •	1000
903603	4,0	35	8,0	21	TX20 •	1000
903004	4,0	40	8,0	24	TX20 •	1000
902089	4,0	45	8,0	27	TX20 •	500
903005	4,0	50	8,0	30	TX20 •	500
903006	4,0	60	8,0	36	TX20 •	200
903007	4,0	70	8,0	42	TX20 •	200
903008	4,0	80	8,0	48	TX20 •	200
903046	4,5	35	9,0	24	TX20 •	500
903009	4,5	40	9,0	27	TX20 •	500
903087	4,5	45	9,0	30	TX20 •	500
903010	4,5	50	9,0	36	TX20 •	500
903011	4,5	60	9,0	42	TX20 •	200
903012	4,5	70	9,0	48	TX20 •	200
903013	4,5	80	9,0	24	TX20 •	200
903014	5,0	40	10,0	27	TX20 •	200
903015	5,0	50	10,0	30	TX20 •	200
903016	5,0	60	10,0	36	TX20 •	200
903017	5,0	70	10,0	42	TX20 •	200
903018	5,0	80	10,0	48	TX20 -	200
903578	5,0	90	10,0	54	TX20 •	200
903019	5,0	100	10,0	60	TX20 -	200
903020	5,0	120	10,0	70	TX20 •	200
903071	5,0	40	10,0	24	TX25 •	200
903072	5,0	50	10,0	30	TX25 •	200
903073	5,0	60	10,0	36	TX25 •	200
903074	5,0	70	10,0	42	TX25 •	200
903075	5,0	80	10,0	48	TX25 •	200
903582	5,0	90	10,0	54	TX25 •	200
903076	5,0	100	10,0	60	TX25 •	200
903077	5,0	120	10,0	70	TX25 •	200
903021	6,0	60	12,0	36	TX30 •	200
903022	6,0	70	12,0	42	TX30 •	200
903023	6,0	80	12,0	48	TX30 •	200
903163	6,0	90	12,0	54	TX30 •	100
903024	6,0	100	12,0	60	TX30 •	100
903039		110	12,0	70	TX30 •	100
903025	6,0 6,0	120	12,0	70		100
903026		130		70	TX30 •	100
	6,0		12,0	70	TX30 •	
903027 903028	6,0	140	12,0		TX30 •	100 100
903029	6,0	150	12,0	70	TX30 •	
903031	6,0	160 180	12,0	70	TX30 •	100
	6,0		12,0	70	TX30 •	100
903032	6,0	200	12,0	70	TX30 •	100
903033	6,0	220	12,0	70 70	TX30 •	100
903034	6,0	240	12,0	70	TX30 •	100
903035	6,0	260	12,0	70	TX30 •	100
903036	6,0	280	12,0	70	TX30 •	100
903037	6,0	300	12,0	70	TX30 •	100
903550	8,0	80	14,5	48	TX40 •	50
903551	8,0	100	14,5	60	TX40 •	50
902920	8,0	120	14,5	80	TX40 •	50
902919	8,0	140	14,5	80	TX40 •	50
902921	8,0	160	14,5	80	TX40 •	50

Eurotec | Paneltwistec

MOL I	αlr 1	11. 1	all r 1	1 . 1		C 11 1
N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
902922	8,0	180	14,5	80	TX40 •	50
902923	8,0	200	14,5	80	TX40 •	50
902924	8,0	220	14,5	80	TX40 •	50
902925	8,0	240	14,5	80	TX40 •	50
902926	8,0	260	14,5	80	TX40 •	50
902928	8,0	300	14,5	80	TX40 •	50
902929	8,0	320	14,5	80	TX40 •	50
902930	8,0	340	14,5	80	TX40 •	50
902931	8,0	360	14,5	80	TX40 •	50
902932	8,0	380	14,5	80	TX40 •	50
903030	8,0	400	14,5	80	TX40 •	50
903513	10,0	100	17,4	60	TX50 ●	50
903491	10,0	120	17,4	90	TX50 ●	50
903492	10,0	140	17,4	90	TX50 ◆	50
903493	10,0	160	17,4	90	TX50 ●	50
903494	10,0	180	17,4	90	TX50 ◆	50
903495	10,0	200	17,4	90	TX50 ●	50
903496	10,0	220	17,4	90	TX50 ●	50
903497	10,0	240	17,4	90	TX50 ●	50
903498	10,0	260	17,4	90	TX50 ◆	50
903499	10,0	280	17,4	90	TX50 ●	50
903500	10,0	300	17,4	90	TX50 ●	50
903501	10,0	320	17,4	90	TX50 ●	50
903502	10,0	340	17,4	90	TX50 ●	50
903503	10,0	360	17,4	90	TX50 ●	50
903504	10,0	380	17,4	90	TX50 ●	50
903505	10,0	400	17,4	90	TX50 ●	50

Atornillado sencillo de una construcción de travesaño con nuestro Paneltwistec Cabeza avellanada

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA AVELLANADA, ACERO AMARILLO GALVANIZADO

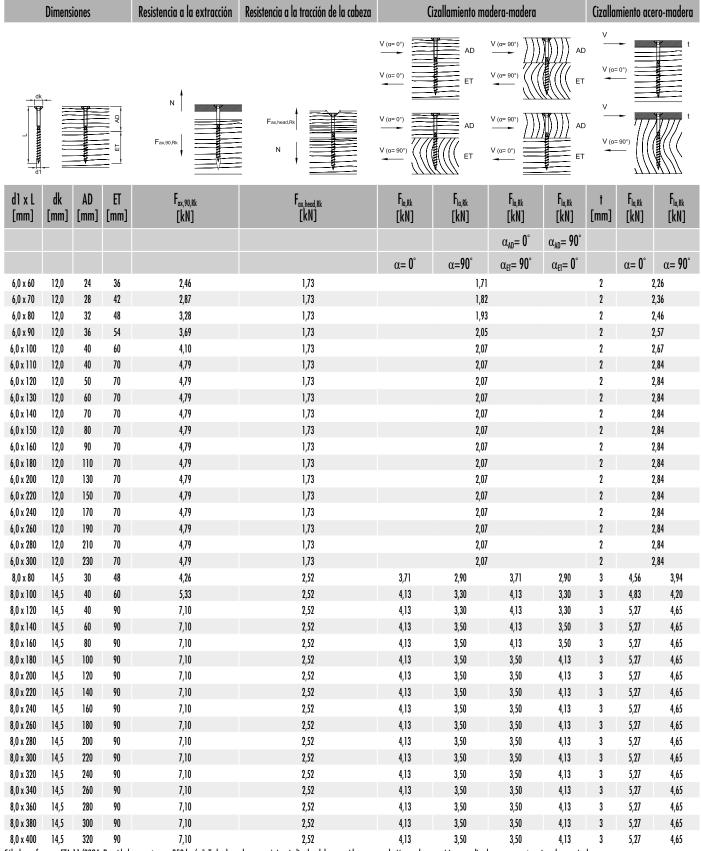
	Dimensio	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza		Cizallamiento m	adera-madera		Cizallar	niento acc	ero-madera
dk			ET AD	N Fax,90,Rk	Fax.head.Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD ET ET	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)	AD AD ET	V (a= 6	- - - 7//	t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\rm H}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
3,5 x 30	7,0	12	18	0,84	0,59	u- u	0,6		ω _[− υ	1		0,86
3,5 x 35	7,0	14	21	0,98	0,59		0,6			1		0,92
3,5 x 40	7,0	16	24	1,12	0,59					1		0,95
3,5 x 45	7,0	18	27	1,26	0,59	0,70 0,74			1		0,99	
3,5 x 50	7,0	20	30	1,40	0,59	0,74 0,78				1		1,02
4,0 x 30	8,0	12	18	0,93	0,77		0,7			2),91
4,0 x 35	8,0	14	21	1,08	0,77		0,8			2		1,07
4,0 x 40	8,0	16	24	1,24	0,77		0,8			2		1,15
4,0 x 45	8,0	18	27	1,39	0,77		0,8			2		1,19
4,0 x 50	8,0	20	30	1,55	0,77		0,9			2		1,23
4,0 x 60	8,0	24	36	1,86	0,77		1,0	1		2		1,31
4,0 x 70	8,0	28	42	2,17	0,77		1,0			2		1,38
4,0 x 80	8,0	32	48	2,48	0,77		1,0	3		2		1,46
4,5 x 35	9,0	14	21	1,18	0,97		0,9	0		2		1,32
4,5 x 40	9,0	16	24	1,35	0,97		1,0	0		2		1,34
4,5 x 45	9,0	18	27	1,52	0,97		1,0	3		2		1,40
4,5 x 50	9,0	20	30	1,69	0,97		1,0	8		2		1,44
4,5 x 60	9,0	24	36	2,03	0,97		1,1	7		2		1,53
4,5 x 70	9,0	28	42	2,36	0,97		1,2			2		1,61
4,5 x 80	9,0	32	48	2,70	0,97		1,2			2		1,70
5,0 x 40*	10,0	16	24	1,45	1,20		1,1			2		1,44
5,0 x 50*	10,0	20	30	1,82	1,20		1,2			2		1,67
5,0 x 60*	10,0	24	36	2,18	1,20		1,3			2		1,76
5,0 x 70*	10,0	28	42	2,54	1,20		1,4			2		1,85
5,0 x 80*	10,0	32	48	2,90	1,20		1,5			2		1,94
5,0 x 90*	10,0	36	54	3,27	1,20		1,5			2		2,03
5,0 x 100*	10,0	40	60	3,63	1,20		1,5			2		2,12
5,0 x 120*	10,0	50	70	4,24	1,20		1,5	2		2		2,27

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_a : $R_a = R_k \cdot k_{mod} / \gamma_{Nc}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo:


Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

Eurotec Paneltwistec

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_{Nc}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot γ_M / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA AVELLANADA, ACERO AMARILLO GALVANIZADO

Dimensiones				Resistencia a la extracción	Resistencia a la tracción de la cabeza	Cizallamiento madera-madera				Cizallamiento acero-madera		
dk dk dq				Fax,90,Rk	Fax,head,Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD ET ET	V (α= 90°) V (α= 90°) V (α= 0°)	AD AD	V (α=	- - - 7//	t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\rm H}$ = 0°		α= 0 °	α= 90 °
10,0 x 100	17,4	40	60	6,48	3,63	5,73	4,37	5,73	4,37	3	6,78	5,81
10,0 x 120	17,4	20	90	9,72	3,63	4,44	3,67	3,71	3,67	3	7,59	6,62
10,0 x 140	17,4	40	90	9,72	3,63	5,73	4,37	5,73	4,37	3	7,59	6,62
10,0 x 160	17,4	60	90	9,72	3,63	6,07	5,10	6,07	5,10	3	7,59	6,62
10,0 x 180	17,4	80	90	9,72	3,63	6,07	5,10	6,07	5,10	3	7,59	6,62
10,0 x 200	17,4	100	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 220	17,4	120	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 240	17,4	140	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 260	17,4	160	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 280	17,4	180	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 300	17,4	200	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 320	17,4	220	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 340	17,4	240	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 360	17,4	260	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 380	17,4	280	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
10,0 x 400	17,4	300	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

 \dot{Valor} característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot γ_M / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

Eurotec* | Paneltwistec

Paneltwistec

Cabeza plana, punta de tornillo con ranura rascadora, acero amarillo advanizado

galvanizado	Ø d _h	
NKL 1 – 2	AND	

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
G903204	8,0	80	22,0	48	TX40 •	50
G903205	8,0	100	22,0	60	TX40 •	50
G903466	8,0	120	22,0	80	TX40 •	50
G903467	8,0	140	22,0	80	TX40 •	50
G903468	8,0	160	22,0	80	TX40 •	50
G903469	8,0	180	22,0	80	TX40 •	50
G903470	8,0	200	22,0	80	TX40 •	50
G903471	8,0	220	22,0	80	TX40 •	50
G903472	8,0	240	22,0	80	TX40 •	50
G903473	8,0	260	22,0	80	TX40 •	50
G903474	8,0	280	22,0	80	TX40 •	50
G903475	8,0	300	22,0	80	TX40 •	50
G903476	8,0	320	22,0	80	TX40 •	50
G903477	8,0	340	22,0	80	TX40 •	50
G903478	8,0	360	22,0	80	TX40 •	50
G904625	8,0	380	22,0	80	TX40 •	50
G904626	8,0	400	22,0	80	TX40 •	50

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA PLANA, ACERO AMARILLO GALVANIZADO

	Dimensiones			Resistencia a la extracción	Resistencia a la tracción de la cabeza	C	izallamiento mo	adera-madera		Cizallaı	niento ace	ero-madera
d d	k		ET AD	N Fax,90,Rk	Fax.head.Rk	V (α= 0°) V (α= 0°) V (α= 0°) V (α= 90°)	AD ET AD	V (a= 90°) V (a= 90°) V (a= 0°)	All E	V (x= 90°)	t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	22,0	30	50	4,26	5,81	4,27	3,41	4,27	3,41	3	4,56	3,94
8,0 x 100	22,0	40	60	5,33	5,81	4,83	4,01	4,83	4,01	3	4,83	4,20
8,0 x 120	22,0	40	80	7,10	5,81	4,95	4,13	4,95	4,13	3	5,27	4,65
8,0 x 140	22,0	60	80	7,10	5,81	4,95	4,32	4,95	4,32	3	5,27	4,65
8,0 x 160	22,0	80	80	7,10	5,81	4,95	4,32	4,95	4,32	3	5,27	4,65
8,0 x 180	22,0	100	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 200	22,0	120	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 220	22,0	140	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 240	22,0	160	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 260	22,0	180	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 280	22,0	200	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 300	22,0	220	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 320	22,0	240	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 340	22,0	260	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 360	22,0	280	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 380	22,0	300	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 400	22,0	320	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65

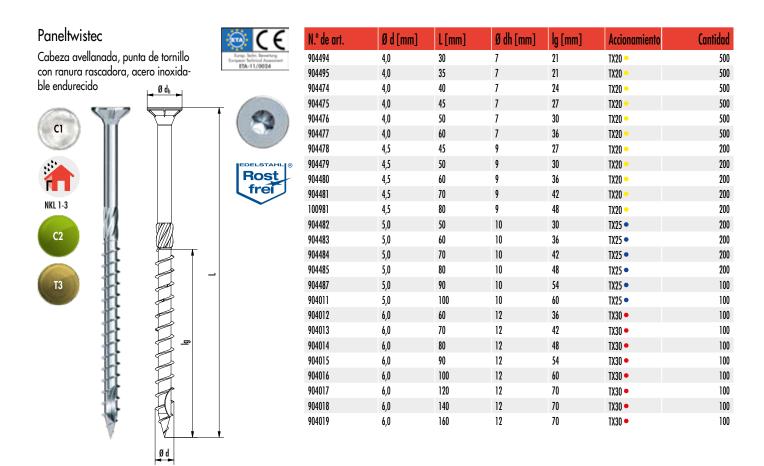
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

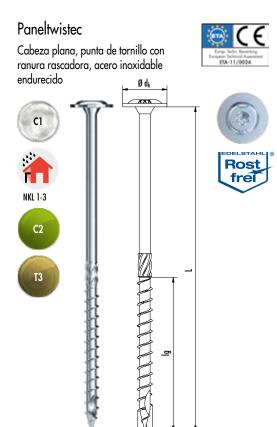
Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : R_k :

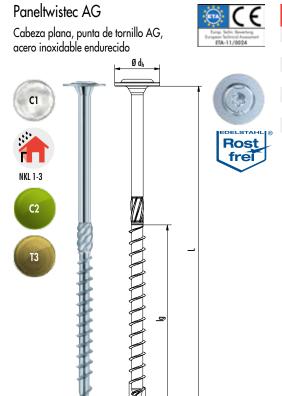
Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{nl} = 1,3$.


 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20 \text{ kN}}$.


La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_{M} / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$


PANELTWISTEC, PANELTWISTEC AG

Acero inoxidable endurecido

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
945278	8,0	80	16	48	TX40 •	50
945270	8,0	100	16	60	TX40 •	50
945271	8,0	120	16	80	TX40 •	50
945272	8,0	140	16	80	TX40 •	50
945364	8,0	160	16	80	TX40 •	50
945365	8,0	180	16	80	TX40 •	50
945366	8,0	200	16	80	TX40 •	50
945367	8,0	220	16	80	TX40 •	50
945368	8,0	240	16	80	TX40 •	50
945369	8,0	260	16	80	TX40 •	50
945370	8,0	280	16	80	TX40 •	50
945371	8,0	300	16	80	TX40 •	50
945372	8,0	320	16	80	TX40 •	50
945373	8,0	340	16	80	TX40 •	50
945374	8,0	360	16	80	TX40 •	50
945375	8,0	380	16	80	TX40 •	50
945376	8,0	400	16	80	TX40 •	50

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
975771	6,0	40	14,0	24	TX30 •	100
975772	6,0	60	14,0	36	TX30 •	100
975773	6,0	80	14,0	48	TX30 •	100
975774	6,0	100	14,0	60	TX30 •	100
975775	6,0	120	14,0	70	TX30 •	100
975776	6,0	140	14,0	70	TX30 •	100
975777	6,0	160	14,0	70	TX30 •	100

INFORMACIÓN TÉCNICA PANELTWISTEC, CABEZA AVELLANADA, ACERO INOXIDABLE ENDURECIDO

	Dimensiones Resistencia a la extracci			Resistencia a la extracción	Resistencia a la tracción de la cabeza	n de la cabeza Cizallamiento madera-madera				Cizallamiento acero-madera		
dk			ET AD	N Fax,90,Rk	Fax,head,Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 90°)	AD ET AD	V (a= 90°) V (a= 90°) V (a= 0°) V (a= 0°)	AC ET	V (α=	- = - 7//	t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
[]	L		L	[111]	[mi]	[KII]	[MII]	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$	L	[MI]	[KII]
						٥٥	00°				٥٥	000
						α= 0 °	α= 90 °	$\alpha_{\rm EI}$ = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
4,0 x 30	8,0	12	18	0,93	0,77		0,71			2		0,91
4,0 x 35	8,0	14	21	1,08	0,77		0,80			2		1,07
4,0 x 40	8,0	16	24	1,24	0,77		0,84			2		1,15
4,0 x 45 4,0 x 50	8,0 8,0	18 20	27 30	1,39 1,55	0,77		0,88 0,92			2		1,19 1,23
4,0 x 50 4,0 x 60	8,0	24	36	1,86	0,77 0,77		1,01			2		1,23
4,0 x 60 4,5 x 45	9,0	18	30 27	1,52	0,97		1,00			2		1,37
4,5 x 45	9,0	20	30	1,69	0,97		1,00			2		1,44
4,5 x 60	9,0	24	36	2,03	0,97		1,00			2		1,53
4,5 x 70	9,0	28	42	2,36	0,97		1,23			2		1,61
4,5 x 80	9,0	32	48	2,70	0,97		1,23			2		1,75
5,0 x 50	10,0	20	30	1,82	1,20		1,24			2		1,67
5,0 x 60	10,0	24	36	2,18	1,20		1,34			2		1,76
5,0 x 70	10,0	28	42	2,54	1,20		1,44			2		1,85
5,0 x 80	10,0	32	48	2,90	1,20		1,51			2		1,94
5,0 x 90	10,0	36	54	3,27	1,20		1,52			2		2,03
5,0 x 100	10,0	40	60	3,63	1,20		1,55			2		2,12
6,0 x 60	12,0	24	36	2,46	1,73		1,6:			2		2,21
6,0 x 70	12,0	28	42	2,87	1,73		1,7!			2		2,31
6,0 x 80	12,0	32	48	3,28	1,73		1,85			2		2,41
6,0 x 90	12,0	36	54	3,69	1,73		1,90	6		2		2,51
6,0 x 100	12,0	40	60	4,10	1,73		2,00	2		2		2,62
6,0 x 120	12,0	50	70	4,79	1,73		1,60	0		2		2,35
6,0 x 140	12,0	70	70	4,79	1,73		2,00			2		2,80
6,0 x 160	12,0	90	70	4,79	1,73		2,00	2		2		2,80

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_{ik}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Eiemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7.20 \text{ kN}}{2.20 \text{ kN}}$.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot γ_M / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Comparación con los valores de la tabla.}$

INFORMACIÓN TÉCNICA PANELTWISTEC, CABEZA PLANA, ACERO INOXIDABLE ENDURECIDO

	Dimensi	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza		Cizallamiento m	adera-madera		Cizallamiento acero-madera		
	sk state of the st		ET AD	N Fax,90,Fik	Fax,head,Rk	V (α= 0°) V (α= 0°) V (α= 0°)	AD ET ET	V (a=90°) V (a=90°) V (a=0°) V (a=0°)	A A	V (c	i= 90°)	t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
[]	[]	L	[]	[KII]	[m]	fviri	[KH]	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$	[]	[KI1]	[KII]
						α= 0 °	α= 90 °	$\alpha_{\rm H} = 90^{\circ}$	$\alpha_{\rm HI} = 0^{\circ}$		α= 0 °	α= 90 °
6,0 x 40	14,0	16	24	1,64	2,35	u- u	1,33		α <u>-</u> − υ	2		1,63
6,0 x 60	14,0	24	36	2,46	2,35		1,81			2		2,21
6,0 x 80	14,0	32	48	3,28	2,35		2,01			2		2,41
6,0 x 100	14,0	40	60	4,10	2,35		1,74			2		2,18
6,0 x 100	14,0	40	60	4,10	2,35		2,18			2		2,62
6,0 x 120	14,0	50	70	4,80	2,35		2,18			2		2,80
6,0 x 160	14,0	90	70	4,80	2,35		2,18			2		2,80
8,0 x 80	22,0	30	50	4,26	5,81	3,94	3,21	3,72	3,36	3	4,41	3,83
8,0 x 100	22,0	40	60	4,80	5,81	4,55	3,71	4,21	3,87	3	4,55	3,96
8,0 x 120	22,0	60	60	5,33	5,81	4,68	4,10	4,34	4,34	3	4,68	4,10
8,0 x 140	22,0	60	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 160	22,0	80	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 180	22,0	100	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 200	22,0	120	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 220	22,0	140	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 240	22,0	160	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 260	22,0	180	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 280	22,0	200	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 300	22,0	220	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 320	22,0	240	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 340	22,0	260	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 360	22,0	280	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 380	22,0	300 320	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 400	22,0	320	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54

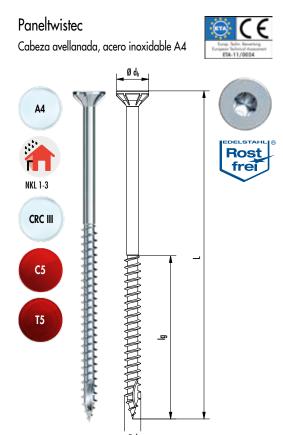
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

 $Todos \ los \ valores \ son \ valores \ mínimos \ calculados \ y \ están \ sujetos \ a \ errores \ tipográficos \ y \ de \ impresión.$

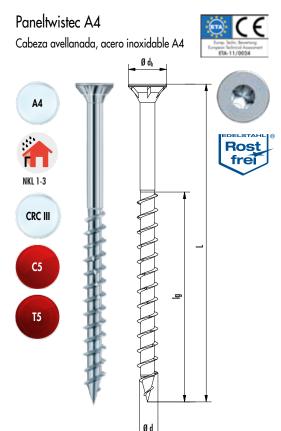
Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_a : $R_a = R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Eiemplo

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.


 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

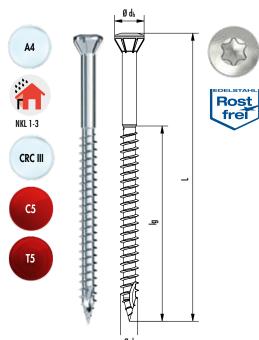

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

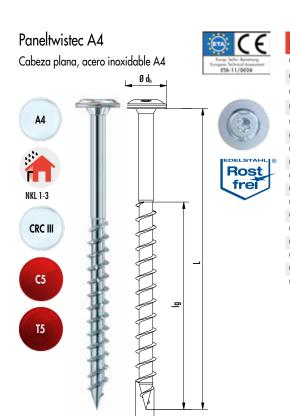
PANELTWISTEC A4

Acero inoxidable A4

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
901476	4,0	25	7,75	15	TX20 •	500
111442	4,0	35	7,75	21	TX20 •	500
903202	4,0	40	7,75	24	TX20 •	500
111443	4,0	45	7,75	27	TX20 •	500
901109	4,0	55	7,75	33	TX20 •	500
111444	4,0	60	7,75	36	TX20 -	500
111445	4,0	70	7,75	42	TX20 •	200
111446	4,0	80	7,75	48	TX20 -	200
111447	4,5	45	8,75	27	TX25 •	200
111448	4,5	60	8,75	36	TX25 •	200
111449	4,5	70	8,75	42	TX25 •	200
111450	4,5	80	8,75	48	TX25 •	200
903990	5,0	40	9,75	24	TX25 •	200
111451	5,0	50	9,75	30	TX25 •	200
111452	5,0	60	9,75	36	TX25 •	200
111453	5,0	70	9,75	42	TX25 •	200
111454	5,0	80	9,75	48	TX25 •	200
903580	5,0	100	9,75	60	TX25 •	200
111459	6,0	60	11,75	36	TX30 •	100
944885	6,0	70	11,75	42	TX30 •	100
111460	6,0	80	11,75	48	TX30 •	100
111458	6,0	100	11,75	60	TX30 •	100
901478	6,0	120	11,75	60	TX30 •	100

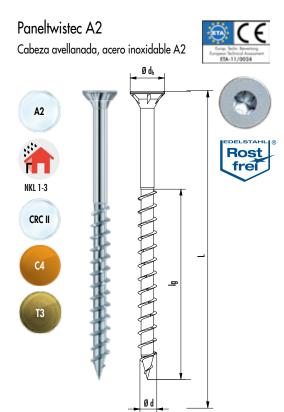
N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903280	8,0	80	14,50	48	TX40 ●	50
903281	8,0	100	14,50	60	TX40 •	50
903282	8,0	120	14,50	80	TX40 •	50
903283	8,0	140	14,50	80	TX40 •	50
903284	8,0	160	14,50	80	TX40 •	50
903285	8,0	180	14,50	80	TX40 •	50
903286	8,0	200	14,50	80	TX40 •	50
903287	8,0	220	14,50	80	TX40 •	50
903288	8,0	240	14,50	80	TX40 •	50
903289	8,0	260	14,50	80	TX40 •	50
903290	8,0	280	14,50	80	TX40 •	50
903291	8,0	300	14,50	80	TX40 •	50
903292	8,0	320	14,50	80	TX40 •	50
903293	8,0	340	14,50	80	TX40 •	50
903294	8,0	360	14,50	80	TX40 •	50
903295	8,0	380	14,50	80	TX40 •	50
903296	8,0	400	14,50	80	TX40 •	50

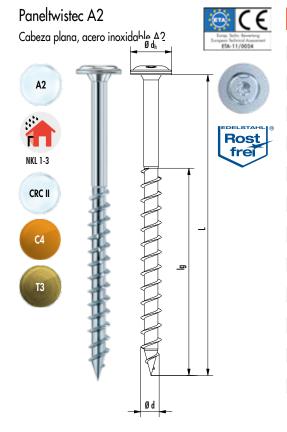

Eurotec® | Paneltwistec



Cabeza decorativa, acero inoxidable A4

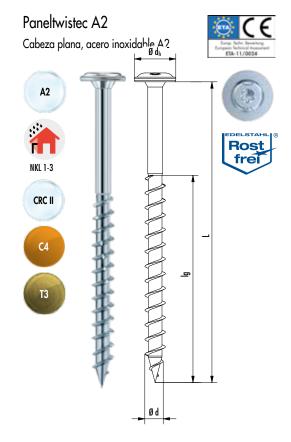
N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
901479	3,2	25	5,10	17,5	TX10 O	1000
903038	3,2	30	5,10	21	TX10 O	1000
901480	3,2	35	5,10	19	TX10 O	1000
901481	3,2	40	5,10	24	TX10 O	1000
903104	3,2	50	5,10	34	TX10 🔾	1000




N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903260	8,0	80	16	48	TX40 •	50
903261	8,0	100	16	60	TX40 •	50
903262	8,0	120	16	80	TX40 •	50
903263	8,0	140	16	80	TX40 •	50
903264	8,0	160	16	80	TX40 •	50
903265	8,0	180	16	80	TX40 •	50
903266	8,0	200	16	80	TX40 •	50
903267	8,0	220	16	80	TX40 •	50
903268	8,0	240	16	80	TX40 •	50
903269	8,0	260	16	80	TX40 •	50
903270	8,0	280	16	80	TX40 •	50
903271	8,0	300	16	80	TX40 •	50
903272	8,0	320	16	80	TX40 •	50
903273	8,0	340	16	80	TX40 •	50
903274	8,0	360	16	80	TX40 •	50
903275	8,0	380	16	80	TX40 •	50
903276	8,0	400	16	80	TX40 •	50

PANELTWISTEC A2

Acero inoxidable A2



Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
8,0	80	14,5	48	TX40 •	50
8,0	100	14,5	60	TX40 •	50
8,0	120	14,5	80	TX40 •	50
8,0	140	14,5	80	TX40 •	50
8,0	160	14,5	80	TX40 •	50
8,0	180	14,5	80	TX40 •	50
8,0	200	14,5	80	TX40 •	50
8,0	220	14,5	80	TX40 •	50
8,0	240	14,5	80	TX40 •	50
8,0	260	14,5	80	TX40 •	50
8,0	280	14,5	80	TX40 •	50
8,0	300	14,5	80	TX40 •	50
8,0	320	14,5	80	TX40 •	50
8,0	340	14,5	80	TX40 •	50
8,0	360	14,5	80	TX40 •	50
8,0	380	14,5	80	TX40 •	50
8,0	400	14,5	80	TX40 •	50
	8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0	8,0 80 8,0 100 8,0 120 8,0 140 8,0 160 8,0 200 8,0 220 8,0 240 8,0 240 8,0 260 8,0 300 8,0 320 8,0 320 8,0 340 8,0 360 8,0 380	8,0 80 14,5 8,0 100 14,5 8,0 120 14,5 8,0 140 14,5 8,0 160 14,5 8,0 180 14,5 8,0 200 14,5 8,0 220 14,5 8,0 240 14,5 8,0 260 14,5 8,0 280 14,5 8,0 300 14,5 8,0 320 14,5 8,0 340 14,5 8,0 360 14,5 8,0 380 14,5 8,0 380 14,5	8,0 80 14,5 48 8,0 100 14,5 60 8,0 120 14,5 80 8,0 140 14,5 80 8,0 160 14,5 80 8,0 180 14,5 80 8,0 200 14,5 80 8,0 220 14,5 80 8,0 240 14,5 80 8,0 260 14,5 80 8,0 280 14,5 80 8,0 300 14,5 80 8,0 320 14,5 80 8,0 340 14,5 80 8,0 340 14,5 80 8,0 340 14,5 80 8,0 340 14,5 80 8,0 340 14,5 80 8,0 360 14,5 80 8,0 380 14,5 80	8,0 80 14,5 48 TX40 • 8,0 100 14,5 60 TX40 • 8,0 120 14,5 80 TX40 • 8,0 140 14,5 80 TX40 • 8,0 160 14,5 80 TX40 • 8,0 180 14,5 80 TX40 • 8,0 200 14,5 80 TX40 • 8,0 220 14,5 80 TX40 • 8,0 240 14,5 80 TX40 • 8,0 260 14,5 80 TX40 • 8,0 280 14,5 80 TX40 • 8,0 300 14,5 80 TX40 • 8,0 320 14,5 80 TX40 • 8,0 340 14,5 80 TX40 • 8,0 340 14,5 80 TX40 • 8,0 340 14,5 80 TX40 • 8,0 360 14,5 80 TX40 •

N.º de art.	Ød[mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
946266°)	3,0	25	9	18	TX100	1000
946267°)	3,0	30	9	18	TX10 O	1000
946268°)	3,0	35	9	24	TX10 \circ	1000
946269°)	3,0	40	9	24	TX10 O	1000
946270°)	3,0	45	9	30	TX10 \circ	1000
946271°)	3,0	50	9	30	TX10 O	1000
946272	4,0	30	12	18	TX20 -	1000
946273	4,0	40	12	24	TX20 -	1000
946274	4,0	50	12	30	TX20 -	500
946275	4,0	60	12	36	TX20 -	500
946276	4,0	70	12	42	TX20 -	200
946277	4,5	40	13	24	TX20 -	500
946278	4,5	50	13	30	TX20 -	500
946279	4,5	60	13	36	TX20 -	200
946280	4,5	70	13	42	TX20 -	200
946281	4,5	80	13	48	TX20 -	200
946282	5,0	40	14	24	TX25 •	200
946283	5,0	50	14	30	TX25 •	200
946284	5,0	60	14	36	TX25 •	200
946285	5,0	70	14	42	TX25 •	200
946286	5,0	80	14	48	TX25 •	200
946287	5,0	100	14	60	TX25 •	200
946288	5,0	120	14	70	TX25 •	200
946289	6,0	60	15	36	TX30 •	200
946290	6,0	80	15	48	TX30 •	200

Eurotec | Paneltwistec

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
946291	6,0	100	15	70	TX30 •	100
946292	6,0	120	15	70	TX30 •	100
946293	6,0	140	15	70	TX30 •	100
946294	6,0	160	15	70	TX30 •	100
946295	6,0	180	15	70	TX30 •	100
946296	6,0	200	15	70	TX30 •	100
946291	6,0	100	15	70	TX30 •	100
946292	6,0	120	15	70	TX30 •	100
946293	6,0	140	15	70	TX30 •	100
946294	6,0	160	15	70	TX30 •	100
946295	6,0	180	15	70	TX30 •	100
946296	6,0	200	15	70	TX30 •	100
903211	8,0	80	16	48	TX40 •	50
903212	8,0	100	16	60	TX40 •	50
903213	8,0	120	16	80	TX40 •	50
903214	8,0	140	16	80	TX40 •	50
903215	8,0	160	16	80	TX40 •	50
903216	8,0	180	16	80	TX40 •	50
903217	8,0	200	16	80	TX40 •	50
903218	8,0	220	16	80	TX40 •	50
903219	8,0	240	16	80	TX40 •	50
903220	8,0	260	16	80	TX40 •	50
903221	8,0	280	16	80	TX40 •	50
903222	8,0	300	16	80	TX40 •	50
903223	8,0	320	16	80	TX40 •	50
903224	8,0	340	16	80	TX40 •	50
903225	8,0	360	16	80	TX40 •	50
903226	8,0	380	16	80	TX40 •	50
903227	8,0	400	16	80	TX40 •	50

INFORMACIÓN TÉCNICA PANELTWISTEC, CABEZA AVELLANADA, ACERO INOXIDABLE A4

	Dimensio	nes		Resistencia a la extracción	Resistencia a la tracción de la cabeza	(izallamiento m	adera-madera		Cizallar	niento acc	ero-madera
dk zammines			ET AD	N Fax,90,Rk	Faxhead Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD ET ET	V (α= 90°) V (α= 90°) V (α= 0°)	AD AD AD ET	V (α=	- = - 7//	t
dl x L	dk	AD	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk}	F _{la,Rk}	F _{la,Rk}	F _{la,Rk}	† [mm]	F _{la,Rk}	F _{la,Rk}
[mm]	[mm]	[mm]	[IIIIII]	[KIN]	[KIN]	[kN]	[kN]	[kN]	[kN]	[mm]	[kN]	[kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α =90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\rm EI}$ = 0°		α= 0 °	α= 90 °
4,0 x 25	8,0	10	15	0,77	0,77		0,6			2		0,70
4,0 x 35	8,0	14	21	1,08	0,77		0,6			2),85
4,0 x 40	8,0	16	24	1,24	0,77		0,7			2),90
4,0 x 45	8,0	18	27	1,39	0,77		0,7			2),93
4,0 x 55	8,0	22	33	1,55	0,77		0,7			2		1,01
4,0 x 60	8,0	24	36	1,86	0,77		0,7			2		1,05
4,0 x 70	8,0	28	42	2,17	0,77		0,7			2		1,13
4,0 x 80	8,0	32	48	2,48	0,77		0,7			2		1,20
4,5 x 45	9,0	18	27	1,69	0,97		0,9			2		1,10
4,5 x 60	9,0	24	36	2,03	0,97		0,9			2		1,23
4,5 x 70	9,0	28	42	2,36	0,97		0,9			2		1,31
4,5 x 80	9,0	32	48	2,70	0,97		0,9			2		1,40
5,0 x 40	10,0	16	24	1,45	1,20		0,9			2		1,22
5,0 x 45 5,0 x 50	10,0 10,0	18 20	27 30	1,63 1,82	1,20 1,20		1,0 1,0			2		1,26 1,31
5,0 x 50	10,0	24	36	2,18	1,20		1,1			2		1,40
5,0 x 70	10,0	28	42	2,54	1,20		1,1			2		1,50
5,0 x 70	10,0	32	48	2,90	1,20		1,1			2		1,58
5,0 x 90	10,0	36	54	3,27	1,20		1,1			2		1,67
5,0 x 100	10,0	40	60	3,63	1,20		1,1			2		1,76
6,0 x 60	12,0	24	36	2,46	1,73		1,4			2		1,77
6,0 x 70	12,0	28	42	2,87	1,73		1,6			2		1,87
6,0 x 80	12,0	32	48	3,28	1,73		1,6			2		1,97
6,0 x 90	12,0	36	54	3,69	1,73		1,6			2		2,08
6,0 x 100	12,0	40	60	4,10	1,73		1,6			2		2,18
6,0 x 120	12,0	50	70	4,79	1,73		1,6			2		2,35

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{NL} = 1,3.

→ Valor nominal del efecto E_d = 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$

La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_{M} / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

INFORMACIÓN TÉCNICA PANELTWISTEC, CABEZA AVELLANADA, ACERO INOXIDABLE A2 Y A4

	Dimensi	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	(izallamiento m	nadera-madera		Cizallar	niento ace	ero-madera
dk Banninn d1	+		ET AD	N Fax,90,Rk	Faxhead Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD ET ET	V (a= 90°) V (a= 90°) V (a= 0°)	AD ET	V (a= 0	- - - -	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{EI}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	14,5	30	50	4,26	2,52	3,08	2,50	2,83	2,62	3	3,51	3,08
8,0 x 100	14,5	40	60	5,33	2,52	3,08	2,65	2,83	2,83	3	3,78	3,35
8,0 x 120	14,5	40	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 140	14,5	60	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 160	14,5	80	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 180	14,5	100	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 200	14,5	120	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 220	14,5	140	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 240	14,5	160	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 260	14,5	180	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 280	14,5	200	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 300	14,5	220	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 320	14,5	240	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 340	14,5	260	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 360	14,5	280	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 380	14,5	300	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 400	14,5	320	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de cargá R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$

 $\text{La capacidad de carga de la conexión se considera probada } \overrightarrow{si} \ \overrightarrow{R_d} \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \ / \ k_{\text{mod}}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10.40 \text{ kN}}{10.40 \text{ kN}} \rightarrow \text{Comparación con los valores de la tabla.}$

INFORMACIÓN TÉCNICA PANELTWISTEC A4 CABEZA PLANA, ACERO INOXIDABLE A4

	Dimens	siones		Resistencia a la extracción	Resistencia a la tracción de la cabeza		Cizallamien	to madera-m	adera	Cizalla	ımiento ad	cero-madera
	dk		ET AD	N Fax.90,Rk	Fax,head,Rk	V (α= 0°) V (α= 0°) V (α= 90°)		$V (\alpha = 90^{\circ})$ T $V (\alpha = 90^{\circ})$ $V (\alpha = 90^{\circ})$ $V (\alpha = 90^{\circ})$ $V (\alpha = 90^{\circ})$		V AD	a= 90°)	
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{Ia,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{\text{AD}} = 0^{\circ}$	α_{AD} = 90°			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{EI}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	16,0	30	50	4,26	3,07	3,21	2,63	2,97	2,75	3	3,51	3,08
8,0 x 100	16,0	40	60	5,33	3,07	3,21	2,78	2,97	2,97	3	3,78	3,35
8,0 x 120	16,0	40	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 140	16,0	60	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 160	16,0	80	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 180	16,0	100	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 200	16,0	120	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 220	16,0	140	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 240	16,0	160	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 260	16,0	180	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 280	16,0	200	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 300	16,0	220	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 320	16,0	240	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 340	16,0	260	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 360	16,0	280	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 380	16,0	300	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 400	16,0	320	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : R_k :

Ejemplo

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{Nl} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7.20 kN.

La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_{M} / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

INFORMACIÓN TÉCNICA PANELTWISTEC A4 CABEZA DECORATIVA

		Dimensio	nes	Resistencia a la tracción de la cabeza		Ci	zallamiento ma	dera-madera
dk ₩		W-				V (a= 0°)	AD ET	V (α= 90°) AD
	_		ET	Fax.head.Rk		V (a= 90°)	AD ET	V (a= 90°) AD V (a= 0°) ET
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
							$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$
					α= 0 °	α= 90 °	α_{H} = 90°	$\alpha_{EI} = 0^{\circ}$
3,2 x 25	5,1	7	18	0,31			0,34	
3,2 x 30	5,1	9	21	0,31			0,37	
3,2 x 35	5,1	16	19	0,31			0,45	
3,2 x 40	5,1	16	24	0,31			0,45	
3,2 x 50	5,1	16	34	0,31			0,45	

Debido a la mayor resistencia al paso de la cabeza decorativa del Paneltwistec en comparación con la resistencia al atornillado del tornillo, este valor puede ignorarse.

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_{kk}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo

Valor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\underline{7,20~kN}$.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

INFORMACIÓN TÉCNICA PANELTWISTEC A2 CABEZA PLANA ACERO INOXIDABLE A2

[Dimen	siones		Resistencia a la extracción	Resistencia a la tracción de la cabeza		Cizallamiento	madera-mader	a	Cizall	amiento a	cero-madera
dk annum			ET AD	N Fax.90.Rk	Fax.head.Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 90°)	AD ET AD ET	V (a= 90°) V (a= 90°) V (a= 0°)	AL ET	V (α V V V (α	= 90°)	t
	dk mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\rm H} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
3,0 x 25	9	7	18	0,72	0,77	u- u),43	α _{El} – υ	1	u- u	0,54
3,0 x 30	9	12	18	0,72	0,77), 1 3),51		1		0,54
3,0 x 35	9	11	24	0,96	0,77),51		1		0,60
3,0 x 40	9	16	24	0,96	0,77			0,55		1		0,60
3,0 x 45	9	15	30	1,20	0,77			0,55		1		0,66
3,0 x 50	9	20	30	1,20	0,77			0,55		1		0,66
4,0 x 30	12	12	18	0,93	1,45			0,68		2		0,82
4,0 x 40	12	16	24	1,24	1,45		(0,84		2		0,89
4,0 x 50	12	20	30	1,55	1,45		(0,95		2		0,97
4,0 x 60	12	24	36	1,86	1,45		(0,95		2		1,05
4,0 x 70	12	28	42	2,17	1,45		(0,78		2		1,13
4,5 x 40	13	16	24	1,35	1,73),94		2		1,06
4,5 x 50	13	20	30	1,69	1,73			1,12		2		1,14
4,5 x 60	13	24	36	2,03	1,73			1,15		2		1,23
4,5 x 70	13	28	42	2,36	1,73			1,15		2		1,31
4,5 x 80	13	32	48	2,70	1,73			1,15		2		1,40
5,0 x 40	14	16	24	1,45	2,03			1,04		2		1,22
5,0 x 50 5,0 x 60	14 14	20 24	30 36	1,82 2,18	2,03 2,03			1,23 1,36		2		1,31 1,40
5,0 x 70	14	28	42	2,54	2,03			1,36		2		1,50
5,0 x 70	14	32	48	2,90	2,03			1,36		2		1,58
5,0 x 100	14	40	60	3,63	2,03			1,36		2		1,76
5,0 x 120	14	50	70	4,24	2,03			1,36		2		1,91
6,0 x 60	15	24	36	2,46	2,35			1,64		3		1,77
6,0 x 80	15	32	48	3,28	2,35			1,74		3		1,97
6,0 x 100	15	30	70	4,79	2,35			1,74		3		2,35
6,0 x 120	15	50	70	4,79	2,35			1,74		3		2,35
6,0 x 140	15	70	70	4,79	2,35			1,74		3		2,35
6,0 x 160	15	90	70	4,79	2,35			1,74		3		2,35
6,0 x 180	15	110	70	4,79	2,35			1,74		3		2,35
6,0 x 200	15	130	70	4,79	2,35			1,74		3		2,35

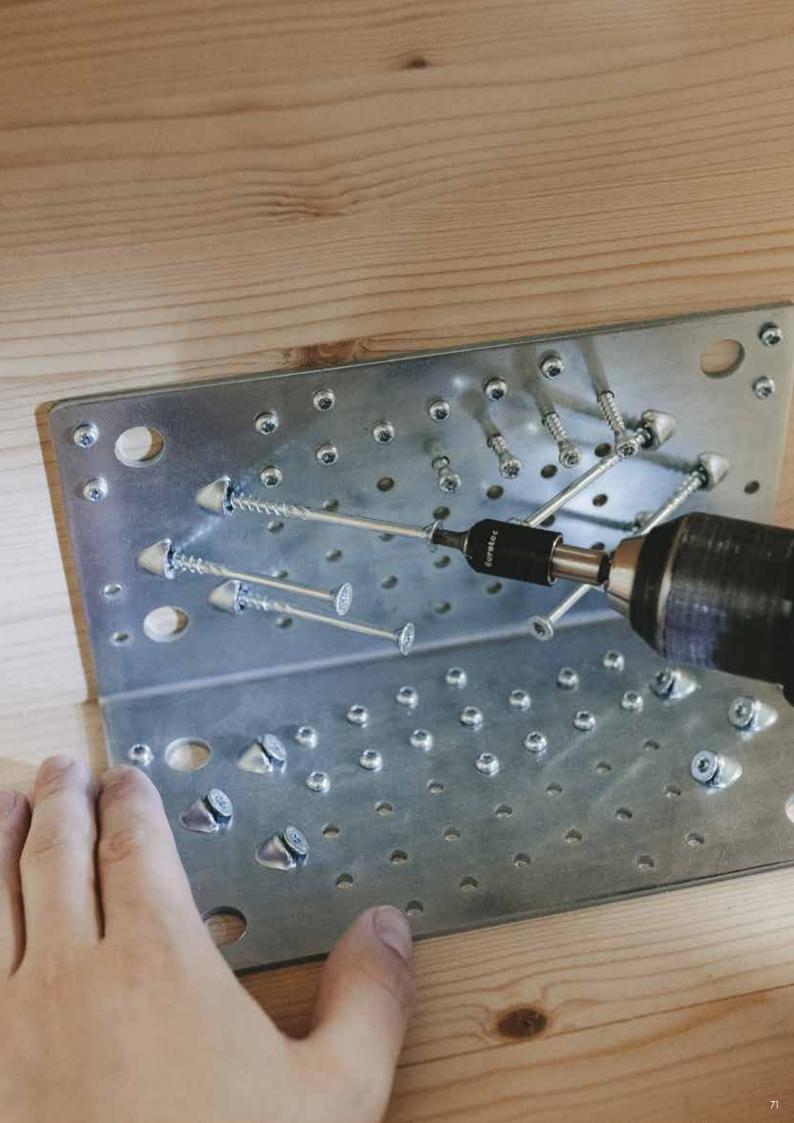
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión. Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = $R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3. \longrightarrow Valor nominal del efecto E_d = 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20$ kN. La capacidad de carga de la conexión se considera probada si R_d $\ge E_d$. \longrightarrow min R_d = R_d · γ_M / k_{mod} \longrightarrow R_d = R_d · γ_M / k_{mod} \longrightarrow R_d = 7,20 kN · 1,3/0,9= $\frac{10,40}{k}$ kN

[→] Comparación con los valores de la tabla. Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

INFORMACIÓN TÉCNICA PANELTWISTEC A2 CABEZA PLANA ACERO INOXIDABLE A2:


	Dimens	iones		Resistencia a la extracción	Resistencia a la tracción de la cabeza		Cizallamiento n	madera-madero	1	Cizallo	ımiento ac	ero-madera
dk gammumas di	-		ET AD	N Fax,90,Rk	Fax.head.Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 0°)	AD ET AD	V (α= 90°) V (α= 90°) V (α= 90°) V (α= 0°)	AD ET ET	V (α=	- - - 7//	t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\rm ET}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	14,5	30	50	4,26	2,52	3,08	2,50	2,83	2,62	3	3,51	3,08
8,0 x 100	14,5	40	60	5,33	2,52	3,08	2,65	2,83	2.83	3	3,78	3,35
8,0 x 120	14,5	40	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 140	14,5	60	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 160	14,5	80	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 180	14,5	100	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 200	14,5	120	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 220	14,5	140	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 240	14,5	160	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 260	14,5	180	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 280	14,5	200	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 300	14,5	220	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 320	14,5	240	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 340	14,5	260	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 360	14,5	280	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 380	14,5	300	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 400	14,5	320	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80

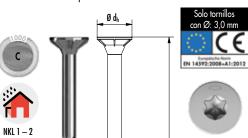
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión. Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de réfundo de los efectos F_k ($R_k > F_k$)

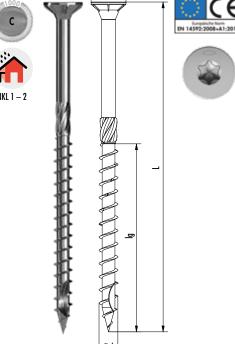
Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \rightarrow Valor nominal del efecto $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$. La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$. Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod}$. \rightarrow $R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN}$

⁻⁻ Comparación con los valores de la tabla. Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

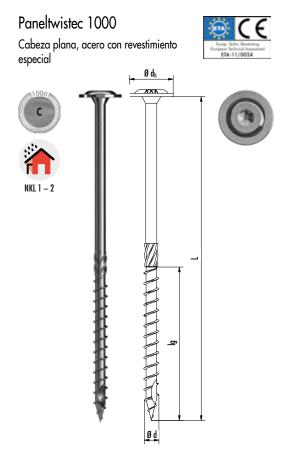
PANELTWISTEC 1000


Acero con revestimiento especial


El Paneltwistec 1000 de acero al carbono con revestimiento especial y endurecido es un elemento de fijación para construcciones de madera portantes entre componentes de madera maciza (madera blanda), madera laminada encolada, madera de chapa laminada o materiales encolados de madera similares. El tornillo dispone de una ranura rascadora en la punta y de nervios de fresado por encima de la rosca. El tornillo está disponible en las versiones «cabeza avellanada» y «cabeza plana». La geometría especial del tornillo permite una menor generación de grietas al atornillar. El revestimiento especial también reduce la resistencia al atornillado, es decir, que la fricción entre el cuerpo del tornillo y la madera se reduce considerablemente.

Paneltwistec 1000

Cabeza avellanada, punta de tornillo con ranura rascadora, acero amarillo con revestimiento especial



Cantidad	Accionamiento	lg [mm]	Ø dh [mm]	L[mm]	Ø d [mm]	N.º de art.
1000	TX10 O	Todo rosca	5,6	12	3,0	R945034
1000	TX10 O	Todo rosca	5,6	16	3,0	R945035
1000	TX10 O	Todo rosca	5,6	20	3,0	R903038
1000	TX10 O	Todo rosca	5,6	25	3,0	R903039
1000	TX10 O	18	5,6	30	3,0	R903040
1000	TX10 O	21	5,6	35	3,0	R903041
1000	TX10 O	24	5,6	40	3,0	R903042
1000	TX20 -	Todo rosca	7,0	12	3,5	R945036
1000	TX20 -	Todo rosca	7,0	16	3,5	R945037
1000	TX20 -	Todo rosca	7,0	20	3,5	R903043
1000	TX20 -	Todo rosca	7,0	25	3,5	R903044
1000	TX20 -	18	7,0	30	3,5	R903045
1000	TX20 -	21	7,0	35	3,5	R903046
1000	TX20 -	24	7,0	40	3,5	R903047
500	TX20 -	27	7,0	50	3,5	R903048
1000	TX20 -	Todo rosca	8,0	16	4,0	R945038
1000	TX20 •	Todo rosca	8,0	20	4,0	R903001
1000	TX20 -	Todo rosca	8,0	25	4,0	R903002
1000	TX20 -	18	8,0	30	4,0	R903003
1000	TX20 -	21	8,0	35	4,0	R903049
1000	TX20 •	24	8,0	40	4,0	R903004
500	TX20 -	27	8,0	45	4,0	R902089
500	TX20 •	30	8,0	50	4,0	R903005
200	TX20 -	36	8,0	60	4,0	R903006
200	TX20 -	42	8,0	70	4,0	R903007
200	TX20 -	48	8,0	80	4,0	R903008
1000	TX20 -	Todo rosca	9,0	16	4,5	R945039
500	TX20 •	Todo rosca	9,0	25	4,5	R903050
500	TX20 •	18	9,0	30	4,5	R903051
500	TX20 •	21	9,0	35	4,5	R903052
500	TX20 •	24	9,0	40	4,5	R903009
500	TX20 •	30	9,0	50	4,5	R903010
200	TX20 •	36	9,0	60	4,5	R903011
200	TX20 •	42	9,0	70	4,5	R903012
200	TX20 •	48	9,0	80	4,5	R903013
200	TX20 •	54	9,0	90	4,5	R903468
200	TX20 •	60	9,0	100	4,5	R903063
500	TX20 •	Todo rosca	10,0	25	5,0	R903053
500		20	10,0	30	5,0	R903054
500	TX20 • TX20 •	21	10,0	35	5,0	R903055
200		24	10,0	40	5,0	R903014
200	TX20 •	27		45		R903579
	TX20 •		10,0		5,0	
200 200	TX20 •	30 36	10,0	50 60	5,0	R903015 R903016
	TX20 •		10,0	70	5,0	
200	TX20 •	42	10,0		5,0	R903017
200	TX20 •	48	10,0	80	5,0	R903018
200	TX20 •	54	10,0	90	5,0	R903578
200	TX20 •	60	10,0	100	5,0	R903019
200 a página siguiente	TX20 •	70	10,0	120	5,0	R903020

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
R903581	6,0	40	12,0	24	TX30 •	200
R903582	6,0	50	12,0	30	TX30 •	200
R903021	6,0	60	12,0	36	TX30 •	200
R903022	6,0	70	12,0	42	TX30 •	200
R903023	6,0	80	12,0	48	TX30 •	200
R903163	6,0	90	12,0	54	TX30 •	100
R903024	6,0	100	12,0	60	TX30 •	100
R903025	6,0	120	12,0	70	TX30 •	100
R903026	6,0	130	12,0	70	TX30 •	100
R903027	6,0	140	12,0	70	TX30 •	100
R903029	6,0	160	12,0	70	TX30 •	100
R903031	6,0	180	12,0	70	TX30 •	100
R903032	6,0	200	12,0	70	TX30 •	100
R903033	6,0	220	12,0	70	TX30 •	100
R903034	6,0	240	12,0	70	TX30 •	100
R903035	6,0	260	12,0	70	TX30 •	100
R903036	6,0	280	12,0	70	TX30 •	100
R903037	6,0	300	12,0	70	TX30 •	100

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
R901357	6,0	100	14,0	60	TX30 •	100
R901359	6,0	120	14,0	70	TX30 •	100
R901361	6,0	140	14,0	70	TX30 •	100
R901364	6,0	180	14,0	70	TX30 •	100
R901365	6,0	200	14,0	70	TX30 •	100
R903060	8,0	80	22,0	48	TX40 •	50
R903062	8,0	100	22,0	54	TX40 •	50
R903064	8,0	120	22,0	60	TX40 •	50
R903066	8,0	140	22,0	80	TX40 •	50
R903067	8,0	160	22,0	80	TX40 •	50
R903470	8,0	180	22,0	80	TX40 •	50
R903069	8,0	200	22,0	80	TX40 •	50
R903472	8,0	220	22,0	80	TX40 •	50
R903071	8,0	240	22,0	80	TX40 •	50
R903072	8,0	260	22,0	80	TX40 •	50
R903073	8,0	280	22,0	80	TX40 •	50
R903074	8,0	300	22,0	80	TX40 •	50
R903475	8,0	360	22,0	80	TX40 •	50
R904625	8,0	380	22,0	80	TX40 •	50
R903476	8,0	400	22,0	80	TX40 •	50
R903077	10,0	60	25,0	36	TX40 •	50
R903079	10,0	80	25,0	50	TX40 •	50
R903081	10,0	100	25,0	60	TX40 •	50
R903083	10,0	120	25,0	70	TX40 •	50
R903085	10,0	160	25,0	90	TX40 •	50
R903086	10,0	180	25,0	100	TX40 •	50
R903087	10,0	200	25,0	100	TX40 ●	50
R903088	10,0	220	25,0	100	TX40 •	50
R903089	10.0	240	25.0	100	TX40 •	50

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA AVELLANADA, ACERO CON REVESTIMIENTO ESPECIAL 1000

	Dimensio	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	za Cizallamiento madera-madera				Cizallamiento acero-madera		
dk summus			ET AD	N Fax,90,Rk	Fax.head.Rx	V (α= 0°) V (α= 0°) V (α= 0°)	AD ET ET	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)	AD AD	V (α=	- = - 7//	t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						$\alpha = 0^{\circ}$	α= 90 °	$\alpha_{\rm H}$ = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α = 0°	α= 90 °
3,0 x 12	5,6	6	6	0,21	0,38		0,2			1),27
3,0 x 16	5,6	8	8	0,28	0,38		0,2			1),37
3,0 x 20	5,6	10	10	0,35	0,38		0,3			1),47
3,0 x 25	5,6	10	15	0,53	0,38		0,4			1),60
3,0 x 30	5,6	12	18	0,64	0,38		0,4			1),60
3,0 x 35	5,6	14	21	0,74	0,38		0,4			1),63
3,0 x 40	5,6	16	24	0,85	0,38		0,5			1),66
3,5 x 12	7	6	6	0,28	0,59		0,2			1),30
3,5 x 16	7	8	8	0,37	0,59		0,3			1),41
3,5 x 20	7	10	10	0,47	0,59		0,4			1),52
3,5 x 25	7	10	15	0,70	0,59		0,5			1),66
3,5 x 30	7	12	18	0,84	0,59		0,6			1),86
3,5 x 35	7	14	21	0,98	0,59		0,6			-),92
3,5 x 40	7	16	24	1,12	0,59		0,7			1),95
3,5 x 50	7	20	30	1,40	0,59		0,7			1		1,02
4,0 x 16	8	8	8	0,41	0,77		0,3			2),42
4,0 x 20	8	10	10	0,52	0,77		0,4			2),55
4,0 x 25 4,0 x 30	8	10	15	0,77	0,77		0,6			2),70
	8	12	18	0,93	0,77		0,7			2),91 1.07
4,0 x 35 4,0 x 40	8	14	21	1,08	0,77		0,8 0,8			2		1,07
4,0 x 40 4,0 x 45	8	16 18	24 27	1,24	0,77		0,8			2		1,15 1 10
4,0 x 45 4,0 x 50				1,39 1,55	0,77 0,77		0,8					1,19 1,23
4,0 x 50 4,0 x 60	8	20 24	30 36	1,86	0,77		1,0			2		1,23 1,31
4,0 x 00 4,0 x 70	8	28	42	2,17	0,77		1,0			2		1,38
4,0 x 70 4,0 x 80	8	32	48	2,48	0,77		1,0			2		1,46
T,0 X 00	0	1 /0004		L,10	0,11	1 " 1	1,0					יד, ו

Cálculo conforme a ETA-11/0024. Densidad aparente $\rho k = 350 \text{ kg/m}^3$. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Rd: Rd= Rk · kmod / γ M. Los valores nominales de la capacidad de carga Rd deben compararse con los valores de cálculo de los efectos Ed (Rd \geq Ed).

Eiemplo

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_N = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{1,3/0,9} \rightarrow Comparación con los valores de la tabla.$

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA AVELLANADA, ACERO CON REVESTIMIENTO ESPECIAL 1000

	Dimensi	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	a Cizallamiento madera-madera				Cizallar	niento ace	ero-madera
dk				N Fax,90,Rk	Fax.head.Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 0°)	AD AD ET	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)	AD AD	V (α=		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\rm ET} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
4,5 x 16	9	8	8	0,45	0,97	u- v	0,4		ω _{El} − υ	2),46
4,5 x 25	9	10	15	0,84	0,97		0,6			2),76
4,5 x 30	9	12	18	1,01	0,97		0,7			2),92
4,5 x 35	9	14	21	1,18	0,97		0,8			2		1,09
4,5 x 40	9	16	24	1,35	0,97		1,(2		1,34
4,5 x 50	9	20	30	1,69	0,97		1,0			2		1,44
4,5 x 60	9	24	36	2,03	0,97		1,1			2		1,53
4,5 x 70	9	28	42	2,36	0,97		1,2			2		1,61
4,5 x 80	9	32	48	2,70	0,97		1,2			2		1,75
4,5 x 90	9	36	54	3,04	0,97		1,2			2		, 1,75
4,5 x 100	9	40	60	3,38	0,97		1,2			2		1,75
5,0 x 25	10,0	10	15	0,91	1,20		0,7			2),81
5,0 x 30	10,0	10	20	1,21	1,20		0,9	90		2		1,00
5,0 x 35	10,0	14	21	1,27	1,20		0,9	96		2	1	1,17
5,0 x 40	10,0	16	24	1,45	1,20		1,1			2		1,44
5,0 x 45	10,0	18	27	1,63	1,20		1,2			2		1,62
5,0 x 50	10,0	20	30	1,82	1,20		1,2			2		1,67
5,0 x 60	10,0	24	36	2,18	1,20		1,3			2		1,76
5,0 x 70	10,0	28	42	2,54	1,20		1,4			2		1,85
5,0 x 80	10,0	32	48	2,90	1,20		1,5			2		1,94
5,0 x 90	10,0	36	54	3,27	1,20		1,5	52		2	7	2,03
5,0 x 100	10,0	40	60	3,63	1,20		1,5	52		2	2	2,12
5,0 x 120	10,0	50	70	4,24	1,20		1,5	52		2	2	2,27

Cálculo conforme a ETA-11/0024. Densidad aparente ρ k= $950 \, kg/m^3$. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Rd: Rd= Rk · kmod / γ M. Los valores nominales de la capacidad de carga Rd deben compararse con los valores de cálculo de los efectos Ed (Rd \geq Ed).

Eiemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_N = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\underline{7,20 \text{ kN}}$.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot γ_M / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA AVELLANADA, ACERO CON REVESTIMIENTO ESPECIAL 1000

	Dimensi	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	(izallamiento mo	adera-madera		Cizallar	niento ace	ero-madera
dk with the state of the state	+		ET AD	N Fax,90,Rk	Fax,head,Rk	V (a= 0°) V (a= 0°) V (a= 90°)	AD ET AD ET	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)	AE ET	V (α=	- - - -	
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{\text{AD}} \text{= 0}^{\circ}$	$\alpha_{\text{AD}} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		α = 0°	α= 90 °
6,0 x 40	12,0	16	24	1,64	1,73		1,27			2	1	1,53
6,0 x 50	12,0	20	30	2,05	1,73		1,51			2	1	1,90
6,0 x 60	12,0	24	36	2,46	1,73		1,65			2	Í	2,21
6,0 x 70	12,0	28	42	2,87	1,73		1,75	i		2	1	2,31
6,0 x 80	12,0	32	48	3,28	1,73		1,85	i		2	1	2,41
6,0 x 90	12,0	36	54	3,69	1,73		1,96	i		2	1	2,51
6,0 x 100	12,0	40	60	4,10	1,73		2,02	!		2	1	2,62
6,0 x 120	12,0	50	70	4,79	1,73		2,02			2		2,80
6,0 x 130	12,0	60	70	4,79	1,73		2,02	!		2	1	2,80
6,0 x 140	12,0	70	70	4,79	1,73		2,02			2		2,80
6,0 x 160	12,0	90	70	4,79	1,73		2,02			2		2,80
6,0 x 180	12,0	110	70	4,79	1,73		2,02			2		2,80
6,0 x 200	12,0	130	70	4,79	1,73		2,02			2		2,80
6,0 x 220	12,0	150	70	4,79	1,73		2,02			2	2	2,80
6,0 x 240	12,0	170	70	4,79	1,73		2,02			2		2,80
6,0 x 260	12,0	190	70	4,79	1,73		2,02			2		2,80
6,0 x 280	12,0	210	70	4,79	1,73		2,02			2	2	2,80
6,0 x 300	12,0	230	70 Danidad	4,79	1,73		2,02	!		. 2	2	2,80

Cálculo conforme a ETA-11/0024. Densidad aparente $k=350 \text{ kg/m}^3$. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

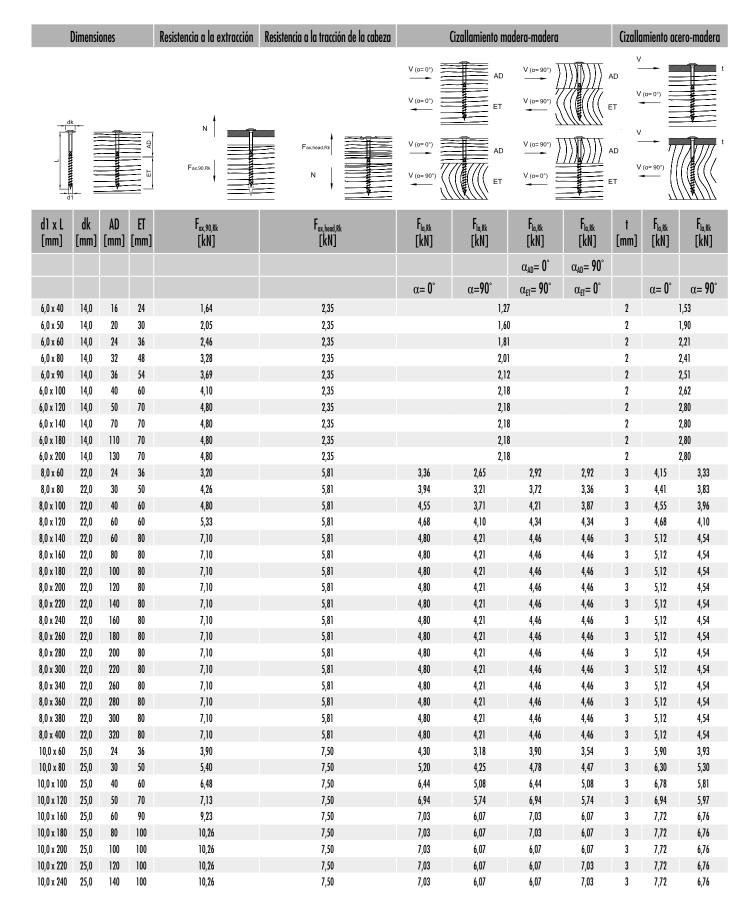
Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Rd: Rd= Rk · kmod / M. Los valores nominales de la capacidad de carga Rd deben compararse con los valores de cálculo de los efectos Ed (Rd \geq Ed).

Eiemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

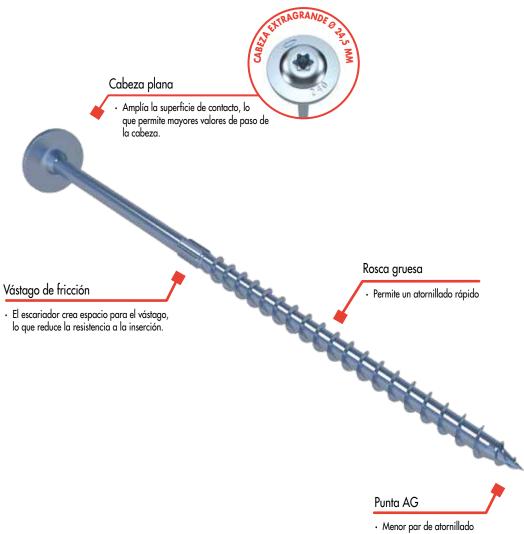
 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.


La capacidad de carga de la conexión se considera probada si $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

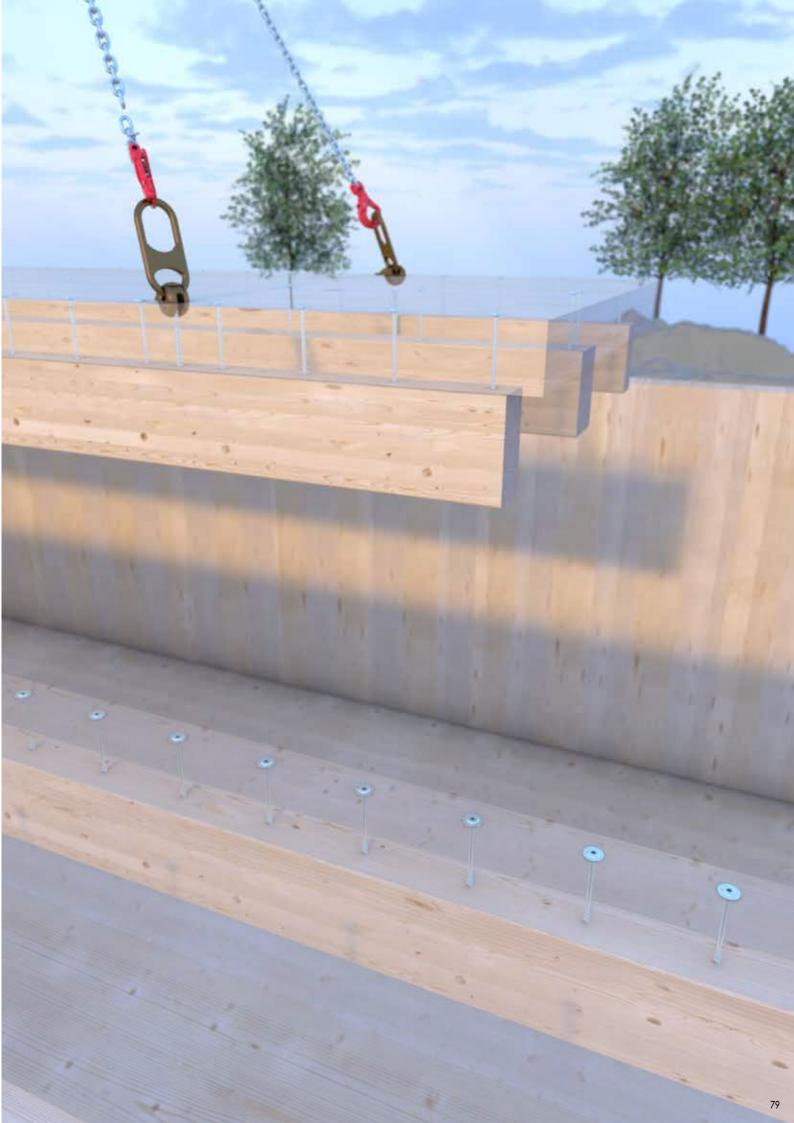
Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

 $Atención: Se \ trata \ de \ ayudas \ a \ la \ planificación. \ Los \ proyectos \ deben \ ser \ dimensionados \ exclusivamente \ por \ personas \ autorizadas.$

INFORMACIÓN TÉCNICA PANELTWISTEC CABEZA PLANA, ACERO CON REVESTIMIENTO ESPECIAL 1000

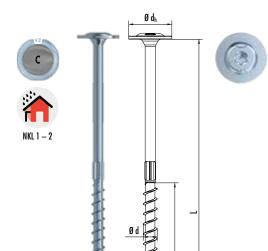

PANELTWISTEC TK AG STRONGHEAD

Para la aplicación de piezas de madera encoladas a presión



Los tornillos para madera Paneltwistec pueden instalarse en madera laminada cruzada o encolada sin necesidad de pretaladrar. Paneltwistec dispone de una punta de tornillo AG especial y nervios de fresado por encima de la rosca, lo que garantiza un agarre rápido y una menor generación de grietas al atornillar. Además, la rosca no solo acelera el proceso de montaje, sino que también reduce el par de atornillado. La cabeza plana ofrece una elevada resistencia a la tracción de la cabeza y garantiza una suficiente presión entre las dos superficies a unir, lo que resulta muy eficaz para el pegado. Si el encolado a presión se realiza correctamente durante el curado de los adhesivos, pueden crearse componentes de madera compuestos. También se pueden realizar aplicaciones de placas nervadas.

- · Menor efecto de separación

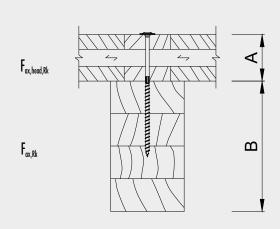


Eurotec | Paneltwistec

PANELTWISTEC TK AG STRONGHEAD

Europ. Seller. Severtung European Solveital Assessment ESA-11/0024

Cabeza plana, azul galvanizado


N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903170	8,0	200	24,5	120	TX40 •	50
903171	8,0	220	24,5	120	TX40 •	50
903172	8,0	240	24,5	120	TX40 •	50
903173	8,0	260	24,5	120	TX40 •	50
903174	8,0	280	24,5	120	TX40 •	50
903175	8,0	300	24,5	120	TX40 •	50
903176	8,0	320	24,5	120	TX40 •	50
903177	8,0	340	24,5	120	TX40 •	50
903178	8,0	360	24,5	120	TX40 •	50
903179	8,0	380	24,5	120	TX40 •	50
903180	8,0	400	24,5	120	TX40 •	50

Distribución de la presión de prensado para el encolado a presión de tornillos de elementos de madera con nervaduras

ENCOLADO A PRESIÓN DE TORNILLOS CON LONGITUDES MÍNIMAS REQUERIDAS

	Ø 8 mm								
		Resistencia a la extracción	Resistencia a la tracción de la cabeza						
A [mm]	L [mm]	F _{ax, Rk} [kN]	F _{ax, head, Rk}						
80	200								
100	220								
120	240								
140	260								
160	280								
180	300	10,6	7,2						
200	320								
220	340								
240	360								
260	380								
280	400								

Los cálculos se realizan conforme a ETA-11/0024 y EN 1995-1-1, con agujeros no pretaladrados y una densidad de la madera ρ k = 350 kg/m³. Los valores nominales Fax,Rd se han calculado teniendo en cuenta kmod = 1 y γ M = 1,3. Fax,d está limitado por la resistencia a la tracción de la cabeza, donde «L» es la longitud mínima del tornillo para alcanzar la potencia correspondiente. El componente A específica el grosor máximo del panel que se puede presionar sobre una viga nervada con tornillos. El componente B corresponde a la altura de la viga nervada: B \geq [L - A].

REQUISITOS GENERALES PARA EL ENCOLADO A PRESIÓN CON TORNILLOS (DIN 1052:2004; EN 1995-1-1)

- Materiales: madera maciza, contrachapado, OSB, madera de chapa laminada, madera laminada encolada, madera laminada cruzada
- Adhesivo: EN 301 y DIN 68141 para construcciones portantes y espesor de junta adhesiva según DIN EN 302
- Aplicación: La parte roscada debe enroscarse completamente en el elemento a fijar. Antes de la aplicación, la superficie debe estar lisa, limpia y libre de polvo y suciedad. Si hay varias capas, estas deberían pegarse individualmente. El espesor máximo permitido para la madera maciza y los materiales a base de madera es de 30 mm y 55 mm, respectivamente (para espesores mayores, contacte con el responsable).
- Temperatura ambiente ≥ 20 °C
- Temperatura del material ≥ 20 °C
- Contenido de humedad ≤ 15 m % (diferencia máxima 4 m %)
- Distancia entre fijaciones ≤ 150 mm
- · Superficie por elemento de fijación ≤ 15.000 mm²
- · Prensa de vacío, 0,1 MPa ~ 1,5 kN (fuerza requerida por elemento de fijación en función de la superficie)
- Prensa hidráulica, 0,6 MPa ~ 9 kN (fuerza requerida por elemento de fijación en función de la superficie)

BRUTUS VARILLA ROSCADA

Varilla completamente roscada para refuerzo de tracción transversal de maderas encoladas

Las varillas roscadas se utilizan tanto en obra nueva (en la fabricación de cerchas) como para la renovación. Mientras permiten vanos mayores y secciones transversales de madera más delgadas en edificios nuevos, ayudan a asegurar la estructura existente en proyectos de renovación. De este modo, muchas viguetas no requieren sustitución ni doblado, aunque muestren una importante presencia de grietas. No obstante, es necesario un dictamen pericial en todo caso. Las varillas roscadas BRUTUS se pueden acortar a la longitud deseada y están pretaladradas a 13 mm. Al realizarse los taladros se debe procurar evitar que se desvíen. La VARILLA ROSCADA Brutus se utiliza para el refuerzo de tracción transversal en entalladuras y pasos, en conexiones transversales y viguetas de nave.

BRUTUS VARILLA ROSCADA

Acero 8.8, galvanizado

N.º de art.:	Ø d [mm]	L[mm]	Cantidad
903170	16	3000	1

NKL 1 – 2

QUÉ DEBE TENER EN CUENTA

- · Pretaladrado a Ø 13 mm
- · En agujeros de taladrado largos se puede desviar la broca

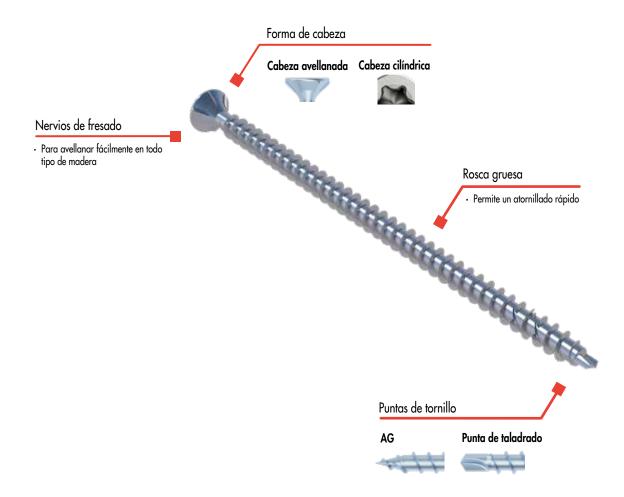
HERRAMIENTA DE ENROSCADO

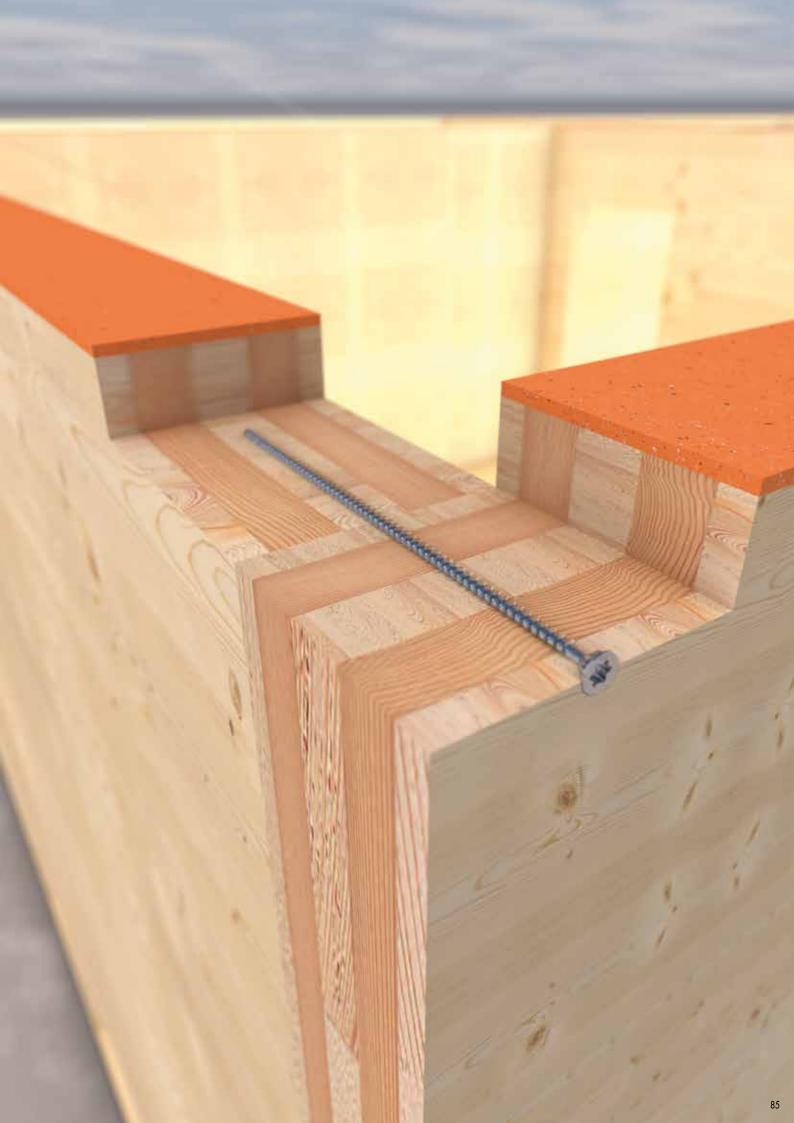
 N.º de art.:
 Cantidad

 945318
 1

EJEMPLOS DE APLICACIÓN

Entalladura Paso




TORNILLO TODO ROSCA KONSTRUX

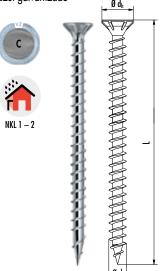
La solución de alto rendimiento para nueva construcción y saneamiento

Los tornillos todo rosca KonstruX maximizan la capacidad de carga de una conexión gracias a la elevada resistencia a la extracción de la rosca en ambos componentes. Cuando se utilizan tornillos parcialmente roscados, la resistencia a la tracción de la cabeza significativamente menor en la pieza de montaje limita la capacidad de carga de la conexión. Los tornillos todo rosca KonstruX son una alternativa económica a las conexiones tradicionales o a los conectores de madera, como zapatas de viga y conectores de vigas.

TORNILLO TODO ROSCA KONSTRUX

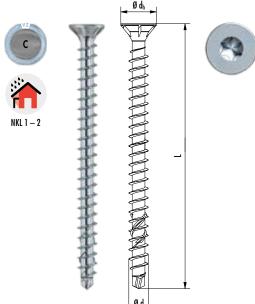
Acero al carbono, azul galvanizado

Tornillo todo rosca KonstruX ST Cabeza cilíndrica, punta de taladrado, azul galvanizado


N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	Accionamiento	Cantidad
100425	5,2	80	6,4	TX 25 •	100
100427	5,2	100	6,4	TX 25 •	100
100428	5,2	120	6,4	TX 25 •	100
100430	5,2	140	6,4	TX 25 •	100
100431	5,2	160	6,4	TX 25 •	100
100410	5,9	80	8,0	TX30 •	100
100412	5,9	100	8,0	TX30 •	100
100413	5,9	120	8,0	TX30 •	100
100415	5,9	140	8,0	TX30 •	100
100416	5,9	160	8,0	TX30 •	100
100417	5,9	180	8,0	TX30 •	100
100418	5,9	200	8,0	TX30 •	100
904808	6,5	80	8,0	TX30 •	100
904809	6,5	100	8,0	TX30 •	100
904810	6,5	120	8,0	TX30 •	100
904811	6,5	140	8,0	TX30 •	100
904812	6,5	160	8,0	TX30 •	100
904813	6,5	195	8,0	TX30 •	100
100063 ^{a)}	6,5	200	8,0	TX30 •	100
100064 ^{a)}	6,5	220	8,0	TX30 •	100
100065 ^{a)}	6,5	240	8,0	TX30 •	100
100066 ^{a)}	6,5	260	8,0	TX30 •	100
954081	8,0	125	10,0	TX40 ●	50
904825	8,0	155	10,0	TX40 •	50
904826	8,0	195	10,0	TX40 ●	50
904827	8,0	220	10,0	TX40 •	50
904828	8,0	245	10,0	TX40 •	50
904834	8,0	270	10,0	TX40 •	50
904829	8,0	295	10,0	TX40 •	50
904830	8,0	330	10,0	TX40 •	50
904831	8,0	375	10,0	TX40 •	50
904832	8,0	400	10,0	TX40 •	50
944804	8,0	430	10,0	TX40 •	50
944805	8,0	480	10,0	TX40 •	50
944806	8,0	530	10,0	TX40 •	50
944807	8,0	580	10,0	TX40 •	50
904872	10,0	195	13,0	TX50 ◆	25
904873	10,0	220	13,0	TX50 ●	25
904874	10,0	245	13,0	TX50 ●	25
904875	10,0	270	13,0	TX50 ●	25
904815	10,0	300	13,0	TX50 ●	25
904816	10,0	330	13,0	TX50 ●	25
904817	10,0	360	13,0	TX50 ◆	25
904818	10,0	400	13,0	TX50 ●	25
904819	10,0	450	13,0	TX50 ●	25
904820	10,0	500	13,0	TX50 ●	25
904821	10,0	550	13,0	TX50 ●	25
904822	10,0	600	13,0	TX50 ●	25
100080 ^{a)}	10,0	650	13,0	TX50 ●	25
100081 ^{a)}	10,0	700	13,0	TX50 ●	25
100082 ^{a)}	10,0	750	13,0	TX50 ●	25
100083 ^{a)}	10,0	800	13,0	TX50 ●	25
100084 ^{a)}	10,0	900	13,0	TX50 ●	25
100085 ^{a)}	10,0	1000	13,0	TX50 ●	25

Tornillo todo rosca KonstruX

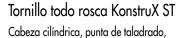
Cabeza avellanada, punta de tornillo AG, azul galvanizado



N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	Accionamiento	Cantidad
905737	11,3	300	18,0	TX50 ◆	20
905738	11,3	340	18,0	TX50 ◆	20
905739	11,3	380	18,0	TX50 ◆	20
905740	11,3	420	18,0	TX50 ◆	20
905741	11,3	460	18,0	TX50 ●	20
905742	11,3	500	18,0	TX50 ◆	20
905743	11,3	540	18,0	TX50 ◆	20
905744	11,3	580	18,0	TX50 ◆	20
905745	11,3	620	18,0	TX50 ◆	20
905746	11,3	660	18,0	TX50 ◆	20
905747	11,3	700	18,0	TX50 ◆	20
905748	11,3	750	18,0	TX50 ◆	20
905749	11,3	800	18,0	TX50 ◆	20
904750	11,3	900	18,0	TX50 ◆	20
904751	11,3	1000	18,0	TX50 ◆	20

Tornillo todo rosca KonstruX ST

Cabeza avellanada, punta de taladrado, azul galvanizado

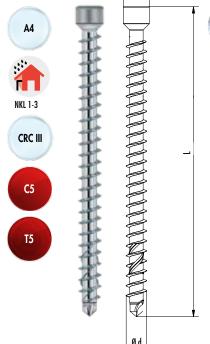

N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	Accionamiento	Cantidad
904876	5,2	80	6,4	TX25 ●	100
904878	5,2	100	6,4	TX25 •	100
904879	5,2	120	6,4	TX25 •	100
904907	5,2	140	6,4	TX25 •	100
904908	5,2	160	6,4	TX25 •	100
904857	6,5	80	11,5	TX30 •	100
904858	6,5	100	11,5	TX30 •	100
904859	6,5	120	11,5	TX30 •	100
904860	6,5	140	11,5	TX30 •	100
904790	8,0	95	14,5	TX40 •	50
904791	8,0	125	14,5	TX40 •	50
904792	8,0	155	14,5	TX40 •	50
904793	8,0	195	14,5	TX40 •	50
904794	8,0	220	14,5	TX40 •	50
904795	8,0	245	14,5	TX40 •	50
904796	8,0	270	14,5	TX40 •	50
904797	8,0	295	14,5	TX40 •	50
904798	8,0	330	14,5	TX40 •	50
904799	8,0	375	14,5	TX40 •	50
904800	8,0	400	14,5	TX40 •	50
904801	8,0	430	14,5	TX40 •	50
904802	8,0	480	14,5	TX40 •	50
904803	8,0	545	14,5	TX40 •	50
904770	10,0	125	17,8	TX50 ●	25
904771	10,0	155	17,8	TX50 ●	25
904772	10,0	195	17,8	TX50 ●	25
904773	10,0	220	17,8	TX50 ●	25
904774	10,0	245	17,8	TX50 ●	25
904775	10,0	270	17,8	TX50 ●	25
904776	10,0	300	17,8	TX50 ●	25
904777	10,0	330	17,8	TX50 ●	25
904778	10,0	360	17,8	TX50 ●	25
904779	10,0	400	17,8	TX50 ●	25
904780	10,0	450	17,8	TX50 ●	25
904781	10,0	500	17,8	TX50 ●	25
904782	10,0	550	17,8	TX50 ●	25
904783	10,0	600	17,8	TX50 ●	25
100090	10,0	650	17,8	TX50 ●	25
100091	10,0	700	17,8	TX50 ◆	25
100092	10,0	750	17,8	TX50 ◆	25
100093	10,0	800	17,8	TX50 ●	25
100094	10,0	900	17,8	TX50 ◆	25
100095	10,0	1000	17,8	TX50 ●	25

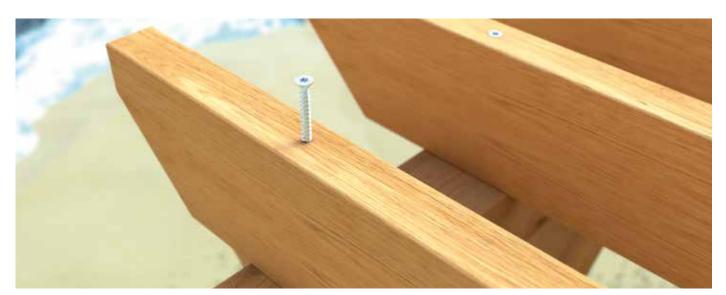
TORNILLO TODO ROSCA KONSTRUX

Acero inoxidable A4

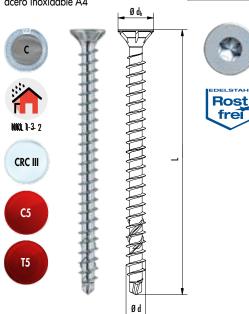
Los tornillos todo rosca KonstruX ST A4 maximizan la capacidad de carga de una conexión gracias a la elevada resistencia a la extracción de la rosca en ambos componentes. En cambio, cuando se utilizan tornillos parcialmente roscados, la resistencia a la tracción de la cabeza significativamente menor en la pieza de montaje limita la capacidad de carga de la conexión.

Apto para el uso en uniones madera-madera en interiores y exteriores. El KonstruX ST A4 se puede utilizar al aire libre en parques infantiles, balcones, para la protección solar en forma de pérgola, así como cerca de la costa y en ingeniería hidráulica, por ejemplo, para muelles y embarcaderos.


acero inoxidable A4

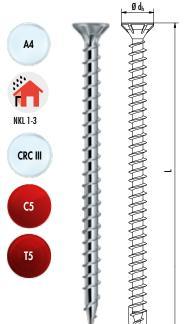


N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	Accionamiento	Cantidad
944780	6,5	140	8,0	TX40 •	100
944781	6,5	160	8,0	TX40 •	100
944782	6,5	195	8,0	TX40 •	100
944783	8,0	155	8,0	TX40 •	50
944784	8,0	195	8,0	TX40 •	50
944785	8,0	220	8,0	TX40 •	50
944786	8,0	245	8,0	TX40 •	50
944787	8,0	270	8,0	TX40 •	50
944788	8,0	295	8,0	TX40 •	50
944789	8,0	330	8,0	TX40 •	50
944790	8,0	375	8,0	TX40 •	50
944791	8,0	400	8,0	TX40 •	50


KonstruX con cabeza avellanada, acero inoxidable A4: Ideal para conexiones madera-madera en zonas urbanas e industriales contaminadas > 0,25 km del litoral.

Tornillo todo rosca KonstruX ST

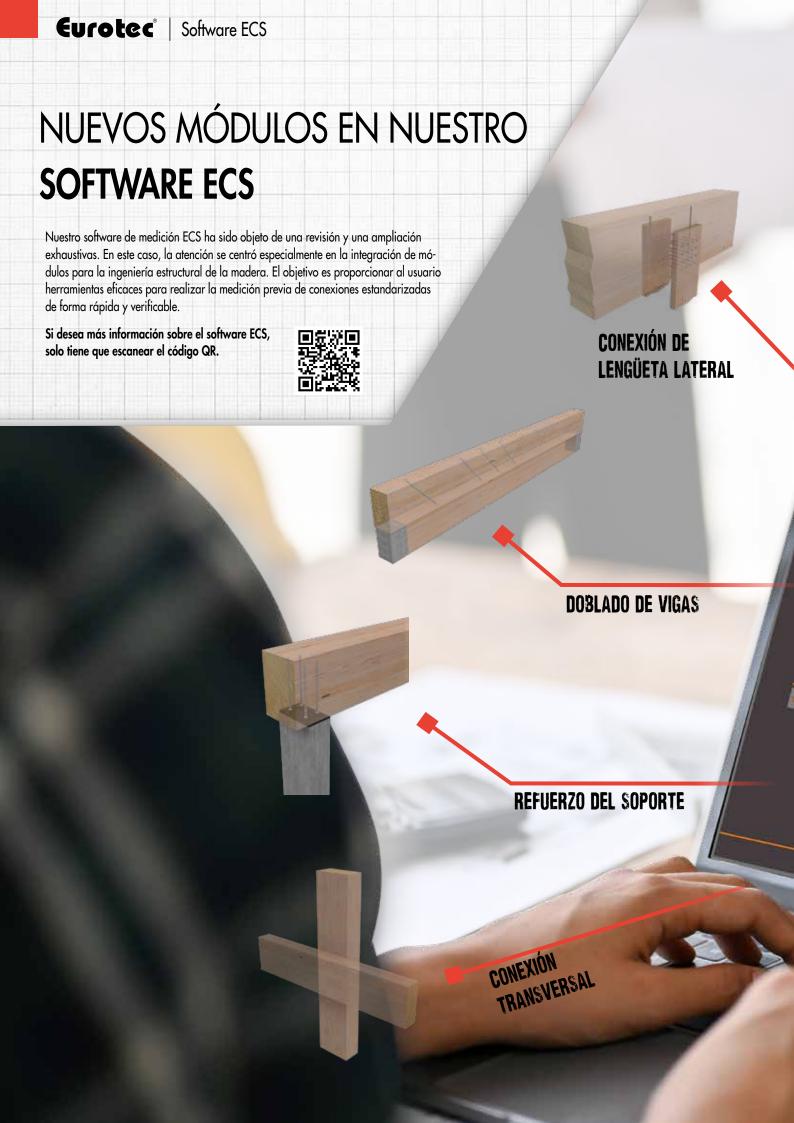
Cabeza avellanada, punta de taladrado, acero inoxidable A4



N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	Accionamiento	Cantidad
944795	8,0	95	14,5	TX40 •	50
944792	8,0	125	14,5	TX40 •	50
944793	8,0	155	14,5	TX40 •	50
944794	8,0	195	14,5	TX40 •	50

Tornillo todo rosca KonstruX

Cabeza avellanada, acero inoxidable A4



	\odot	(\in
6	ETA	eder, See schrissi A -11/00	erting usessment 24
		4	

N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	Accionamiento	Cantidad
905750	10,0	160	17,8	TX50 ●	25
905751	10,0	200	17,8	TX50 ●	25
905752	10,0	220	17,8	TX50 ●	25
905753	10,0	240	17,8	TX50 ●	25
905754	10,0	260	17,8	TX50 ●	25
905755	10,0	280	17,8	TX50 ●	25
905756	10,0	300	17,8	TX50 ●	25
905757	10,0	350	17,8	TX50 ●	25
905758	10,0	400	17,8	TX50 ●	25

EJEMPLO DE APLICACIÓN: REFUERZO DE SOPORTE

REFUERZO DE VIGA (PRESIÓN PERPENDICULAR A LA FIBRA)

A diferencia del hormigón y el acero, la madera es un material de construcción creado por la naturaleza con un comportamiento de carga muy anisótropo. La relación entre las resistencias características a la tracción y a la compresión perpendicular a la fibra y paralela a la fibra es de aproximadamente 1/30 y 1/8, respectivamente. Por ello, las construcciones de madera deben detallarse cuidadosamente para minimizar estos casos de carga en la medida de lo posible. Además, deben utilizarse métodos de refuerzo para compensar estas deficiencias si es necesario.

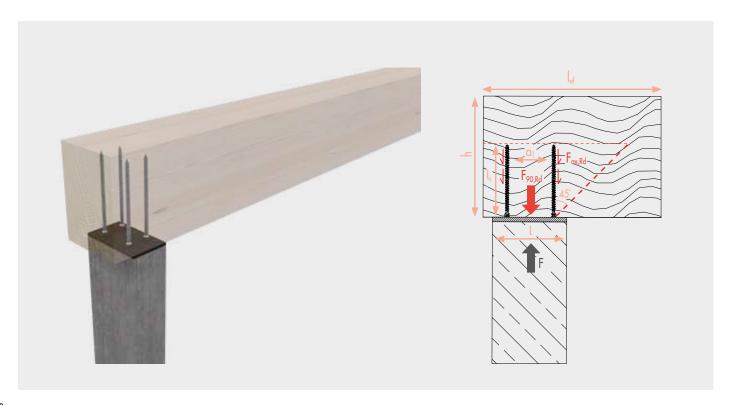
Un ejemplo de este tipo es el soporte de vigas. En este caso, las varillas roscadas encoladas y los paneles de contrachapado encolados se han utilizado con frecuencia como métodos de refuerzo, pero requieren mucho tiempo y son caros debido a los adhesivos epoxídicos utilizados. Los tornillos todo rosca son una alternativa más moderna y económica y pueden aumentar la capacidad de carga de la columna experimentalmente hasta un 300 %. Se colocan delante de la chapa de acero de la viga y absorben parte de la carga de compresión local por retracción (limitada por la capacidad de pandeo), lo que mejora la distribución de las tensiones en la madera.

VALOR NOMINAL DE LA CAPACIDAD DE CARGA PERPENDICULAR A LA DIRECCIÓN DE LA FIBRA CON REFUERZO DE TORNILLOS:

$$\begin{aligned} F_{90,Rd} = min & \begin{cases} F_{c,90,Rd} + n_s \cdot F_{\alpha x,Rd} \\ b \cdot l_{ef} \cdot f_{c,90,d} \end{cases} \end{aligned}$$

 $F_{c,90,Rd} = k_{c,90} \cdot b \cdot l \cdot f_{c,90,d}$

 $F_{\alpha x,Rd} = min$ Capacidad de carga de pandeo del tornillo Capacidad de carga de extracción del tornillo


n_s: número de tornillos

b: anchura de la superficie de contacto

 $k_{c,90}$: factor de distribución de las tensiones teniendo en cuenta la configuración de carga, la posibilidad de agrietamiento y el grado de deformación por compresión.

f_{c,90,d}: resistencia nominal a la compresión perpendicular a la dirección de la fibra

Para el cálculo de la resistencia a la extracción y al pandeo de los tornillos, véase ETA-11/0024.

EJEMPLO DE APLICACIÓN: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

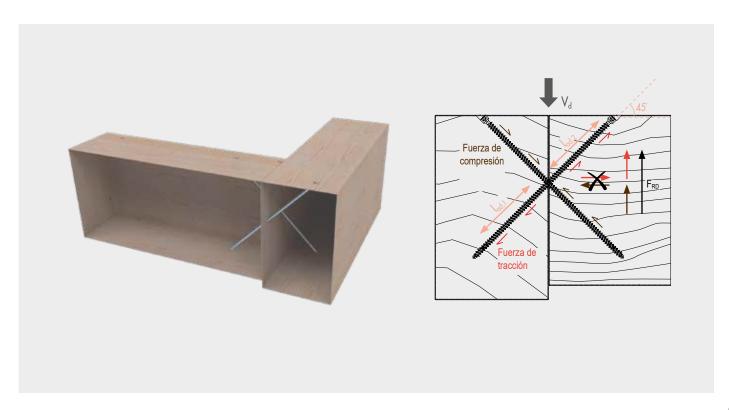
Existen varias alternativas para la conexión de vigas principales y secundarias, por ejemplo, escuadras metálicas exteriores y perfiles en T de aluminio interiores. Sin embargo, el montaje de chapas adicionales puede ser costoso y requerir mucho tiempo. En su lugar, es suficiente con utilizar tornillos autorroscantes para la fijación de este tipo de conexión típica.

Los tornillos todo rosca son una solución que ahorra tiempo y dinero. Los tornillos KonstruX se disponen en cruz y por pares en un ángulo de 45° respecto a la veta de la madera, de modo que se conserve el aspecto arquitectónico de la madera. Todavía es más importante que aumenta la reacción al fuego. En la construcción estructural de madera deben comprobarse tres tipos de fallo al dimensionar tornillos Phillips: (a) Capacidad de extracción utilizando la longitud efectiva de la rosca y el factor kmod, (b) resistencia a la tracción del tornillo y (c) resistencia a la compresión del tornillo. Por favor, tenga en cuenta que solo deben compararse las capacidades nominales (no los valores característicos), ya que los tipos de fallo presentan diferentes factores parciales de seguridad.

CÁLCULO DE LA CAPACIDAD DE CARGA DE LOS TORNILLOS PHILLIPS:

$$F_{Rd} = 2 \cdot \sin 45^{\circ} \cdot n_{page}^{0,9} \cdot F_{ax,Rd}$$

 $F_{ax,Rd} = min$ Retirada: I_{ef} , k_{mod} , $\gamma_M = 1.3$ Resistencia a la tracción: $\gamma_{M2} = 1.25$ Capacidad de pandeo: $\gamma_{M1} = 1.00$


 $l_{ef} = min (l_{ad,1}; l_{ad,2})$

γMi: Factor de seguridad parcial

n_{pair}: número de tornillos

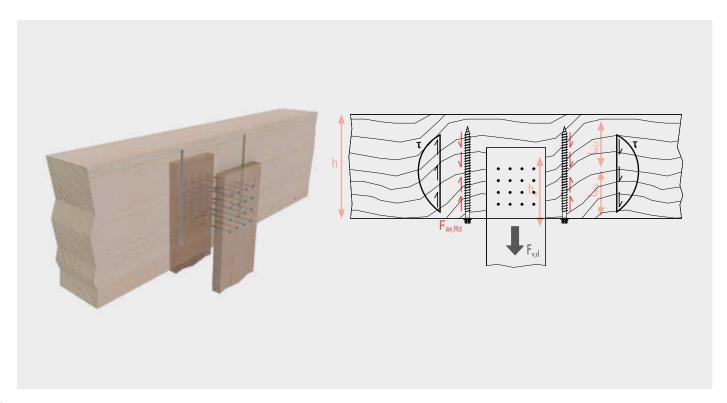
k_{mod}: Factor de modificación que tiene en cuenta la influencia de la duración de la carga y el contenido de humedad del elemento de madera.

Para el cálculo de la resistencia a la extracción y al pandeo de los tornillos, véase ETA-11/0024.

EJEMPLO DE APLICACIÓN: CONEXIÓN DE LENGÜETA LATERAL

REFUERZO DE CONEXIÓN ATORNILLADA (NO DISPONIBLE EN ECS)

Cuando se calculan construcciones de madera se sabe que las tensiones perpendiculares a la dirección de la fibra deben evitarse en la medida de lo posible. Dada la escasa resistencia de la madera en esta dirección, es posible que en estos casos aparezcan rápidamente grietas en los componentes de madera, que los debilitan con el tiempo. Sin embargo, hay casos en los que no puede evitarse y deben tomarse medidas de refuerzo. Para ello pueden utilizarse tornillos autorroscantes o varillas roscadas encoladas; los primeros suelen ser más económicos y rápidos de instalar.


Las uniones atornilladas que se cargan perpendicularmente a la dirección de la fibra son un caso muy frecuente en este sentido. El refuerzo se comprueba frente a la fuerza de tensión de diseño perpendicular a la fibra en el plano definido por la distancia entre el borde cargado y el centro del tornillo más alejado. La parte roscada del refuerzo debe cubrir al menos el 75 % de la altura de la viga.

FUERZA DE TRACCIÓN NOMINAL PERPENDICULAR A LA DIRECCIÓN DE LA FIBRA QUE DEBE ABSORBER EL REFUERZO:

teniendo en cuenta las tensiones de cizallamiento

$$\begin{split} F_{t,90,d} &= F_{v,Ed} \cdot \left[1 - 3 \cdot k + 2 \cdot k^3 \right] \\ k &= \frac{h_e}{h} \\ I_{ef} &= min \left(I_{ad,t} \right) \; ; \; I_{ad,c} \right) \\ F_{t,90,Rd} &= n_s \cdot min \begin{cases} f_{ax,d} \cdot d \cdot I_{ef} \\ f_{tens,d} \end{cases} \end{split}$$

 $F_{v,d}$: Valor nominal del componente de la fuerza transversal perpendicular a la dirección de la fibra

EJEMPLO DE APLICACIÓN: DOBLADO DE VIGAS

DOBLADO DE VIGAS (DISPONIBLE EN ECS)

El doblado de vigas de madera se utiliza a menudo como solución de refuerzo en reformas y sirve para reforzar las vigas existentes cuando las cargas aumentan debido al cambio de uso del piso superior. La capacidad de carga se mejora aumentando la altura de la viga mediante una viga de madera adicional que se fija por encima o por debajo de la viga existente. El momento de flexión provoca esfuerzos de cizallamiento (movimiento de deslizamiento) en la interfaz entre los dos componentes, que cambian de forma creciente desde el centro del vano hacia los apoyos de los extremos. Para transferir estas tensiones se utilizan tornillos que permiten que los dos componentes trabajen juntos como una sola viga grande. Los tornillos todo rosca, que se instalan en diagonal respecto a la veta de la madera, aprovechan su resistencia axial para este fin y consiguen así un resultado considerablemente más rígido que los tornillos desplazados 90° en posición de cizallamiento puro.

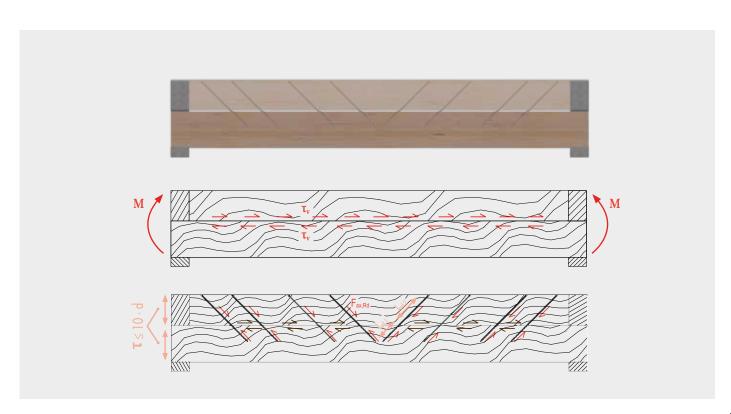
ESFUERZO DE CIZALLAMIENTO CAUSADO POR LOS TORNILLOS (CON UNA INCLINACIÓN DE 45° CON RESPECTO A LA VETA DE LA MADERA):

$$\tau_v = \frac{3}{2} \cdot \frac{F_{v,d}}{b \cdot 2h}$$

$$V_d = \tau_v \cdot b$$

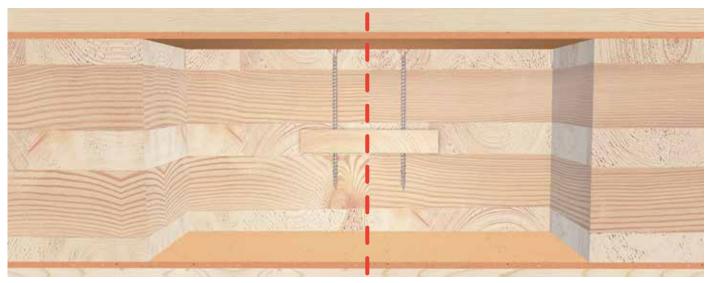
$$F_{\text{ax,Rd}} = \min \left\{ \begin{array}{l} f_{\text{ax,d}} \cdot d \cdot I_{\text{ef}} \\ f_{\text{tens,d}} \end{array} \right.$$

$$I_{ef} = min(I_{ad,1}; I_{ad,2})$$

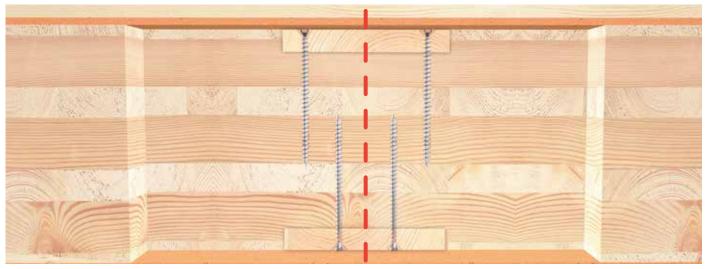

$$F_{v,Rd} = F_{\alpha x,Rd} \cdot \underline{n_s}$$

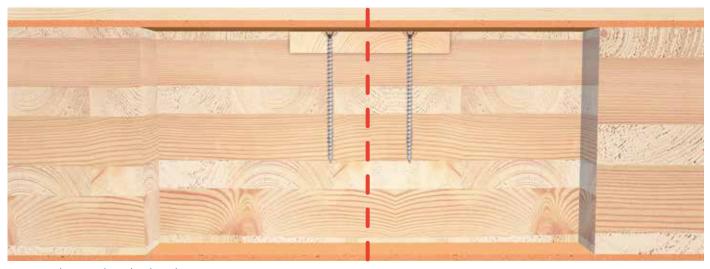
$$\frac{V_d}{F_{v,Rd}} \leq 1.0$$

F_{vd} es máxima en los apoyos y mínima en el vano central. Para optimizar la construcción es posible distribuir los tornillos en consecuencia.


V_d: fuerza transversal por metro

a: distancia entre tornillos




EJEMPLOS DE APLICACIÓN: ELEMENTOS DE TECHO

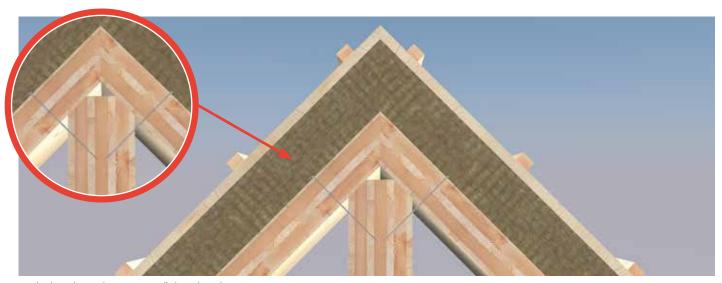
Conexión de los elementos del techo mediante tablero de unión a tope interno

Conexión de los elementos del techo mediante tablero de unión a tope doble

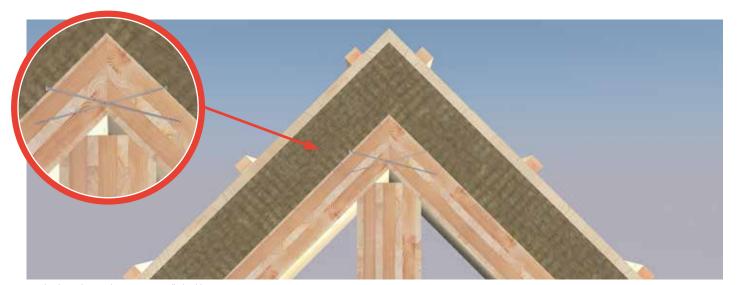
KonstruX para la conexión de pared y techo en el piso superior

EJEMPLOS DE APLICACIÓN: ELEMENTOS DE PARED

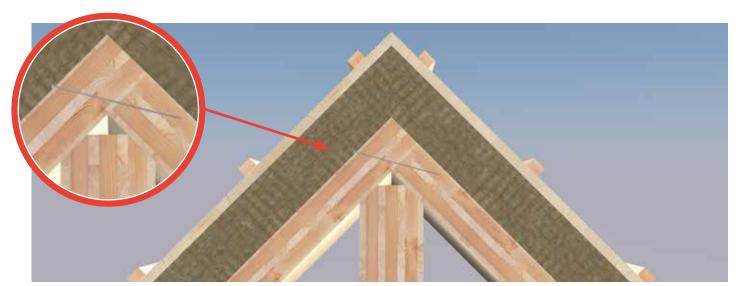
Conexión de elemento de pared y techo



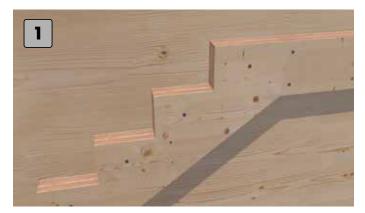
Conexión de pared y suelo de madera en el piso superior

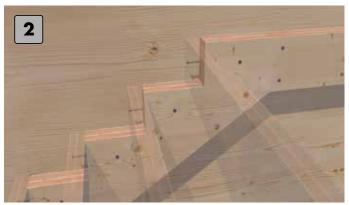


Conexión de elemento de tejado y pared


EJEMPLOS DE APLICACIÓN: ELEMENTOS DE TEJADO

Paneles de tejado en inglete – unión atornillada con la cumbrera


Paneles de tejado en inglete – unión atornillada oblicua


Paneles de tejado a tope – unión atornillada oblicua

EJEMPLOS DE APLICACIÓN: CONSTRUCCIÓN DE ESCALERAS CON CLT

Paneles de tejado a tope - unión atornillada oblicua

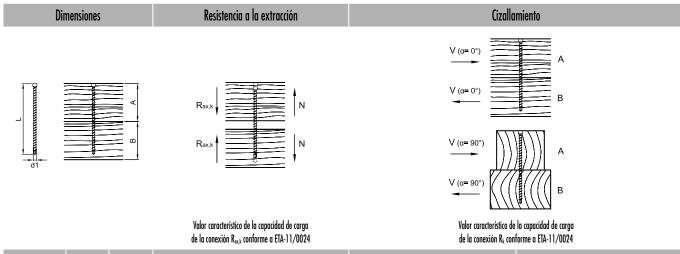
Fijar el soporte de peldaños a la pared.

Fijar el extremo del peldaño a la parte delantera del soporte de peldaños.

Fijar los peldaños a la parte superior del soporte de peldaños.

¡Listo!

EL SISTEMA RÁPIDO Y SEGURO DE COMPUESTOS DE MADERA TORNILLOS KONSTRUX CABEZA CILÍNDRICA/CABEZA AVELLANADA


Ejemplos de a	Cabeza cilíndrica				Cabeza avellanada						
		Ø 5,2 [mm]	Ø 5,9 [mm]	Ø 6,5 [mm]	Ø 8,0 [mm]	Ø 10,0 [mm]	Ø 5,2 [mm]	Ø 6,5 [mm]	Ø 8,0 [mm]	Ø 10,0 [mm]	Ø 11,3 [mm]
Esfuerzo de tracción madera-madera	Cizallamiento madera-madera					✓					√
Madera-madera de tracción 45°	Madera-madera de tracción 45°	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Esfuerzo de tracción acero-madera	Cizallamiento acero-madera	-	-	-	-	-	✓	✓	✓	✓	✓
Acero-madera de tracción 45°	Acero-madera de tracción 45°	-	-	-	-	-	✓	✓	✓	✓	✓
Conexión viga principal-secundaria	Conexión poste-cabrio	✓	✓	✓	✓	✓	✓	✓	✓	-	-
Refuerzo de soporte	Refuerzo de soporte	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Refuerzo de tracción transversal en entalladura	Refuerzo de tracción transversal en paso	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Doblado de	viga	-	-	✓	✓	✓	✓	✓	✓	✓	✓
Refuerzo de tracción transvers	sal en viguetas de nave	_	_	_	_	✓	-	-	✓	✓	✓

TORNILLOS TODO ROSCA KONSTRUX

Información técnica

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO ENTRE 5,2 Y 6,5 MM: CONEXIÓN MADERA-MADERA

			ae la conexion $K_{\alpha c,k}$ contorme a EIA-1 I/UUZ4	de la conexion K _k cont	orme a EIA-11/0024
dl x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}{}^{\alpha J}$ - [kN]	R _k a) - [kN]	R_k^{a} - [kN]
				α= 0 °	α= 90 °
5,2 x 80	40	60	2,58	2,26	2,26
5,2 x 100	60	60	3,44	2,48	2,48
5,2 x 120	60	80	4,30	2,69	2,69
5,2 x 140	80	80	5,16	2,91	2,91
5,2 x 160	80	100	6,03	3,12	3,12
5,9 x 80	40	60	2,93	3,15	2,42
5,9 x 100	60	60	3,91	3,60	3,03
5,9 x 120	60	80	4,88	3,84	3,41
5,9 x 140	80	80	5,86	4,08	3,65
5,9 x 160	80	100	6,84	4,33	3,89
5,9 x 180	100	100	6,84	4,33	3,89
5,9 x 200	100	120	8,79	4,82	4,37
6,5 x 80	40	60	3,22	3,46	2,64
6,5 x 100	60	60	4,30	3,82	3,28
6,5 x 120	60	80	4,75	3,93	3,47
6,5 x 140	80	80	4,75	3,93	3,47
6,5 x 160	80	100	6,33	4,32	3,86
6,5 x 195	100	100	7,52	4,62	4,16
6,5 x 200	100	120	7,52	4,62	4,16
6,5 x 220	120	120	9,68	5,16	4,55
6,5 x 240	120	140	11,84	5,48	4,55
6,5 x 260	140	140	12,91	5,48	4,55

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = R_k · k_{mod} / γ_{R_i} . Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d (R_d $\geq E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valor nominal del efecto $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d. \longrightarrow min \; R_k = R_d \cdot \gamma_M \, / \, k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Comparación con los valores de la tabla.}$

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 8,0 MM: CONEXIÓN MADERA-MADERA

Dimensiones	Resistencia a la extracción	Cizallamiento
Q1	Rax,k N	$V(\alpha = 0^{\circ})$ $V(\alpha = 0^{\circ})$ $V(\alpha = 90^{\circ})$ $V(\alpha = 90^{\circ})$ $V(\alpha = 90^{\circ})$ $V(\alpha = 90^{\circ})$
	Valor característico de la capacidad de carga de la conexión R _{ack} conforme a ETA-11/0024	Valor característico de la capacidad de carga de la conexión R₄ conforme a ETA-11/0024

dl x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{a}$ - [kN]	R _k °) - [kN]	$R_{k}^{a)}$ - [kN]
				α= 0 °	α= 90 °
8,0 x 125	60	80	4,61	5,05	4,37
8,0 x 155	80	80	7,11	5,67	4,99
8,0 x 195	100	100	9,01	6,15	5,46
8,0 x 220	120	120	9,48	6,27	5,58
8,0 x 245	120	140	11,38	6,74	6,06
8,0 x 270	140	140	12,33	6,98	6,29
8,0 x 295	140	160	13,28	7,21	6,42
8,0 x 330	160	180	15,17	7,69	6,42
8,0 x 375	180	200	17,07	7,79	6,42
8,0 x 400	200	220	18,97	7,79	6,42
8,0 x 430	220	220	19,92	7,79	6,42
8,0 x 480	240	260	22,76	7,79	6,42
8,0 x 530	260	280	25,00	7,79	6,42
8,0 x 580	280	320	25,00	7,79	6,42

Cálculo conforme a ETA-11/0024. Densidad aparente ho_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararise a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10.40 \text{ kN}}{10.40 \text{ kN}} \rightarrow \text{Comparación con los valores de la tabla.}$

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 10,0 MM: CONEXIÓN MADERA-MADERA

Dimensiones	Resistencia a la extracción	Cizallamiento
D V B	Rax,k N	$V(\alpha = 0^{\circ})$ $V(\alpha = 0^{\circ})$ $V(\alpha = 90^{\circ})$
	Valor característico de la capacidad de carga de la conexión $R_{\alpha,k}$ conforme a ETA-11/0024	Valor característico de la capacidad de carga de la conexión R _k conforme a ETA-11/0024

dl x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{a} - [kN]	$R_{k}^{a)}$ - [kN]
				α= 0 °	α= 90 °
10,0 x 125	60	80	6,92	7,18	6,18
10,0 x 220	120	120	11,53	8,33	7,33
10,0 x 245	120	140	13,84	8,91	7,91
10,0 x 270	140	140	15,00	9,20	8,20
10,0 x 300	160	160	16,15	9,48	8,48
10,0 x 330	160	180	18,46	10,06	8,90
10,0 x 360	180	200	20,76	10,64	8,90
10,0 x 400	200	220	23,07	10,89	8,90
10,0 x 450	220	240	25,38	10,89	8,90
10,0 x 500	240	280	27,68	10,89	8,90
10,0 x 550	260	300	29,99	10,89	8,90
10,0 x 600	300	320	33,00	10,89	8,90
10,0 x 650	320	340	33,00	10,89	8,90
10,0 x 700	340	360	33,00	10,89	8,90
10,0 x 750	360	400	33,00	10,89	8,90
10,0 x 800	400	420	33,00	10,89	8,90
10,0 x 900	440	480	33,00	10,89	8,90
10,0 x 1000	480	540	33,00	10,89	8,90

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_{kl}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Eiemplo:

 $Valor\ característico\ para\ efecto\ permanente\ (carga\ muerta)\ G_k=2,00\ kN\ y\ acción\ variable\ (por\ ejemplo,\ carga\ de\ nieve)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{jk}=1,3.$

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d. \longrightarrow min \; R_k = R_d \cdot \gamma_M \: / \: k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO ENTRE 5,2 Y 6,5 MM: CONEXIÓN MADERA-MADERA

Valor característico de la capacidad de carga de la conexión R_{ex.k.} o R_k conforme a ETA-11/0024

d1 x L [mm]	A [mm]	B [mm]	R _k ° - [kN]
			α= 45 °
5,2 x 80	30	40	2,42
5,2 x 100	40	60	2,82
5,2 x 120	40	60	3,22
5,2 x 140	60	60	3,22
5,2 x 160	60	60	4,84
5,9 x 80	30	40	2,75
5,9 x 100	40	60	3,20
5,9 x 120	40	60	3,65
5,9 x 140	60	60	3,65
5,9 x 160	60	60	5,50
5,9 x 180	80	80	6,00
5,9 x 200	80	80	6,40
6,5 x 80	30	40	3,00
6,5 x 100	40	60	3,50
6,5 x 120	40	60	4,00
6,5 x 140	60	60	4,00
6,5 x 160	60	60	6,05
6,5 x 195	80	80	7,05
6,5 x 200	80	80	7,05
6,5 x 220	80	80	8,00
6,5 x 240	100	100	9,05
6,5 x 260	100	100	10,05

Cálculo conforme a ETA-11/0024. Densidad aparente p_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mr}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Eiemplo:

 $Valor\ característico\ para\ efecto\ permanente\ (carga\ muerta)\ G_k=2,00\ kN\ y\ acción\ variable\ (por\ ejemplo,\ carga\ de\ nieve)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{ik}=1,3.$

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \rightarrow min R_k= R_d \cdot γ_{M} / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{1,3/0,9} \rightarrow Comparación con los valores de la tabla.$

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 8,0 MM: CONEXIÓN MADERA-MADERA

Valor característico de la capacidad de carga de la conexión $R_{\alpha\kappa k}\,$ o R_k conforme a ETA-11/0024

d1 x L [mm]	A [mm]	B [mm]	R_k^{0} - [kN]
			α= 45 °
8,0 x 125	40	60	3,20
8,0 x 155	60	60	4,70
8,0 x 195	80	80	5,49
8,0 x 220	80	100	7,17
8,0 x 245	100	100	6,95
8,0 x 270	100	100	9,61
8,0 x 295	120	100	8,40
8,0 x 330	120	140	10,75
8,0 x 375	140	140	11,87
8,0 x 400	160	140	11,65
8,0 x 430	160	160	13,66
8,0 x 480	180	180	15,12
8,0 x 530	180	200	17,67
8.0 x 580	220	220	17.67

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R, no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R, deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R.: R.= R. · k... d / γ.μ. Los valores nominales de la capacidad de carga R.d deben compararse con los valores de cálculo de los efectos E.d. (R.d. ≥ E.d.).

Valor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 10,0 MM: CONEXIÓN MADERA-MADERA

Valor característico de la capacidad de carga de la conexión $R_{\alpha_k k}$ o R_k conforme a ETA-11/0024

d1 x L [mm]	A [mm]	B [mm]	R _k °) - [kN]
			α= 45 °
10,0 x 125	40	60	3,68
10,0 x 220	80	80	8,60
10,0 x 245	100	100	8,60
10,0 x 270	100	100	10,63
10,0 x 300	120	120	10,63
10,0 x 330	120	140	13,07
10,0 x 360	140	140	13,21
10,0 x 400	160	140	14,17
10,0 x 450	160	180	18,25
10,0 x 500	180	200	20,02
10,0 x 550	200	200	21,79
10,0 x 600	220	220	23,33
10,0 x 650	220	240	23,33
10,0 x 700	240	260	23,33
10,0 x 750	260	280	23,33
10,0 x 800	280	300	23,33
10,0 x 900	320	340	23,33
10,0 x 1000	360	380	23,33

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_{kk}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{ik} = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{$ 7,20 kN.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_k \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Comparación con los valores de la tabla.}$

KONSTRUX ST CON CABEZA AVELLANADA Y PUNTA DE TALADRADO ENTRE 5,2 Y 8,0 MM: CONEXIÓN MADERA-MADERA

Valor característico de la capacidad de carga de la conexión $R_{\!\scriptscriptstyle \text{ex,k}}$ conforme a ETA-11/0024

Valor característico de la capacidad de carga de la conexión R_k conforme a ETA-11/0024

				ue la collection n's conforme à l'in-1 17 0024		
d1 x L [mm]	A[mm]	B [mm]	$R_{\alpha x,k}^{ 0}$ - [kN]	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]	
				α= 0 °	α= 90 °	
5,2 x 80	40	60	2,58	2,26	2,26	
5,2 x 100	60	60	3,44	2,48	2,48	
5,2 x 120	60	80	4,30	2,69	2,69	
5,2 x 140	80	80	5,16	2,91	2,91	
5,2 x 160	80	100	6,03	3,12	3,12	
6,5 x 80	40	60	3,22	3,46	2,64	
6,5 x 100	60	60	4,30	3,82	3,28	
6,5 x 120	60	80	4,75	3,93	3,47	
6,5 x 140	80	80	4,75	3,93	3,47	
8,0 x 95	40	60	3,08	4,61	3,57	
8,0 x 125	60	80	4,61	5,05	4,37	
8,0 x 155	80	80	7,11	5,67	4,99	
8,0 x 195	100	100	9,01	6,15	5,46	
8,0 x 220	120	120	9,48	6,27	5,58	
8,0 x 245	120	140	11,38	6,74	6,06	
8,0 x 270	140	140	12,33	6,98	6,29	
8,0 x 295	140	160	13,28	7,21	6,42	
8,0 x 330	160	180	15,17	7,69	6,42	
8,0 x 375	180	200	17,07	7,79	6,42	
8,0 x 400	200	220	18,97	7,79	6,42	
8,0 x 430	220	220	19,92	7,79	6,42	
8,0 x 480	240	260	22,76	7,79	6,42	
8,0 x 545	260	300	25,00	7,79	6,42	

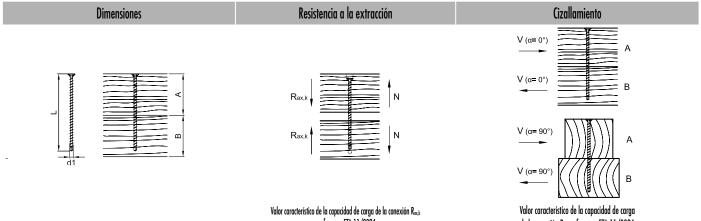
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_{ik}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.


 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20 \text{ kN}}$.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{2} \rightarrow \text{Comparación con los valores de la tabla}$

KONSTRUX ST CON CABEZA AVELLANADA Y PUNTA DE TALADRADO 10,0 MM: CONEXIÓN MADERA-MADERA

conforme a ETA-11/0024

de la conexión R_k conforme a ETA-11/0024

A [mm]	D.F. 3			
,, []	B [mm]	$R_{\alpha x,k}^{\alpha l} - [kN]$	R_k^{a} - [kN]	R_k^{a} - [kN]
			α= 0 °	α= 90 °
60	80	6,92	7,18	6,18
80	80	8,65	7,61	6,61
100	100	10,96	8,19	7,19
120	120	11,53	8,33	7,33
120	140	13,84	8,91	7,91
140	140	14,99	9,20	8,20
160	160	16,15	9,48	8,48
160	180	18,46	10,06	8,90
180	200	20,76	10,64	8,90
200	220	23,07	10,89	8,90
220	240	25,38	10,89	8,90
240	280	27,68	10,89	8,90
260	300	29,99	10,89	8,90
300	320	33,00	10,89	8,90
320	340	33,00	10,89	8,90
340	360	33,00	10,89	8,90
360	400	33,00	10,89	8,90
400	420	33,00	10,89	8,90
440	480	33,00	10,89	8,90
480	540	33,00	10,89	8,90
	80 100 120 120 140 160 160 180 200 220 240 260 300 320 340 360 400	80 80 100 100 120 120 120 140 140 140 160 160 160 180 200 220 220 240 240 280 260 300 300 320 320 340 340 360 400 420 440 480	80 80 8,65 100 100 10,96 120 120 11,53 120 140 13,84 140 140 14,99 160 160 16,15 160 180 18,46 180 200 20,76 200 220 23,07 220 240 25,38 240 280 27,68 260 300 29,99 300 320 33,00 320 340 33,00 340 360 33,00 360 400 33,00 400 420 33,00 440 480 33,00	60 80 6,92 7,18 80 80 8,65 7,61 100 100 10,96 8,19 120 120 11,53 8,33 120 140 13,84 8,91 140 140 14,99 9,20 160 160 16,15 9,48 160 180 18,46 10,06 180 200 20,76 10,64 200 220 23,07 10,89 220 240 25,38 10,89 240 280 27,68 10,89 260 300 29,99 10,89 300 320 33,00 10,89 320 340 33,00 10,89 340 360 33,00 10,89 340 360 400 33,00 10,89 400 420 33,00 10,89 440 480 33,00 10,89

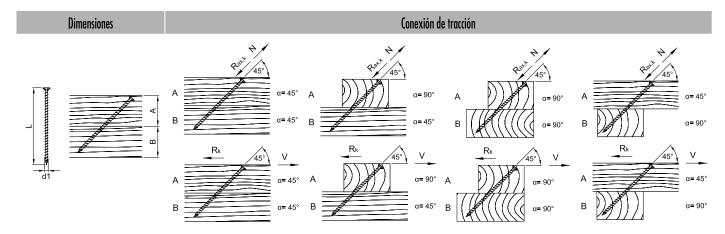
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_{N_t}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.


 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.

La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_{M} / kmod

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $Rie=R_d\cdot\gamma_M/k_{mod} \rightarrow Rie=7,20~kN\cdot1,3/0,9=10,40~kN \rightarrow$ Comparación con los valores de la tabla.

KONSTRUX CON CABEZA AVELLANADA Y PUNTA DE TORNILLO AG 11,3 MM: CONEXIÓN MADERA-MADERA

Valor característico de la capacidad de carga de la conexión R_{ox,k} o R_k conforme a ETA-11/0024

d1 x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{a} - [kN]
			α=	45°	$\alpha_A = 90^{\circ}$ $\alpha_B = 45^{\circ}$		$\alpha_{A}=$ $\alpha_{B}=$		$lpha_{A}$ = 45° $lpha_{B}$ = 90°	
11,3 x 300	120	120	16,98	12,01	16,98	12,01	16,98	12,01	16,98	12,01
11,3 x 340	140	120	18,51	13,09	18,51	13,09	18,51	13,09	18,51	13,09
11,3 x 380	140	140	23,72	16,77	23,72	16,77	23,72	16,77	23,72	16,77
11,3 x 420	160	160	25,25	17,85	25,25	17,85	25,25	17,85	25,25	17,85
11,3 x 460	180	160	26,78	18,93	26,78	18,93	26,78	18,93	26,78	18,93
11,3 x 500	180	200	31,99	22,62	31,99	22,62	31,99	22,62	31,99	22,62
11,3 x 540	200	200	33,52	23,70	33,52	23,70	33,52	23,70	33,52	23,70
11,3 x 580	220	220	35,04	24,78	35,04	24,78	35,04	24,78	35,04	24,78
11,3 x 620	220	240	40,26	28,47	40,26	28,47	40,26	28,47	40,26	28,47
11,3 x 660	240	240	41,79	29,55	41,79	29,55	41,79	29,55	41,79	29,55
11,3 x 700	260	260	43,31	30,63	43,31	30,63	43,31	30,63	43,31	30,63
11,3 x 750	280	280	46,14	32,63	46,14	32,63	46,14	32,63	46,14	32,63
11,3 x 800	300	280	48,97	34,63	48,97	34,63	48,97	34,63	48,97	34,63
11,3 x 900	320	340	50,00	35,36	50,00	35,36	50,00	35,36	50,00	35,36
11,3 x 1000	360	360	50,00	35,36	50,00	35,36	50,00	35,36	50,00	35,36

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_{kk}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$

La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_{M} / kmod

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

KONSTRUX ST CON CABEZA AVELLANADA Y PUNTA DE TALADRADO ENTRE 5,2 Y 8,0 MM: CONEXIÓN ACERO-MADERA

5,22

5,22

5.22

5,22

5,22

5,22

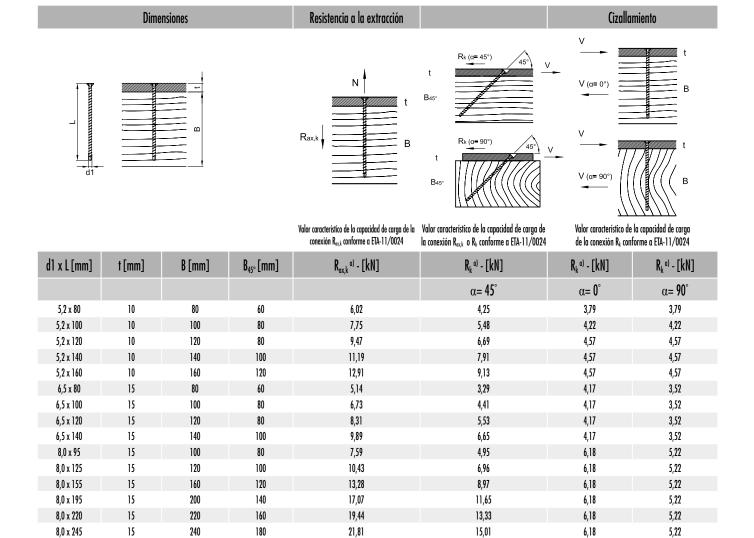
5,22

5,22

6,18

6,18

6,18


6,18

6,18

6,18

6,18

6,18

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_d = R_k \cdot k_{mod} / \gamma_{tk}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

24,18

25,00

25.00

25,00

25,00

25,00

25,00

25,00

16,68

17,68

17.68

17,68

17,68

17,68

17,68

17,68

Fiamnlo.

8,0 x 270

8,0 x 295 8.0 x 330

8,0 x 375

8,0 x 400

8,0 x 430

8,0 x 480

8,0 x 545

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

200

220

240

280

280

300

340

400

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

15

15

15

15

15

15

15

15

280

300

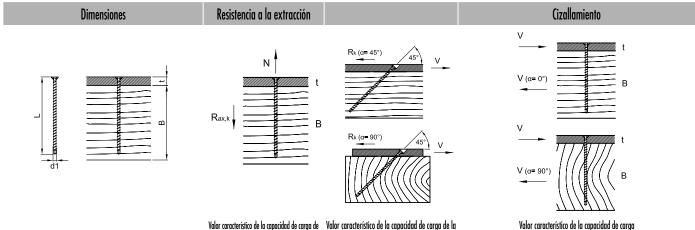
340

380

400

440

480


560

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

KONSTRUX ST CON CABEZA AVELLANADA Y PUNTA DE TALADRADO 10,0 MM: CONEXIÓN ACERO-MADERA

Valor característico de la capacidad de carga de la conexión $R_{\rm ex.k}$ conforme a ETA-11/0024 conexión $R_{\rm ex.k}$ o $R_{\rm k}$ conforme a ETA-11/0024

Valor característico de la capacidad de carga de la conexión R_k conforme a ETA-11/0024

dl x L [mm]	t[mm]	B [mm]	B _{45°} [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	R_k^{a} - [kN]	R _k a) - [kN]	R_k^{a} - [kN]
					α= 45 °	α= 0 °	α= 90 °
10,0 x 125	15	120	100	12,69	8,46	8,72	7,30
10,0 x 155	15	160	120	16,15	10,91	8,72	7,30
10,0 x 195	15	200	140	20,76	14,17	8,72	7,30
10,0 x 220	15	220	160	23,65	16,21	8,72	7,30
10,0 x 245	15	240	180	26,53	18,25	8,72	7,30
10,0 x 270	15	280	200	29,41	20,29	8,72	7,30
10,0 x 300	15	300	220	32,87	22,74	8,72	7,30
10,0 x 330	15	340	240	33,00	23,33	8,72	7,30
10,0 x 360	15	360	260	33,00	23,33	8,72	7,30
10,0 x 400	15	400	280	33,00	23,33	8,72	7,30
10,0 x 450	15	460	320	33,00	23,33	8,72	7,30
10,0 x 500	15	500	360	33,00	23,33	8,72	7,30
10,0 x 550	15	560	400	33,00	23,33	8,72	7,30
10,0 x 600	15	600	420	33,00	23,33	8,72	7,30
10,0 x 650	15	660	480	33,00	23,33	8,72	7,30
10,0 x 700	15	720	520	33,00	23,33	8,72	7,30
10,0 x 750	15	660	560	33,00	23,33	8,72	7,30
10,0 x 800	15	800	600	33,00	23,33	8,72	7,30
10,0 x 900	15	920	640	33,00	23,33	8,72	7,30
10,0 x 1000	15	1000	720	33,00	23,33	8,72	7,30

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k: R_d= R_k · k_{med} / γ_M. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d (R_d ≥ E_d).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{II} = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot \gamma_M / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

KONSTRUX CON CABEZA AVELLANADA Y PUNTA DE TORNILLO AG 11,3 MM: CONEXIÓN ACERO-MADERA

Cálculo conforme a ETA-11/0024. Densidad aparente ho_i = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Ret. Re = Re. · kmod / ym. Los valores nominales de la capacidad de carga Re deben compararse con los valores de cálculo de los efectos Ed (Re ≥ Ed).

50,00

50,00

35,36

35,36

11,79

9,76

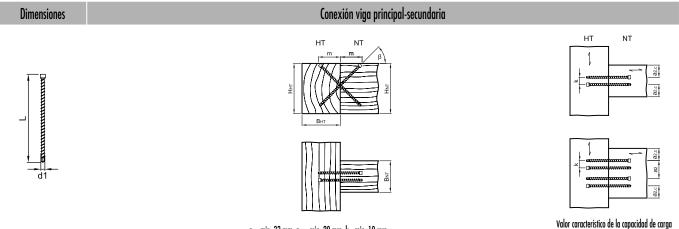
11,3 x 1000

Valor característico para efecto permanente (carga muerta) G₁= 2,00 kN y acción variable (por ejemplo, carga de nieve) Q₁= 3,00 kN. kmd= 0,9. YM= 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.

La capacidad de carga de la conexión se considera probada si $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M \, / \, k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Comparación con los valores de la tabla.}$


50,00

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

700

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO ENTRE 5,2 Y 5,9 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

α₂= min. 33 mm, α_{2,ε}= min. 20 mm, k= min. 10 mm

de la conexión R_{v,k} conforme a ETA-11/0024

							ao ia conoxion n _{i/k} con	,
d1 x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Par (n)
	60						8,00	1
50 140	80	100	40	100	52	45	14,93	2
5,2 x 140	100	120	60	120		45	21,50	3
	140						27.86	4
	60						8,00	1
50 1/0	80	140	00	140	10	45	14,93	2
5,2 x 160	100	140	80	140	60	45	21,50	3
	140						27.86	4
	60	140	80	140	60	45	10,00	1
50 1/0	100						18,66	2
5,9 x 160	120		80			45	26,88	3
	160						34,83	4
	60						10,00	1
Γ 0 100	100	160	80			AF	18,66	2
5,9 x 180	120	100	δU	160	65	45	26,88	3
	160						34,83	4
	60						10,00	1
5,9 x 200	100	140	00	140	70	AE	18,66	2
	120	160	80	160	70	45	26,88	3
	160						34,83	4

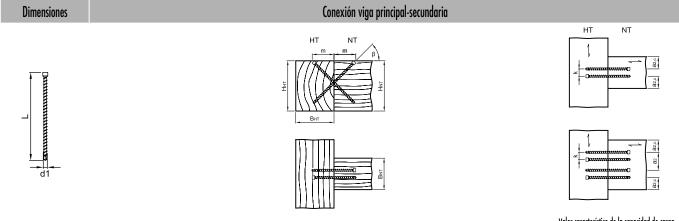
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga Rε no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rε deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Rε: R_d= Rε · k_{med} / γ_{Is}. Los valores nominales de la capacidad de carga Rε deben compararse con los valores de cálculo de los efectos Εε (Rε ≥ Εε).

Ejemplo:

Valor característico para efecto permanente (carga muerta) $G_k = 2,00$ kN y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.


La capacidad de carga de la conexión se considera probada si $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7.20 \text{ kN} \cdot 1.3/0, 9 = \underline{10.40 \text{ kN}} \rightarrow \text{Comparación con los valores de la tabla.}$

b) Determinado con número ef. de pares de tornillos a: n^{0,9}.

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 6,5 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

 a_2 = min. 33 mm, $a_{2,c}$ = min. 20 mm, k= min. 10 mm

Valor característico de la capacidad de carga de la conexión R_{vk} conforme a ETA-11/0024

							ue iu toliezioli k _{i,k} tollio	11110 U LIM-11/ 002-1
d1 x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Par (n)
	60						10,91	1
/ 5 105	100	1/0	00	1/0	69		20,36	2
6,5 x 195	120	160	80	160		45	29,33	3
	160						38,00	4
	60						10,91	1
6,5 x 200	100	160	80	160	70	45	20,36	2
0,3 X 200	120	100	δU	100	70	40	29,33	3
	160						38,00	4
	60		100		80	45	12,90	1
4 E ., 220	100	100		180			24,07	2
6,5 x 220	120	180		100			34,67	3
	160						44,92	4
	60						12,90	1
6,5 x 240	100	180	100	180	85		24,07	2
0,3 X 240	120	100	100	100	03	45	34,67	3
	160						44,92	4
	60						12,90	1
4 5 v 240	100	200	100	200	00	45	24,07	2
6,5 x 260	120	200	100	200	90		34,67	3
	160						44,92	4

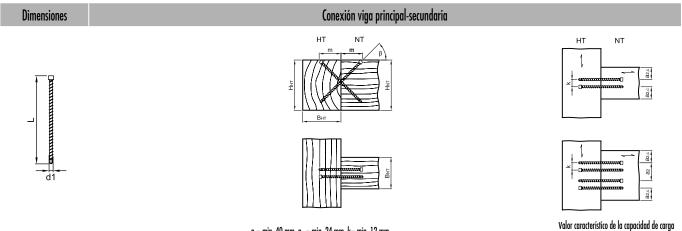
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = R_k · R_d = R_d · R_d ·

Ejemplo

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 \cdot 1,35 + 3,00 \cdot 1,5= $\underline{7,20~kN}.$


La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

b) Determinado con número ef. de pares de tornillos a: $n^{0.9}$.

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 8,0 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

 $\alpha_{2} =$ min. 40 mm, $\alpha_{2,c} =$ min. 24 mm, k= min. 12 mm

de la conexión R_{v,k} conforme a ETA-11/0024

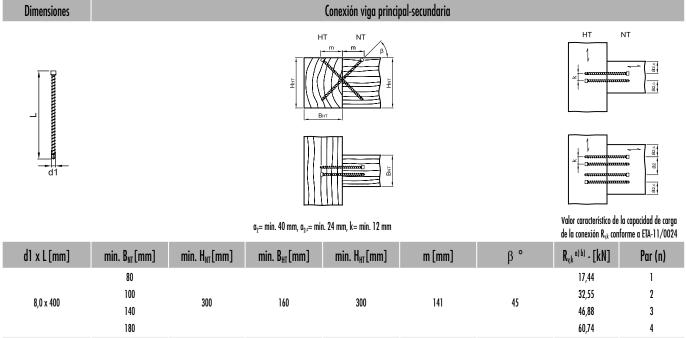
dl x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b} - [kN]$	Par (n)
8,0 x 245	80 100 140 180	200	100	200	87	45	16,43 30,66 44,16 57,21	1 2 3 4
8,0 x 270	80 100 140 180	200	100	200	95	45	17,44 32,55 46,88 57,21	1 2 3 4
8,0 x 295	80 100 140 180	220	120	220	104	45	17,44 32,55 46,88 60,74	1 2 3 4
8,0 x 330	80 100 140 180	260	140	260	117	45	17,44 32,55 46,88 60,74	1 2 3 4
8,0 x 375	80 100 140 180	280	160	280	133	45	17,44 32,55 46,88 60,74	1 2 3 4

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = R_k · k_{mod} / γ_{tk} . Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d (R_d $\geq E_d$).

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{ik} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.


La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

b) Determinado con número ef. de pares de tornillos a: nº.9.

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 8,0 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

	80						17,44	1
0.0 400	100	200	1/0	200	141	45	32,55	2
8,0 x 400	140	300	160	300	141	45	46,88	3
	180						60,74	4
	80						17,44	1
0.0.400	100	000	100	000	150	45	32,55	2
8,0 x 430	140	320	180	320	152	45	46,88	3
	180						60,74	4
	80						17,44	1
0.0400	100	2/0	100	2/0	170	AF	32,55	2
8,0 x 480	140	360	180	360	170	45	46,88	3
	180						60,74	4
	80						17,44	1
0.0 [20	100	400	200	400	107	A.C.	32,55	2
8,0 x 530	140	400	200	400	187	45	46,88	3
	180						57,21	4
	80						17,44	1
0.0	100	440	990	440	905	AF	32,55	2
8,0 x 580	140	440	220	440	205	45	46,88	3
	180						57,21	4

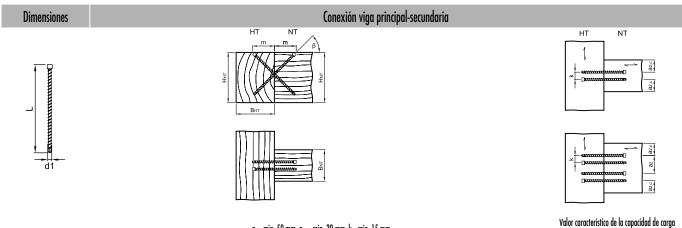
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k= 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k= 3,00 kN. k_{mol}= 0,9. γ_M= 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.


La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

b) Determinado con número ef. de pares de tornillos a: $n^{0.9}$.

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 10,0 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

 $\alpha_2 =$ min. 50 mm, $\alpha_{2,c} =$ min. 30 mm, k= min. 15 mm

de la conexión R_{v,k} conforme a ETA-11/0024

							ue iu collexion N _{V,k} collic	JIIIC U LIA-1 1/ 00
d1 x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Par (n)
10,0 x 300	80 140 180 240	240	120	240	106	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 330	80 140 180 240	260	140	260	117	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 360	80 140 180 240	280	140	280	127	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 400	80 140 180 240	300	160	300	141	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 450	80 140 180 240	340	180	340	159	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 500	80 140 180 240	380	200	380	177	45	23,67 44,18 63,63 82,44	1 2 3 4

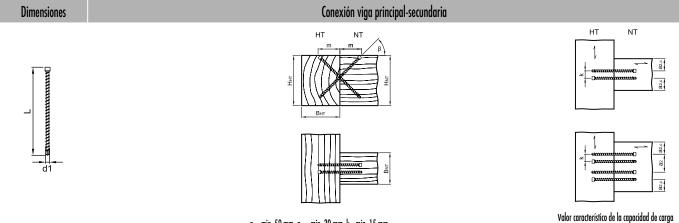
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = R_k · R_d = R_d · R_d ·

Eiemplo

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{ik} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.


La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_{M} / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min Ri= Rd $\cdot \gamma_M / k_{mod} \rightarrow Ri= 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{1,3/0,9} \rightarrow \text{Comparación con los valores de la tabla}$

b) Determinado con número ef. de pares de tornillos a: nº,9.

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 10,0 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

 $\alpha_{2}{=}$ min. 50 mm, $\alpha_{2,c}{=}$ min. 30 mm, k= min. 15 mm

Valor característico de la capacidad de carga de la conexión $R_{v,k}$ conforme a ETA-11/0024

dl x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Par (n)
10,0 x 550	80 140 180 240	400	200	400	195	45	23,67 44,18 62,63 82,44	1 2 3 4
10,0 x 600	80 140 180 240	440	220	440	212	45	23,67 44,18 62,63 82,44	1 2 3 4
10,0 x 650	80 140 180 240	480	240	480	230	45	23,67 44,18 62,63 82,44	1 2 3 4
10,0 x 700	80 140 180 240	520	260	520	250	45	23,67 44,18 62,63 82,44	1 2 3 4
10,0 x 750	80 140 180 240	560	280	560	265	45	23,67 44,18 62,63 82,44	1 2 3 4
10,0 x 800	80 140 180 240	600	300	600	280	45	23,67 44,18 62,63 82,44	1 2 3 4

Cálculo conforme a ETA-11/0024. Densidad aparente ho_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

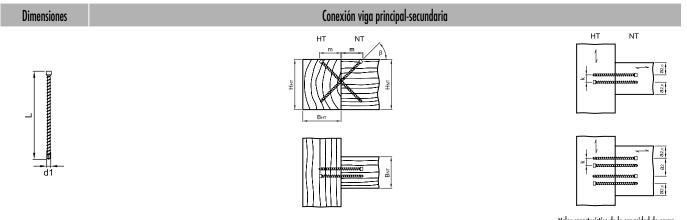
Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = R_k · R_d = R_d + R_d = R_d + R_d = R_d + R_d +

Fiemplo

 $Valor\ característico\ para\ efecto\ permanente\ (carga\ muerta)\ G_k=2,00\ kN\ y\ acción\ variable\ (por\ ejemplo,\ carga\ de\ nieve)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_M=1,3.$

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$


La capacidad de carga de la conexión se considera probada si $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M \, / \, k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow Comparación con los valores de la tabla.$

b) Determinado con número ef. de pares de tornillos a: $n^{0.9}. \\$

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 10,0 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

 $\alpha_{2}{=}$ min. 50 mm, $\alpha_{2,c}{=}$ min. 30 mm, k= min. 15 mm

Valor característico de la capacidad de carga de la conexión $R_{\nu,k}$ conforme a ETA-11/0024

dl x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a)b}$ - [kN]	Par (n)
	80						23,67	1
10.0 000	140	/00	680 340 680 320	680	320	45	44,18	2
10,0 x 900	180	000					62,63	3
	240						82,44	4
	80					23,67	1	
10.01000	140	700	2/0	700	050	45	44,18	2
10,0 x 1000	180	720	360	720	350		62,63	3
	240						82,44	4

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : R_d = R_k · R_d = R_d · R_d ·

Eiemplo

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\underline{7,20~kN}$.

La capacidad de carga de la conexión se considera probada si $R_d \geq E_d. \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

b) Determinado con número ef. de pares de tornillos a: n^{0,9}.

CONSTRUCCIÓN DE ESTRUCTURAS DE MADERA CON KONSTRUX ST

Conexiones con tornillos todo rosca

KonstruX ST es un tornillo universal todo rosca adecuado para uniones de elementos de entramado de madera como postes y travesaños. El KonstruX ST ZK de Ø 6 es especialmente adecuado para la conexión de elementos de entramado de madera delgados en las clases de utilización 1 y 2.

Gracias a la geometría especial de la punta de taladrado, se pueden utilizar una separación menor respecto a bordes y ejes. Esto permite el uso en secciones transversales más pequeñas. La reducción de la punta de taladrado no afecta negativamente a la resistencia a la extracción de la rosca del tornillo. La rosca doble fina detrás de la punta de la taladrado reduce el par de atornillado.

Así, los tornillos todo rosca se utilizan de forma óptima cuando están sometidos a cargas axiales, es decir, bajo carga de tracción (o compresión). Los tornillos todo rosca no pueden aprovechar todo su potencial si solo están sometidos a esfuerzos de cizallamiento. Por esta razón, siempre se intenta en la medida de lo posible colocar los tornillos en la dirección de la fuerza aplicada. Si el ángulo fuerza-eje (que no debe confundirse con el ángulo eje-fibra) está comprendido entre 0° y 45°, puede considerarse que los tornillos están sometidos a un esfuerzo de tracción puro. Por tanto, no se requiere prueba del cizallamiento. Así, la conexión con una unión atornillada en ángulo es mucho más fuerte que con una unión atornillada a 90° con respecto a la fuerza.

Los KonstruX ST pueden utilizarse independientemente de la dirección de la fibra, es decir, también en paralelo a la fibra. La resistencia a la extracción sigue siendo matemáticamente la misma entre 45° y 90°.

TORNILLOS A JUEGO

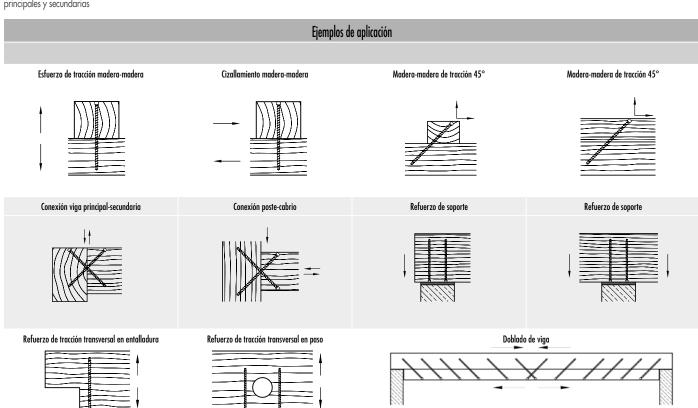
KonstruX ST: ZK, Ø 6,5 mm Longitudes de tornillo: 80-195 mm cabeza cilíndrica retráctil Material: acero endurecido Revestimiento de superficie: galvanizado

EJEMPLOS DE APLICACIÓN

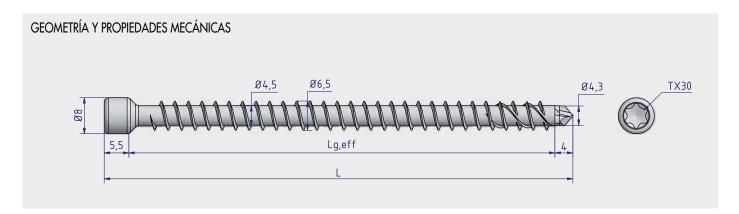
Los tornillos todo rosca permiten muchas aplicaciones diferentes. Los tornillos de cabeza cilíndrica están concebidos para la conexión de componentes de madera/madera. Las cabezas cilíndricas pueden hundirse profundamente en la madera utilizando una broca larga adecuada.

De esta manera, los elementos de conexión son prácticamente invisibles en el caso de las construcciones con vigas visibles. A diferencia de los tornillos con rosca parcial, en los tornillos todo rosca es irrelevante en qué componente se halle la cabeza, a excepción, por supuesto, de las conexiones aceromadera. En todo caso se deben contemplar las distancias mínimas exigidas respecto a bordes y ejes.

Fijación de travesaños en construcciones livianas de marcos de madera


Fijación de soportes en construcciones de marcos de madera

Fijación de soportes en construcciones de marcos de madera, así como en conexiones entre vigas principales y secundarias



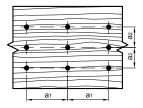
Fijación de soportes en construcciones de marcos de madera en la zona del umbral

Eurotec° | KonstruX

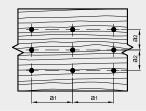
KONSTRUX ST CON CABEZA CILÍNDRICA 6,5 MM

	KonstruX ST ZK Ø 6,5xL -TX30										
N.º de art.:	L [mm]	L _{g,eff} [mm]	Uds./ Cantidad	Diámetro de pretaladrado Ød _v [mm]	Valor característico de la resistencia a la extracción f _{ox,k} [N/mm²]	Valor característico de la capacidad de carga de tracción f _{tens,k} [kN]	Momento de fluencia característico M _{y,k} [Nmm]	Límite elástico característico f _{y.k} [N/mm²]			
904808	80	71	100	4,5	11,4	17,0	15000	1000			
904809	100	91	100	4,5	11,4	17,0	15000	1000			
904810	120	111	100	4,5	11,4	17,0	15000	1000			
904811	140	131	100	4,5	11,4	17,0	15000	1000			
904812	160	151	100	4,5	11,4	17,0	15000	1000			
904813	195	186	100	4,5	11,4	17,0	15000	1000			

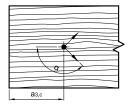
Distancias entre ejes y entre bordes

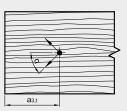

Las distancias mínimas para los KonstruX sometidos a esfuerzos únicamente en dirección axial en agujeros con y sin perforación previa en componentes con un espesor mínimo de t

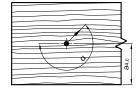
= 65 y un ancho mínimo de 60 mm deben elegirse de la manera detallada a continuación

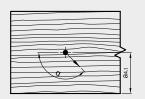

Distancia axial paralela a la dirección de la fibra	a l	[mm]	5 · d	33
Distancia axial en perpendicular a la dirección de la fibra	a ₂	[mm]	5 · d	33
Distancia del centro de gravedad de la zona atornillada en la madera respecto a la superficie de la madera de testa	$\mathbf{q}_{1,c}$	[mm]	5 · d	33
Distancia del centro de gravedad de la zona atornillada en la madera con respecto a la superficie lateral de la madera	Q 2,c	[mm]	3 · d	20
Distancia axial entre un par de tornillos cruzados	$\alpha_{2,k}$	[mm]	1,5 · d	10
Distancia axial reducida a_2 perpendicular a la dirección de la fibra, si $a_1 \cdot a_2 \geq 25 \cdot d^2$	Q _{2,red}	[mm]	2,5 · d	16

Las distancias entre ejes y entre bordes son distancias mínimas según DIN EN 1995:2014 (EC5) y tienen validez en general para medios de conexión sometidos a esfuerzos en dirección transversal

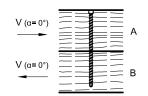

a) Distancia de los medios de conexión dentro de una línea en dirección de la fibra

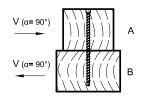

a₂ Distancia de los medios de conexión en perpendicular a la dirección de la fibra


 $a_{3,c}$ Distancia entre el medio de conexión y el extremo no sometido a esfuerzos de la madera de testa $90^{\circ} \le \alpha \le 270^{\circ}$


Distancia entre el medio de conexión y el extremo sometido a esfuerzos de la madera de testa -90 $^\circ$ \leq α \leq 90 $^\circ$

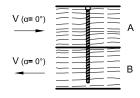
 $a_{4,c}$ Distancia entre el medio de conexión y el borde no sometido a esfuerzos $180^{\circ} \le \alpha \le 360^{\circ}$

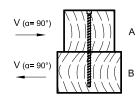

 a_{ij} Distancia entre el medio de conexión y el borde sometido a esfuerzos $0^{\circ} \le \alpha \le 180^{\circ}$



Se analizan las distancias mínimas para KonstruX en agujeros pretaladrados sometidos a esfuerzos en dirección transversal, de la manera siguiente según la situación de la dirección de las fibras

Distancias mínimas para KonstruX en agujeros pretaladrados sometidos a esfuerzos en dirección transversal, con un ángulo fuerza-fibra de 0° y 90°





			Ángulo fuerza-fibra α = 0°		Ángulo fuerza	-fibra α = 90°
Distancia axial paralela a la dirección de la fibra	\mathbf{q}_1	[mm]	5 · d	33	4 · d	33
Distancia axial en perpendicular a la dirección de la fibra	Q 2	[mm]	3 · d	20	4 · d	33
Distancia entre el centro de gravedad de la zona atornillada en la madera y el extremo no sometido a esfuerzos de la madera de testa	u _{3,c}	[mm]	7 · d	46	7 · d	46
Distancia entre el centro de gravedad de la zona atornillada en la madera y el extremo sometido a esfuerzos de la madera de testa	O _{3,t}	[mm]	12 · d	78	7 · d	46
Distancia axial perpendicular al borde no sometido a esfuerzo	a 4,c	[mm]	3 · d	20	3 · d	20
Distancia axial al borde sometido a esfuerzo	a _{4,1}	[mm]	3 · d	20	7 · d	46

Se analizan las distancias mínimas para KonstruX en agujeros no pretaladrados sometidos a esfuerzos en dirección transversal, de la manera siguiente según la situación de la dirección de las fibras

Distancias mínimas para KonstruX en agujeros no pretaladrados sometidos a esfuerzos en dirección transversal con un ángulo fuerza-fibra de 0° y 90°

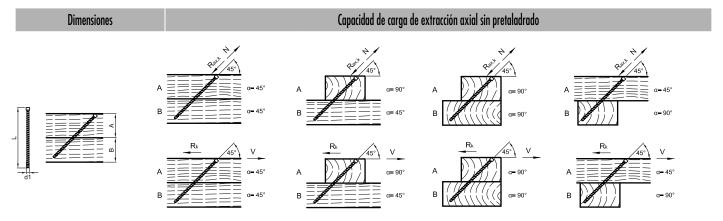
			Ángulo fuerza	-fibra α = 0°	Ángulo fuerza-fibra α = 90°	
Distancia axial paralela a la dirección de la fibra	\mathfrak{a}_1	[mm]	12 · d	78	5 · d	33
Distancia axial en perpendicular a la dirección de la fibra	a ₂	[mm]	5 · d	33	5 · d	33
Distancia entre el centro de gravedad de la zona atornillada en la madera y el extremo no sometido a esfuerzos de la madera de testa	a _{3,c}	[mm]	10 · d	65	10 · d	65
Distancia entre el centro de gravedad de la zona atornillada en la madera y el extremo sometido a esfuerzos de la madera de testa	a _{3,i}	[mm]	15 · d	98	10 · d	65
Distancia axial perpendicular al borde no sometido a esfuerzo	Q 4,c	[mm]	5 · d	33	5 · d	33
Distancia axial al borde sometido a esfuerzo	Q4+	[mm]	5 · d	33	10 ⋅ d	65

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 6,5 MM: CAPACIDAD DE CARGA DE CIZALLAMIENTO SIN PRETALADRADO

ı	Dimensiones	Capacidad de carga de extracción axial	Capacidad de carga de cizallamiento sin pretaladrado
		Raxk N	V (a= 0°) A V (a= 0°) A V (a= 90°) V (a= 90°)
	d1	Rax,k	V(a=90°) ((
		Valor característico de la capacidad de carga	Valor característico de la capacidad de carga

Valor característico de la capacidad de carga de la conexión R_{ack} conforme a ETA-11/0024

Valor característico de la capacidad de carga de la conexión R₂ conforme a ETA-11/0024

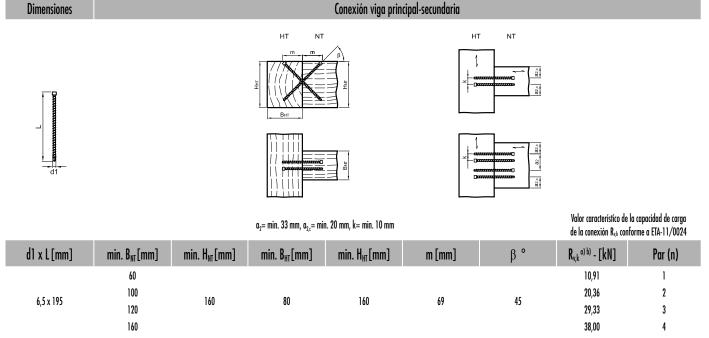

ØdlxL[mm]	A [mm]	B [mm]	$R_{\alpha x,k}{}^{\alpha j}$ - [kN]	R _k ^{a)} - [kN]	R_k^{α} - [kN]	R _k a) - [kN]	R _k a) - [kN]
				0°		$\alpha_{\mathtt{A}} = 0^{\circ}$	$\alpha_{\mathtt{A}} = 90^{\circ}$
				α= 0 °	α= 90 °	$\alpha_{\mathtt{B}} = 90^{\circ}$	$\alpha_{\mathtt{B}} = 0^{\circ}$
6,5 x 120	60	80	4,35	3,83	3,37	3,83	3,37
6,5 x 140	80	80	4,43	3,85	3,39	3,39	3,85
6,5 x 160	80	100	5,94	4,22	3,76	4,22	3,76
6,5 x 195	100	100	7,20	4,54	4,08	4,08	4,54

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_k$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 6,5 MM: CAPACIDAD DE CARGA DE EXTRACCIÓN AXIAL SIN PRETALADRADO

Valor característico de la capacidad de carga de la conexión R_k conforme a ETA-11/0024


Ød1 x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]
			α=	45°	$\alpha_A = \alpha_B = \alpha_B$		$\alpha_A = \alpha_B = \alpha_B$		$\alpha_A = \alpha_B = \alpha_B$: 45° : 90°
6,5 x 160	60	80	5,51	3,90	5,51	3,90	5,51	3,90	5,51	3,90
6,5 x 195	80	80	6,04	4,27	6,04	4,27	6,04	4,27	6,04	4,27

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararise a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_{uk}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

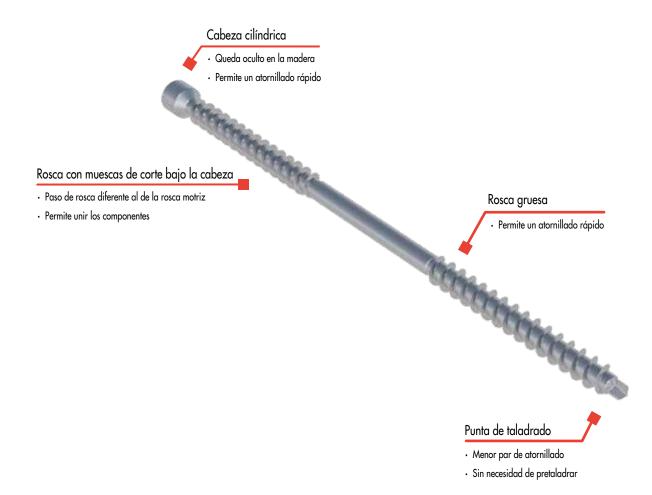
KONSTRUX ST CON CABEZA CILÍNDRICA Y PUNTA DE TALADRADO 6,5 MM: CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

KONSTRUX DUO

Tornillo todo rosca con efecto de contracción



KonstruX DUO es un innovador tornillo todo rosca que combina los puntos fuertes de los tornillos todo rosca y parcialmente roscados:

Maximización de la capacidad de carga de la conexión mediante una resistencia a la extracción igualmente elevada en ambos componentes.

KonstruX DUO es resistente a la corrosión bajo ciertas condiciones y utilizable en las clases de utilización 1 y 2 según la norma DIN EN 1995 (Eurocódigo 5). Los ámbitos de aplicación son tanto los edificios nuevos como la rehabilitación de edificios.

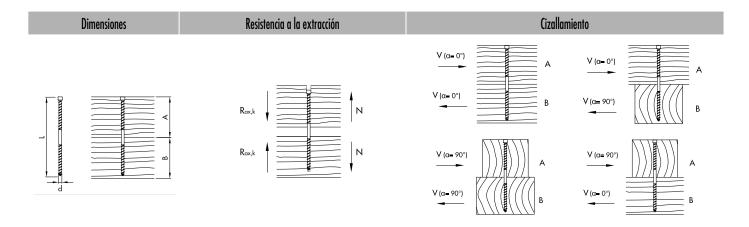
KonstruX DUO Cabeza cilíndrica, punta de taladrado, acero azul galvanizado NKL 1 – 2

N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	lg1 / lg2 [mm]	Accionamiento	Cantidad
100606	6,5	90	8,0	40/40	TX30 •	100
100607	6,5	130	8,0	43/43	TX30 •	100
100608	6,5	160	8,0	67/67	TX30 •	100
100609	6,5	190	8,0	82/82	TX30 •	100
100610	6,5	220	8,0	97/97	TX30 •	100
100611	8,0	160	10,0	67/67	TX40 •	100
100612	8,0	190	10,0	92/92	TX40 •	100
100613	8,0	220	10,0	92/92	TX40 •	100
100614	8,0	245	10,0	107/107	TX40 •	100
100615	8,0	280	10,0	107/107	TX40 •	100
100616	8,0	300	10,0	137/137	TX40 •	100
100617	8,0	330	10,0	137/137	TX40 •	100
100618	8,0	400	10,0	137/137	TX40 •	100

EJEMPLOS DE APLICACIÓN

KonstruX DUO para la construcción de una subestructura de escalera

KonstruX DUO, vista seccional entre dos componentes


KonstruX DUO para la fijación de una cubierta

KonstruX DUO para la fijación de una viga maestra

INFORMACIÓN TÉCNICA KONSTRUX DUO, ACERO AZUL GALVANIZADO

d x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a} - [kN]$	R _k ^{a)} - [kN]	R_k^{a} - [kN]	R _k a) - [kN]
				0° 00°		$\alpha_{A}=0^{\circ}$	$\alpha_{A}=90^{\circ}$
				α= 0 °	α= 90 °	α_{B} = 90°	$\alpha_{\mathtt{B}} = 0^{\circ}$
6,5 x 90	40	40	0,96	3,00	2,51	2,75	2,64
6,5 x 130	60	60	1,04	3,02	2,57	2,77	2,77
6,5 x 160	80	80	1,71	3,19	2,74	2,94	2,94
6,5 x 190	100	100	2,12	3,29	2,85	3,04	3,04
8,0 x 160	80	80	5,74	5,37	4,72	5,00	5,00
8,0 x 190	100	100	8,11	5,97	5,31	5,60	5,60
8,0 x 220	120	120	8,11	5,97	5,31	5,60	5,60
8,0 x 245	120	120	9,53	6,32	5,67	5,95	5,95
8,0 x 280	140	140	9,53	6,32	5,67	5,95	5,95
8,0 x 300	160	160	12,38	7,03	6,38	6,66	6,66
8,0 x 330	180	180	12,38	7,03	6,38	6,66	6,66
8,0 x 400	200	200	12,38	7,03	6,38	6,66	6,66

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la

duración de la carga a los valores nominales R_d : R_d = R_k · k_{med} / γ_M . Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Eiemplo:

 $\begin{array}{l} Valor \cdot \text{caracteristico para efecto permanente (carga muerta) } G_k = 2,00 \text{ kN y acción variable (por ejemplo, carga de nieve)} Q_k = 3,00 \text{ kN.} \\ k_{mod} = 0,9. \\ \gamma_M = 1,3. \\ \longrightarrow \text{Valor nominal del efecto } E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = \underline{7,20 \text{ kN.}} \\ La capacidad de carga de la conexión se considera probada si <math>R_d \ge E_d. \\ \longrightarrow \text{min } R_k = R_d \cdot \gamma_M / k_{mod}. \\ \text{Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min } R_k = R_d \cdot \gamma_M / k_{mod} \\ \longrightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \\ \longrightarrow \text{Comparación con los valores de la tabla.} \end{array}$

INFORMACIÓN TÉCNICA KONSTRUX DUO, ACERO AZUL GALVANIZADO

Dimensiones	Co	nexión de tracción
		$\frac{V}{c_{-}90^{\circ}}$ A $\frac{R_{k}}{d_{5}^{\circ}}$ $\frac{V}{c_{-}45^{\circ}}$ A $\frac{R_{k}}{d_{5}^{\circ}}$ $\frac{V}{c_{-}45^{\circ}}$
	A	α= 90° A α= 90° A β α= 90° α= 90°

Valor característico de	la canacidad de caraa	de la consvión R	o R₄ conforme a FTA-11/002	1
valor caracieristico de	: 10 Cabaciooo oe Caraa i	DE IO COHEXION Navi	, O N. COMOTHIE O FIA-11/00/	4

d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{a} - [kN]
			α= 45 °		$\alpha_{A} = 90^{\circ}$ $\alpha_{B} = 45^{\circ}$		α_{A} = 90° α_{B} = 90°		$lpha_{A}$ = 45° $lpha_{B}$ = 90°	
6,5 x 90	40	40	0,68	0,48	0,68	0,48	0,68	0,48	0,68	0,48
6,5 x 130	40	40	0,74	0,52	0,74	0,52	0,74	0,52	0,74	0,52
6,5 x 160	60	60	1,21	0,86	1,21	0,86	1,21	0,86	1,21	0,86
6,5 x 190	60	60	1,50	1,06	1,50	1,06	1,50	1,06	1,50	1,06
8,0 x 160	60	60	4,06	2,87	4,06	2,87	4,06	2,87	4,06	2,87
8,0 x 190	60	60	5,73	4,05	5,73	4,05	5,73	4,05	5,73	4,05
8,0 x 220	80	80	5,73	4,05	5,73	4,05	5,73	4,05	5,73	4,05
8,0 x 245	100	100	6,74	4,77	6,74	4,77	6,74	4,77	6,74	4,77
8,0 x 280	100	100	6,74	4,77	6,74	4,77	6,74	4,77	6,74	4,77
8,0 x 300	120	120	8,75	6,19	8,75	6,19	8,75	6,19	8,75	6,19
8,0 x 330	120	120	8,75	6,19	8,75	6,19	8,75	6,19	8,75	6,19
8.0 x 400	140	140	8.75	6.19	8.75	6.19	8.75	6.19	8.75	6.19

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la

duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Eiemplo

 $Valor\ característico\ para\ efecto\ permanente\ (carga\ muerta)\ G_k=2,00\ kN\ y\ acción\ variable\ (por\ ejemplo,\ carga\ de\ nieve)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{M}=1,3.$

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\underline{7,20 \text{ kN}}$.

La capacidad de carga de la conexión se considera probada si $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $k_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

KONSTRUX DUO, ACERO AZUL GALVANIZADO CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

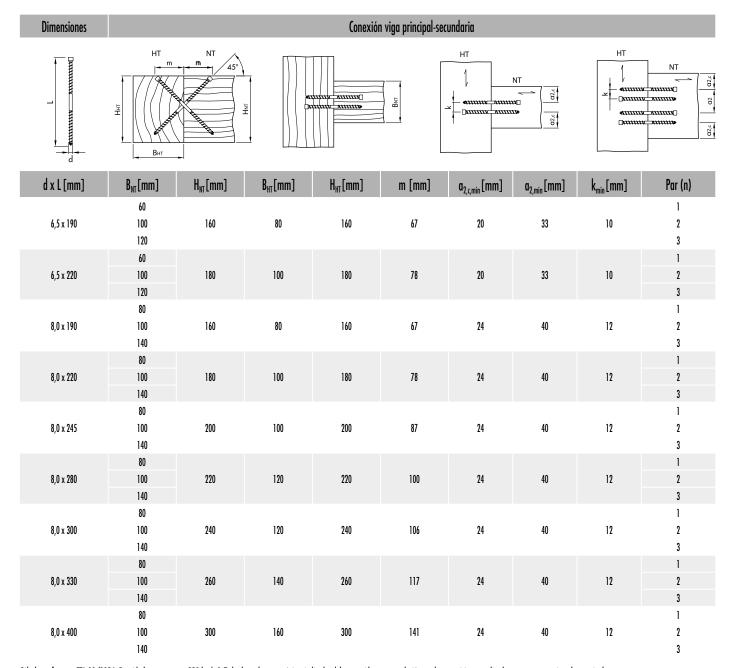
Dimensiones Conexión viga principal-secundaria

d x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	F _{v,Rd} [kN]		Par (n)
					$k_{\text{mod}} = 0.8$	$k_{\text{mod}} = 0.9$	
	60				1,84	2,08	1
6,5 x 190	100	160	80	160	3,43	3,88	2
	120				4,95	5,59	3
	60	180			2,21	2,49	1
6,5 x 220	100		100	180	4,13	4,64	2
	120				5,94	6,69	3
	80				7,06	7,94	1
8,0 x 190	100	160	80	160	13,17	14,81	2
	140				18,97	21,34	3
	80		100		7,06	7,94	1
8,0 x 220	100	180		180	13,17	14,81	2
	140				18,97	21,34	3
	80	200	100	200	8,30	9,33	1
8,0 x 245	100				15,48	17,41	2
	140				22,30	25,08	3
	80			220	8,30	9,33	1
8,0 x 280	100	220	120		15,48	17,41	2
	140				22,30	25,08	3
	80				10,77	12,12	1
8,0 x 300	100	240	120	240	20,10	22,61	2
	140				28,95	32,57	3
	80				10,77	12,12	1
8,0 x 330	100	260	140	260	20,10	22,61	2
	140				28,95	32,57	3
	80				10,77	12,12	1
8,0 x 400	100	300	160	300	20,10	22,61	2
	140				28,95	32,57	3

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_i = R_k \cdot k_{mod} / \gamma_{kk}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Fiemnlo


Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20}$ kN.

b) Determinado con número ef. de pares de tornillos a: $n^{0.9}$.

KONSTRUX DUO, ACERO AZUL GALVANIZADO CONEXIÓN VIGA PRINCIPAL-SECUNDARIA

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mad} / \gamma_k$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Fiemnlo

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mot} = 0,9. γ_{II} = 1,3.

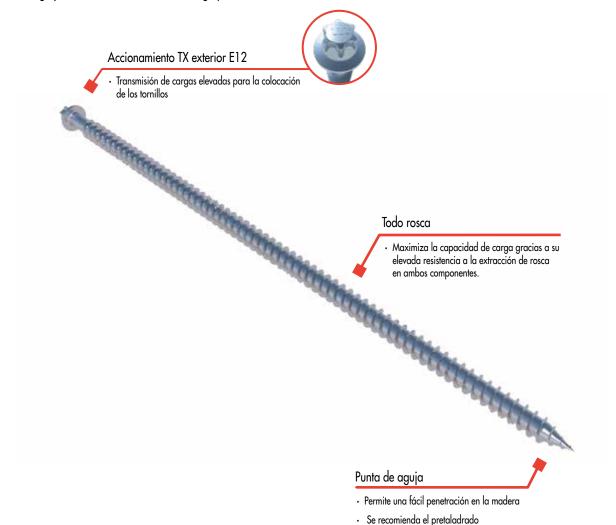
 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20~kN}$.

La capacidad de carga de la conexión se considera probada si $R_k \ge E_k$ \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod} E_S$ decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \longrightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10.40 \text{ kN} \longrightarrow$ Comparación con los valores de la tabla.

b) Determinado con número ef. de pares de tornillos a: $n^{0.9}$.

KONSTRUX, 13 MM E12

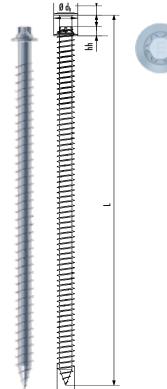
Para grandes vanos en construcciones de madera



El KonstruX con accionamiento E12 se utiliza en una amplia gama de aplicaciones en la ingeniería de la madera, carpintería, construcción de estructuras de madera, construcción de naves y construcción de elementos de madera, así como en la renovación de cubiertas de pisos y mucho más. Los tornillos todo rosca KonstruX maximizan la capacidad de carga de las conexiones gracias a la elevada resistencia a la extracción de la rosca en ambos componentes.

Con una rosca gruesa en toda su longitud y un diámetro exterior de 13 mm, este tornillo está diseñado para ofrecer una excelente resistencia a la extracción axial en componentes de madera. Con su impresionante resistencia a la tracción de 75 kN, el tornillo puede aprovechar al máximo su longitud máxima de 1400 mm, por lo que resulta especialmente adecuado para grandes proyectos de refuerzo.

Las aplicaciones típicas incluyen elementos de madera laminada encolada o cerchas de naves con grandes vanos, refuerzos de vigas y conexiones, refuerzos de tracción transversal, refuerzos de muesca en entalladuras, refuerzos de paso y refuerzos de soporte para aumentar, mantener o restaurar la capacidad de carga y reducir las deformaciones a largo plazo.

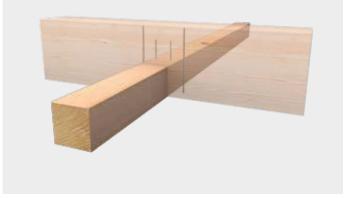

Eurotec | KonstruX

KonstruX, 13 mm E12

Accionamiento TX exterior E12, azul galvanizado

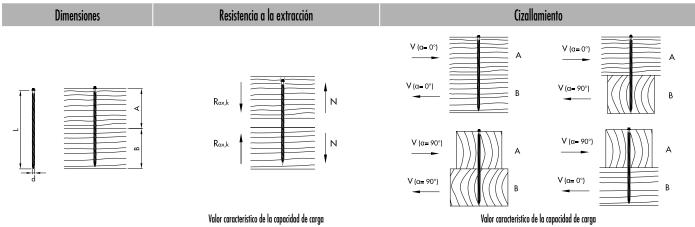
N.º de art.:	Ø d [mm]	L[mm]	Ø dh [mm]	hh [mm]	Accionamiento	Cantidad
904835	13,0	200	18	10	TX50 ●	20
904836	13,0	220	18	10	TX50 ●	20
904837	13,0	240	18	10	TX50 ●	20
904838	13,0	260	18	10	TX50 ●	20
904839	13,0	280	18	10	TX50 ●	20
904840	13,0	300	18	10	TX50 ●	20
904841	13,0	320	18	10	TX50 ●	20
904842	13,0	340	18	10	TX50 ●	20
904843	13,0	360	18	10	TX50 ●	20
904844	13,0	380	18	10	TX50 ●	20
904845	13,0	420	18	10	TX50 ●	20
904846	13,0	460	18	10	TX50 ●	20
904847	13,0	500	18	10	TX50 ●	20
904848	13,0	540	18	10	TX50 ●	20
904849	13,0	580	18	10	TX50 ●	20
904850	13,0	620	18	10	TX50 ●	20
904851	13,0	660	18	10	TX50 ●	20
904852	13,0	700	18	10	TX50 ●	20
904853	13,0	750	18	10	TX50 ●	20
904854	13,0	800	18	10	TX50 ●	20
904855	13,0	900	18	10	TX50 ●	20
904856	13,0	1000	18	10	TX50 ●	20
904861 ^{a)}	13,0	1200	18	10	TX50 ●	20
904862 ^{a)}	13,0	1400	18	10	TX50 ●	20

a) Se ha solicitado la Evaluación Técnica Europea (ETA).


EJEMPLOS DE APLICACIÓN

Refuerzo de aberturas de vigas

Refuerzo de vigas ranuradas


Refuerzo de soportes de viga principal-secundaria

Refuerzo de vigas trapezoidales curvadas

INFORMACIÓN TÉCNICA KONSTRUX, 13 MM E12, ACERO AZUL GALVANIZADO

de la conexión R_{ax.k} conforme a ETA-11/0024

de la conexión R_k conforme a ETA-11/0024

			ae Ia Conexion K _{ax,k} contorme a EIA-1 I/UU24	de la conexion K _k contorme a EIA-11/UU <i>2</i> 4						
d x L [mm]	A [mm]	B [mm]	$R_{\alpha_{X}k}{}^{\alpha_{J}}$ - [kN]	R _k °) - [kN]	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]	R_k^{a} - [kN]			
				α= 0 °	α= 90 °	$\alpha_{A}=0^{\circ}$ $\alpha_{B}=90^{\circ}$	$\alpha_A = 90^{\circ}$ $\alpha_B = 0^{\circ}$			
13,0 x 300	150	150	22,49	16,20	14,13	15,00	15,00			
13,0 x 320	160	160	24,00	16,57	14,50	15,37	15,37			
13,0 x 340	170	170	25,49	16,95	14,88	15,75	15,75			
13,0 x 360	180	180	27,00	17,32	15,25	16,12	16,12			
13,0 x 380	190	190	28,49	17,70	15,63	16,50	16,50			
13,0 x 420	210	210	31,49	18,45	16,38	17,25	17,25			
13,0 x 460	230	230	34,49	19,20	17,02	18,00	18,00			
13,0 x 500	250	250	37,49	19,25	17,02	18,75	18,75			
13,0 x 540	270	270	40,49	20,70	17,02	18,75	18,75			
13,0 x 580	290	290	43,48	21,15	17,02	18,75	18,75			
13,0 x 620	310	310	46,48	21,15	17,02	18,75	18,75			
13,0 x 660	330	330	49,48	21,15	17,02	18,75	18,75			
13,0 x 700	350	350	52,48	21,15	17,02	18,75	18,75			
13,0 x 750	375	375	56,23	21,15	17,02	18,75	18,75			
13,0 x 800	400	400	59,98	21,15	17,02	18,75	18,75			
13,0 x 900	450	450	67,48	21,15	17,02	18,75	18,75			
13,0 x 1000	500	500	74,97	21,15	17,02	18,75	18,75			
13,0 x 1200*	600	600	75,00	21,15	17,02	18,75	18,75			
13,0 x 1400*	700	700	75,00	21,15	17,02	18,75	18,75			

Cálculo conforme a ETA-11/0024. Densidad aparente ho_k = 380 kg/m². Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión. a) Los valores característicos de la capacidad de carga Ra no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Rc: Rd= Rk · kmed / Yk. Los valores nominales de la capacidad de carga Rd deben compararse con los valores de cálculo de los efectos E_d ($R_d \geq E_d$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod}= 0,9. γ_m= 1,3. → Valor nominal del efecto E_e = 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN</u>. La capacidad de carga de la conexión se considera probada si $R_2 \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$. Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod}$. \rightarrow $R_k = 7,20$ kN \cdot 1,3/0,9= $\frac{10.40 \text{ kN}}{10.40 \text{ kN}}$ Comparación con los valores de la tabla. Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas. *Se ha solicitado la Evaluación Técnica Europea (ETA).

TUERCA DE VASO TX EXTERIOR 1/2»

N.º de art.:	Accionamiento	Cantidad
800420	F12	1

INFORMACIÓN TÉCNICA KONSTRUX, 13 MM E12, ACERO AZUL GALVANIZADO

Valor característico de	la canacida	do caraa da	la consvión R	o R. conforma	n FTA-11/0024
Valoi Catacietistico de	ia cabaciaai	i de Corda de	IO COMEXION Nav L	O KL COMIONNE	U FIA-11/UU/4

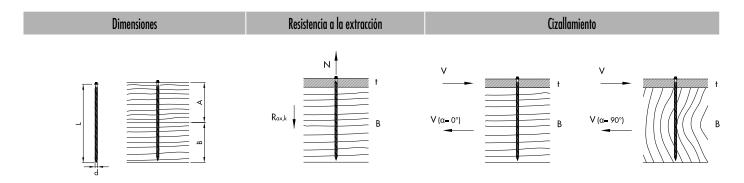
d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R _k a) - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]
			α= 45 °		α _A = 90° α _B = 45°		$\alpha_{A}=90^{\circ}$ $\alpha_{B}=90^{\circ}$		α_{A} = 45° α_{B} = 90°	
13,0 x 300	105	105	15,75	11,14	15,75	11,14	15,75	11,14	15,75	11,14
13,0 x 340	120	120	17,99	12,72	17,99	12,72	17,99	12,72	17,99	12,72
13,0 x 380	135	135	20,05	14,18	20,05	14,18	20,05	14,18	20,05	14,18
13,0 x 420	150	150	22,05	15,59	22,05	15,59	22,05	15,59	22,05	15,59
13,0 x 460	160	160	23,99	16,96	23,99	16,96	23,99	16,96	23,99	16,96
13,0 x 500	180	180	26,02	18,40	26,02	18,40	26,02	18,40	26,02	18,40
13,0 x 540	190	190	28,49	20,15	28,49	20,15	28,49	20,15	28,49	20,15
13,0 x 580	205	205	30,74	21,74	30,74	21,74	30,74	21,74	30,74	21,74
13,0 x 620	220	220	32,76	23,16	32,76	23,16	32,76	23,16	32,76	23,16
13,0 x 660	235	235	34,75	24,57	34,75	24,57	34,75	24,57	34,75	24,57
13,0 x 700	250	250	36,73	25,97	36,73	25,97	36,73	25,97	36,73	25,97
13,0 x 750	265	265	39,74	28,10	39,74	28,10	39,74	28,10	39,74	28,10
13,0 x 800	285	285	42,09	29,76	42,09	29,76	42,09	29,76	42,09	29,76
13,0 x 900	320	320	47,45	33,55	47,45	33,55	47,45	33,55	47,45	33,55
13,0 x 1000	355	355	52,80	37,34	52,80	37,34	52,80	37,34	52,80	37,34
13,0 x 1200	425	425	53,03	37,50	53,03	37,50	53,03	37,50	53,03	37,50
13,0 x 1400	500	500	53,03	37,50	53,03	37,50	53,03	37,50	53,03	37,50

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_k = R_k \cdot k_{mod} / \gamma_{kr}$. Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.


 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$

La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_M / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M \ / \ k_{mod} \rightarrow R_k = 7,20 \ kN \cdot 1,3/0,9 = 10,40 \ kN \rightarrow Comparación con los valores de la tabla.$

INFORMACIÓN TÉCNICA KONSTRUX, 13 MM E12, ACERO AZUL GALVANIZADO

d x L [mm]	t [mm]	B [mm]	$R_{\alpha x,k}^{\alpha j}$ - [kN]	R _k a) - [kN]	R_k^{a} - [kN]
				α= 0 °	α= 90 °
13,0 x 300	20	300	41,99	25,45	22,53
13,0 x 340	20	340	47,98	26,95	24,03
13,0 x 380	20	380	53,98	28,45	24,07
13,0 x 420	20	420	59,98	29,91	24,07
13,0 x 460	20	460	65,98	29,91	24,07
13,0 x 500	20	500	71,97	29,91	24,07
13,0 x 540	20	540	75,00	29,91	24,07
13,0 x 580	20	580	75,00	29,91	24,07
13,0 x 620	20	620	75,00	29,91	24,07
13,0 x 660	20	660	75,00	29,91	24,07
13,0 x 700	20	700	75,00	29,91	24,07
13,0 x 750	20	750	75,00	29,91	24,07
13,0 x 800	20	800	75,00	29,91	24,07
13,0 x 900	20	900	75,00	29,91	24,07
13,0 x 1000	20	1000	75,00	29,91	24,07
13,0 x 1200	20	1200	75,00	29,91	24,07
13,0 x 1400	20	1400	75,00	29,91	24,07

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 380 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Rk: Ra= Rk · kmd / γ_M . Los valores nominales de la capacidad de carga Rk deben compararse con los valores de cálculo de los efectos E4 (R $_d \ge E_d$).

Elemblo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 \cdot 1,35 + 3,00 \cdot 1,5= 7,20 kN.

 $La\ capacidad\ de\ carga\ de\ la\ conexión\ se\ considera\ probada\ si\ R_d \geq E_d. \longrightarrow min\ R_k = R_d \cdot \gamma_M \ /\ k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

SAWTEC

Tornillo para madera de acero al carbono endurecido

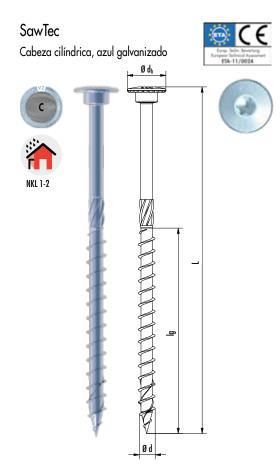
El SawTec es un tornillo para madera con una punta de tornillo especial y dientes de sierra por debajo de la cabeza. El tornillo presenta una cabeza cilíndrica de doble etapa. La geometría especial de la punta del tornillo reduce el par de atornillado y provoca además un menor efecto de separación al atornillar.

Cabeza cilíndrica de dos etapas con dientes de sierra - Los dientes de sierra debajo de la cabeza reducen la formación de virutas - Ideal para herrajes - Un atornillado cuidadoso evita el deshilachado y el astillado de la madera. - Cabeza cilíndrica y de disco original - Valores de paso de la cabeza más altos que con la cabeza avellanado, menor generación de grietas que con cabeza plana (en caso de atornillado oblicuo) Vástago de fricción

que reduce la resistencia a la inserción

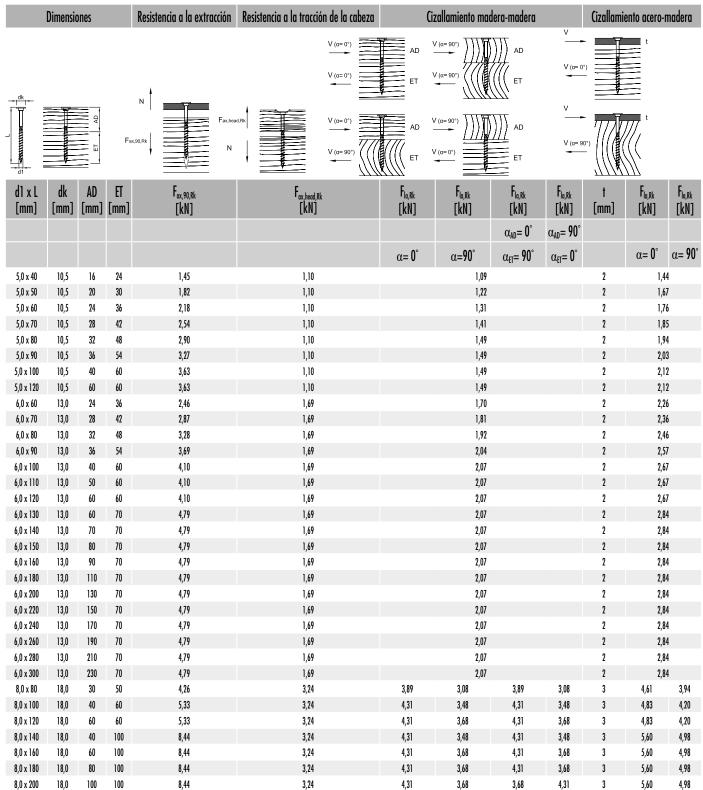
· El escariador crea espacio para el vástago, lo

Rosca gruesa


· Permite un atornillado rápido

Rosca de doble plegado

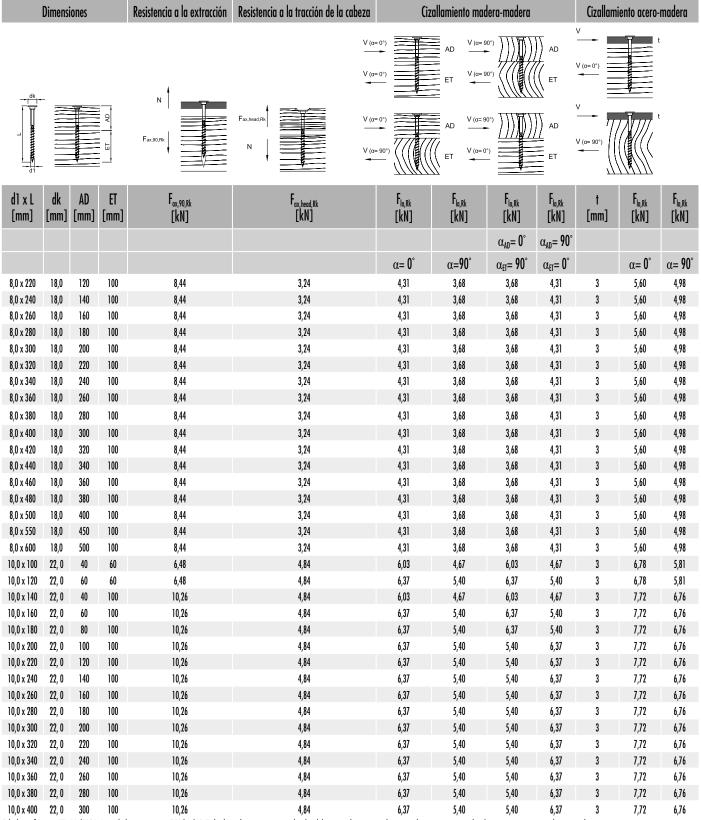
 La geometría especial de la punta del tornillo DAG reduce el par de atornillado y provoca además un menor efecto de separación al atornillar.


Eurotec° | SawTec

N 0 d	a 1 - 1	151	ا الـ ۱	J., F., 1	A	Cs. _
N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
954115	5,0	40	10,5	24	TX25 ●	200
954117	5,0	50	10,5	30	TX25 •	200
954118	5,0	60	10,5	36	TX25 •	200
954119 954120	5,0	70 80	10,5	42 48	TX25 ● TX25 ●	200 200
954121	5,0 5,0	90	10,5 10,5	54	TX25 •	200
954122	5,0	100	10,5	60	TX25 •	200
954124	5,0	120	10,5	60	TX25 •	200
954128	6,0	60	13,0	36	TX30 •	100
954129	6,0	70	13,0	42	TX30 •	100
954130	6,0	80	13,0	48	TX30 •	100
954131	6,0	100	13,0	60	TX30 •	100
954133	6,0	120	13,0	60	TX30 •	100
954135	6,0	140	13,0	70	TX30 •	100
954137	6,0	160	13,0	70	TX30 •	100
954138	6,0	180	13,0	70	TX30 •	100
954139	6,0	200	13,0	70	TX30 •	100
954140	6,0	220	13,0	70	TX30 •	100
954141	6,0	240	13,0	70	TX30 •	100
954142	6,0	260	13,0	70	TX30 •	100
954143	6,0	280	13,0	70	TX30 •	100
954144	6,0	300	13,0	70	TX30 •	100
954145	8,0	80	18,0	48	TX40 •	50
954146	8,0	100	18,0	60	TX40 •	50
954147	8,0	120	18,0	60	TX40 •	50
954148	8,0	140	18,0	95	TX40 •	50
954149	8,0	160	18,0	95	TX40 •	50
954150	8,0	180	18,0	95	TX40 •	50
954151	8,0	200	18,0	95	TX40 •	50
954152 954153	8,0	220	18,0	95 95	TX40 •	50 50
954154 954154	8,0	240 260	18,0	95	TX40 • TX40 •	50
954155	8,0 8,0	280	18,0 18,0	95	TX40 •	50
954156	8,0	300	18,0	95	TX40 •	50
954157	8,0	320	18,0	95	TX40 •	50
954158	8,0	340	18,0	95	TX40 •	50
954159	8,0	360	18,0	95	TX40 •	50
954160	8,0	380	18,0	95	TX40 •	50
954161	8,0	400	18,0	95	TX40 •	50
954181	8,0	420	18,0	95	TX40 ●	50
954182	8,0	440	18,0	95	TX40 •	50
954183	8,0	460	18,0	95	TX40 •	50
954184	8,0	480	18,0	95	TX40 •	50
954185	8,0	500	18,0	95	TX40 •	50
954186	8,0	550	18,0	95	TX40 •	50
954187	8,0	600	18,0	95	TX40 •	50
954162	10,0	100	22,0	60	TX50 ●	50
954163	10,0	120	22,0	60	TX50 ●	50
954164	10,0	140	22,0	95	TX50 ●	50
954165	10,0	160	22,0	95	TX50 ●	50
954166	10,0	180	22,0	95	TX50 ●	50
954167	10,0	200	22,0	95	TX50 ●	50
954168	10,0	220	22,0	95	TX50 ●	50
954169	10,0	240	22,0	95	TX50 ●	50
954170	10,0	260	22,0	95	TX50 ●	50
954171	10,0	280	22,0	95	TX50 ◆	50
954172	10,0	300	22,0	95	TX50 ◆	50
954173	10,0	320	22,0	95	TX50 ◆	50
954174	10,0	340 360	22,0	95 95	TX50 ●	50 25
954175 954176	10,0	380	22,0 22,0	95 95	TX50 ●	25
954177	10,0 10,0	400	22,0	95	TX50 ◆	25
734177	10,0	400	LL,U	7.7	TX50 ●	25

INFORMACIÓN TÉCNICA SAWTEC CABEZA CILÍNDRICA, ACERO AZUL GALVANIZADO

Cálculo conforme a ETA-11/0024. Densidad aparente ho_k = 350 kg/m². Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión. a) Los valores característicos de la capacidad de carga R. no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Ra deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales Ra: Ra= Ra 🛦 konet / γn. Los valores nominales de la capacidad de carga Ra deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).


Ejemplo:

proporcionarle un contacto.

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \rightarrow Valor nominal del efecto $E_d = 2,00 \text{ c} \cdot 1,35 + 3,00 \text{ c} \cdot 1,5 = \frac{7,20 \text{ kN}}{2,00 \text{ kN}}$. La capacidad de carga de la conexión se considera probada si $R_k \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$. \rightarrow Representa to a planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

Atención: Compruebe las suposiciones establecidad. Los valores, el tipo y el número de elementos de fijación proporcionados se basan en cálculos previos. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas de acuerdo con el reglamento de la construcción del Land. Si desea un certificado de estabilidad con coste, contacte con un/a proyectista cualificado/a según el LBauO (reglamento de la construcción del Land). Estaremos encantados de

Eurotec® | SawTec

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R₄ no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R₄ deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R₄: R₄= R₄ · kmd / γω. Los valores nominales de la capacidad de carga R₄ deben compararse con los valores de cálculo de los efectos E₄ (R₄ ≥ E₄).

Eiemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

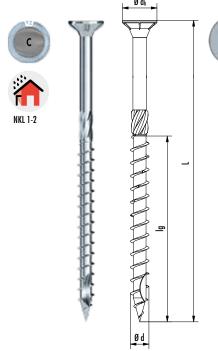
 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si R_d \geq E_d. \longrightarrow min R_k= R_d \cdot \gamma_M / k_mod

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

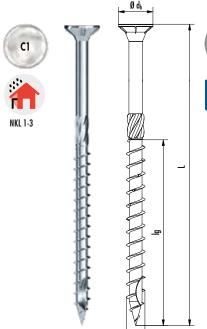
TORNILLOS ENCINTADOS

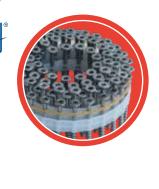
Sistema Holzher


Paneltwistec

Encintado, acero azul galvanizado, cabeza avellanada

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Uds./cinta	Bobina/caja
905613	4,0	40	8,0	24	TX20 •	167	12
905614	4,0	50	8,0	30	TX20 •	167	12
905615	4,0	60	8,0	36	TX20 •	167	12
905616	4,5	50	9,0	30	TX25 •	125	12
905617	4,5	60	9,0	36	TX25 •	125	12
905622	4,5	70	9,0	42	TX25 •	125	5
905635	5,0	50	10,0	30	TX25 •	125	10
905636	5,0	60	10,0	36	TX25 •	125	10
905637	5,0	70	10,0	42	TX25 •	125	5




Paneltwistec

Encintado, acero inoxidable endurecido, cabeza avellanada

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Uds./cinta	Bobina/caja
905650	4,5	50	9,0	30	TX20 •	125	12
905651	4,5	60	9,0	36	TX20 -	125	12
903612	5,0	60	10,0	36	TX25 •	125	5
903609	5,0	70	10,0	42	TX25 •	125	5
903608	5.0	80	10.0	48	TX25 •	125	10

INFORMACIÓN TÉCNICA PANELTWISTEC ENCINTADO, ACERO AZUL GALVANIZADO

	Dimensio	ones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	Ciz	callamiento m	adera-mader	a	Cizalla	miento ac	ero-madera
dk an in the control of the control			ET AD	N Fax,90,Rk	Fax,head,Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD ET ET	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)	A A E	V (0 T V D V (0	22= 90°)	t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α= 90 °	$\alpha_{\rm FI}$ = 90°	$\alpha_{\rm FI}$ = 0°		α= 0 °	α= 90 °
4,0 x 40	8,0	16	24	1,24	0,77		0,8			2		1,15
4,0 x 50	8,0	20	30	1,55	0,77		0,9			2		1,23
4,0 x 60	8,0	24	36	1,86	0,77		1,0	1		2		1,31
4,0 x 70	8,0	28	42	2,17	0,77		1,0	3		2		1,38
4,5 x 50	9,0	20	30	1,69	0,97		1,0	8		2		1,44
4,5 x 60	9,0	24	36	2,03	0,97		1,1	7		2		1,53
5,0 x 50	10,0	20	30	1,82	1,20		1,2	4		2		1,67
5,0 x 60	10,0	24	36	2,18	1,20		1,3	4		2		1,76
5,0 x 70	10,0	28	42	2,54	1,20		1,4	4		2		1,85
5,0 x 80	10,0	32	48	2,90	1,20		1,5	2		2		1,94

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

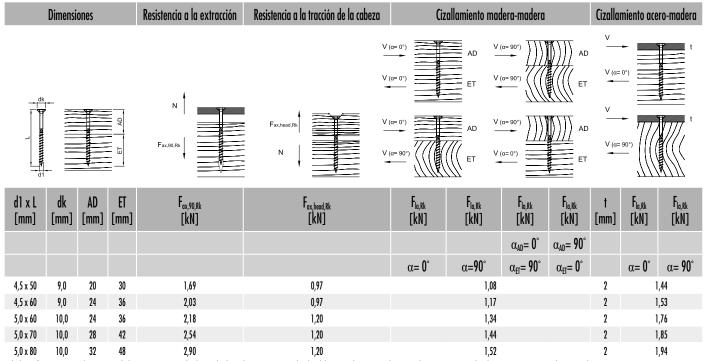
duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_{dk}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Eiemplo

Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$

 $\text{La capacidad de carga de la conexión se considera probada } \overrightarrow{si} \ \overrightarrow{R_d} \geq \overrightarrow{E_d}. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \ / \ k_{mod}$


Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

o'Los valores característicos de la capacidad de carga Rk no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga Rk deben reducirse con respecto a la clase de utilización y a la clase

INFORMACIÓN TÉCNICA PANELTWISTEC ENCINTADO, ACERO INOXIDABLE ENDURECIDO

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : R_l = R_k · k_{mod} / γ_{tk} . Los valores nominales de la capacidad de carga R_k deben compararse con los valores de cálculo de los efectos E_k ($R_k \ge E_k$).

Eiemplo

Valor característico para efecto permanente (carga muerta) G_k= 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k= 3,00 kN. k_{mod}= 0,9. γ_M= 1,3.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacidad de carga de la conexión se considera probada si Rd \geq Ed. \longrightarrow min Rk= Rd \cdot γ_{M} / k_{mod}

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Comparación con los valores de la tabla}$

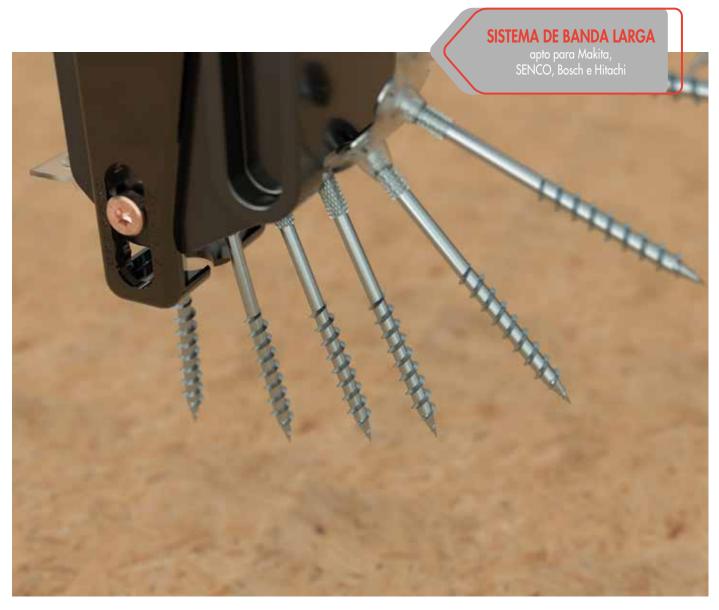
Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

TORNILLO UNIVERSAL PARA LA CONSTRUCCIÓN EN MADERA

Tornillo encintado para construcciones con marcos de madera y madera maciza

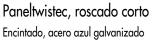
HBS

Encintado, acero azul galvanizado

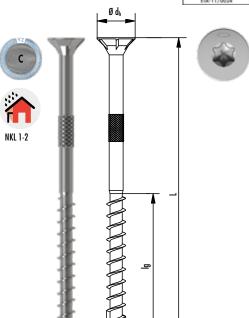

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
945080	4,2	41	7,5	30	PH 2	1000
945081	4,2	55	7,5	30	PH 2	1000

VENTAJAS

- · Uso universal
- · Aplicación rápida gracias al encintad
- · Agarre óptimo al área de aplicación gracias a las ranuras bajo la cabeza
- · Las nervaduras de fresado en la cabeza avellanada evitan el astillado de la madera durante el atornillado


USO UNIVERSAL, P. EJ.

- · Para la fijación de placas de madera sobre subestructuras de madera
- · Para la fijación en la construcción de marcos de madera y de madera maciza


TORNILLOS ENCINTADOS

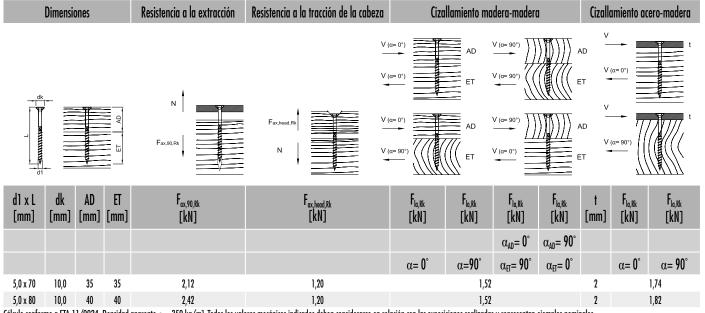
Sistema Holzher

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Uds./cinta	Bobina/caja
905638	5,0	70	10,0	35	TX20 •	125	5
905642	5,0	80	10,0	40	TX20 -	125	5

VENTAJAS

- La longitud de rosca más corta permite el montaje a presión de piezas de montaje más robustas
- · Resistente a los esfuerzos mecánicos
- · La ranura raspadora proporciona un atornillado rápido y sencillo

APLICACIÓN


 Para construcciones portantes de madera entre componentes de madera maciza estructural, madera laminada encolada, placas de OSB y madera de chapa laminada

El Paneltwistec encintado permite un atornillado de forma rápida y sencilla en aplicaciones madera-madera utilizando un atornillador con cargador.

INFORMACIÓN TÉCNICA PANELTWISTEC ENCINTADO, ACERO AZUL GALVANIZADO

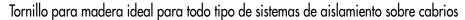
Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mt}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

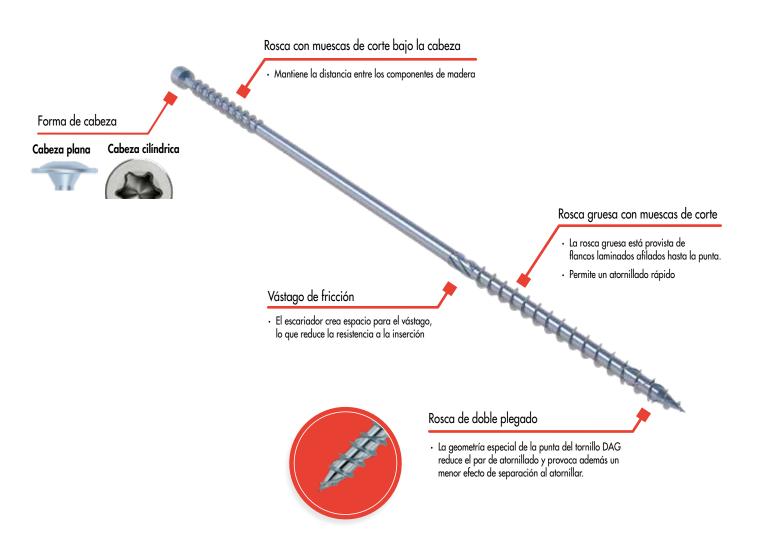
Ejemplo:

Valor característico para efecto permanente (carga muerta) G_k = 2,00 kN y acción variable (por ejemplo, carga de nieve) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.


 \rightarrow Valor nominal del efecto $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

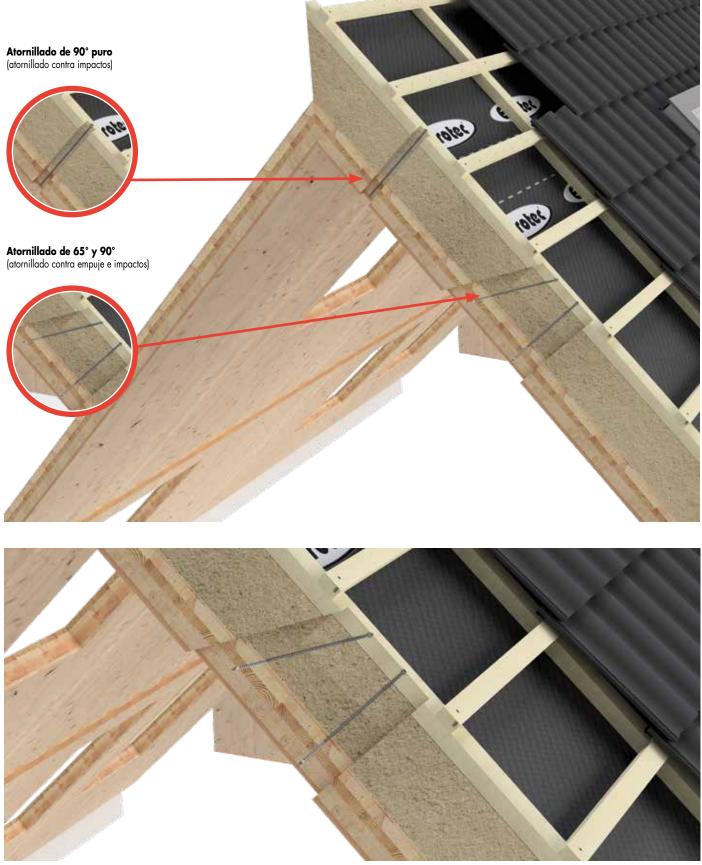
 $\text{La capacidad de carga de la conexión se considera probada si } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

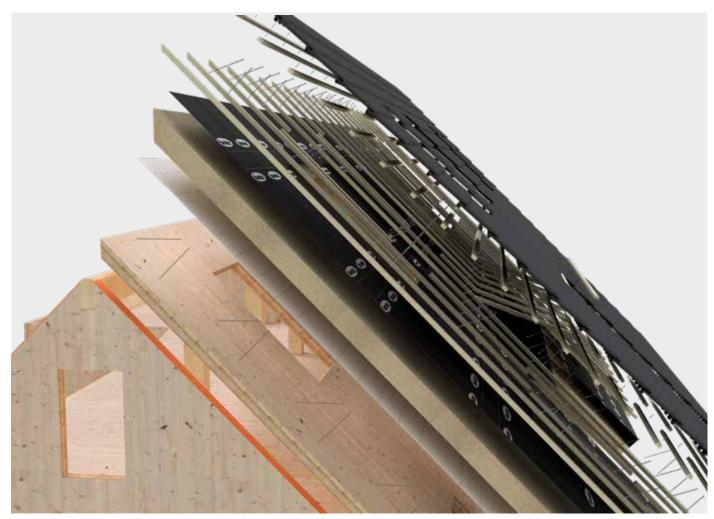
Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla}$


Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

TORNILLO PARA LA CONSTRUCCIÓN DE TECHOS TOPDUO

Con el tornillo para la construcción de techos pueden fijarse aislamientos sobre cabrios tanto resistentes como no resistentes a la presión. La alta resistencia a la extracción de las dos maderas de conexión hace que el Topduo también sea interesante para muchas otras aplicaciones en la construcción con madera. El tornillo dispone de una rosca doble y está disponible con cabezas plana y cilíndrica.



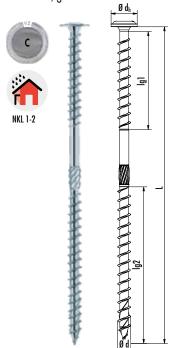


POSIBILIDADES DE ATORNILLADO

El Topduo es adecuado para aislamientos resistentes (≥ 50 kPa) y no resistentes a la presión.

Para más información sobre la resistencia a la presión $O_{10\%}$ consulte la ficha de datos del producto del fabricante del aislante .

Estructura de techo con Topduo

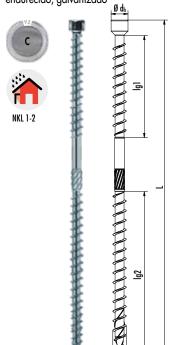

Estructura de fachada con Topduo

TORNILLO PARA LA CONSTRUCCIÓN DE TECHOS TOPDUO

Tornillo para madera ideal para todo tipo de sistemas de aislamiento sobre cabrios

Tornillo para la construcción de techos Topduo

Cabeza plana, acero al carbono endurecido, galvanizado



N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/lg2[mm]	Accionamiento	Cantidad
945870	8,0	165	16,0	60/66	TX40 •	50
945871	8,0	195	16,0	60/95	TX40 •	50
945813	8,0	225	16,0	60/95	TX40 •	50
945814	8,0	235	16,0	60/95	TX40 •	50
945815	8,0	255	16,0	60/95	TX40 •	50
945816	8,0	275	16,0	60/95	TX40 •	50
945817	8,0	302	16,0	60/95	TX40 •	50
945818	8,0	335	16,0	60/95	TX40 •	50
945819	8,0	365	16,0	60/95	TX40 •	50
945820	8,0	397	16,0	60/95	TX40 •	50
945821	8,0	435	16,0	60/95	TX40 •	50
945843	8,0	472	16,0	60/95	TX40 •	50

Tornillo para la construcción de techos Topduo

Cabeza cilíndrica, acero al carbono endurecido, galvanizado

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1 / lg2 [mm]	Accionamiento	Cantidad
946027	8,0	165	10,0	60/95	TX40 •	50
946028	8,0	195	10,0	60/95	TX40 •	50
945956	8,0	225	10,0	60/95	TX40 •	50
945965	8,0	235	10,0	60/95	TX40 •	50
945957	8,0	255	10,0	60/95	TX40 •	50
945958	8,0	275	10,0	60/95	TX40 •	50
945960	8,0	302	10,0	60/95	TX40 •	50
945961	8,0	335	10,0	60/95	TX40 •	50
945962	8,0	365	10,0	60/95	TX40 •	50
945963	8,0	397	10,0	60/95	TX40 •	50
945964	8,0	435	10,0	60/95	TX40 •	50

Topduo con cabeza plana para la fijación de material aislante

DETERMINACIÓN DE CANTIDADES PARA TORNILLO PARA LA CONSTRUCCIÓN DE TECHOS TOPDUO MATERIALES AISLANTES ESTÁTICAMENTE NO RESISTENTES A LA PRESIÓN CON $\Sigma_{10\%}$ < 50 KPA

Ejemplo de cálo	Ejemplo de cálculo para los supuestos mencionados, el cálculo específico del proyecto puede producir resultados mucho más favorables														
Número de tor	Número de tornillos Topduo por m²														
	Espesor del aislante	40	60	80	100	120	140	140	160	180	200	220	240	260	280
Espesor del encofr	ado (sobre cabrios)	24	24	24	24	24	-	24	24	24	24	24	24	24	24
Dimension	es Topduo TK o ZKª)	8 x 165 ^{b)}	8 x 195 ^{b)}	8 x 225	8 x 235	8 x 255	8 x 275	8 x 302	8 x 335	8 x 335	8 x 365	8 x 365	8 x 397	8 x 435	8 x 435
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Zona de nevadas 2°c)	$0^{\circ} \leq DN \leq 10^{\circ}$	2,20	2,20	2,38	2,38	2,38	2,38	2,38	2,29	2,29	2,48	3,01	3,57	4,08	4,76
Zona de viento 4 ^{d)} Altura sobre el nivel	$10^{\circ} < \text{DN} \leq 25^{\circ}$	2,38	2,38	2,60	2,60	2,60	2,60	2,60	2,60	2,60	3,17	3,81	4,40	e)	e)
del mar	$25^{\circ} < \text{DN} \leq 40^{\circ}$	2,72	2,72	3,01	3,01	3,01	3,01	3,01	3,01	3,01	3,57	4,40	5,19	e)	e)
≤ 285 m	$40^{\circ} < \text{DN} \leq 60^{\circ}$	2,86	3,01	3,17	3,17	3,36	3,36	3,36	3,36	3,36	3,57	4,40	5,19	e)	e)
Zona de nevadas 3 ^{f)}	$0^{\circ} \leq DN \leq 10^{\circ}$	1,79	1,79	1,97	2,04	2,04	2,04	2,04	2,12	2,60	3,81	4,40	5,19	e)	e)
Zona de viento 2g) Altura sobre el nivel	$10^{\circ} < \text{DN} \leq 25^{\circ}$	2,29	2,29	2,48	2,60	2,60	2,60	2,60	2,72	3,36	4,76	e)	e)	e)	e)
del mar	$25^{\circ} < \text{DN} \leq 40^{\circ}$	2,38	2,48	2,72	2,72	2,72	2,86	2,86	2,86	3,57	5,19	e)	e)	e)	e)
≤ 600 m	$40^{\circ} < \text{DN} \leq 60^{\circ}$	2,60	2,60	2,86	2,86	2,86	2,86	2,86	3,01	3,57	5,19	e)	e)	e)	e)

a) Indicación de cantidades siempre relativa al valor menos favorable de Topduo Cabeza plana y Cabeza cilindrica

Otros supuestos:

Cálculo con software de cálculo ECS según ETA 11/0024; ángulo de atornillado 65°; tejado de dos vertientes; altura máx. de cumbrera sobre el nivel del suelo 18 m; densidad aparente aislante 1,50 kN/m²; cabrios C24 8/≥12 cm, contralistón C24 4/6 cm; distancia al eje de cabrios 0,70 m; tara de tejado 0,55 kN/m²; sistema de recolección de nieve existente, determinación de cantidades en función de la fuerza del impacto del viento según el sector más desfavorecido del tejado. Todos los valores indicados deben considerarse en relación con las suposiciones realizadas. Por lo tanto, representan ejemplos de cálculo y su aplicación está sujeta a errores tipográficos o de impresión.

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

DETERMINACIÓN DE CANTIDADES PARA TORNILLO PARA LA CONSTRUCCIÓN DE TECHOS TOPDUO MATERIALES AISLANTES ESTÁTICAMENTE RESISTENTES A LA PRESIÓN CON $\Sigma_{10\%}$ < 50 KPA

Ejemplo de cálo	Ejemplo de cálculo para los supuestos mencionados, el cálculo específico del proyecto puede producir resultados mucho más favorables														
Número de tornillos Topduo por m ²															
	Espesor del aislante	40	60	80	100	120	140	160	180	200	220	240	260	280	300
Espesor del encofr	ado (sobre cabrios)	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Dimension	es Topduo TK o ZKº)	8 x 195 ^{b)}	8 x 225	8 x 235	8 x 255	8 x 275	8 x 302	8 x 335	8 x 335	8 x 365	8 x 365	8 x 397	8 x 435	8 x 435	8 x 472 ^{b)}
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Zona de nevadas 2°c)	$0^{\circ} \leq DN \leq 10^{\circ}$	1,96	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,12	1,80	2,40	2,32
Zona de viento 4 ^{d)} Altura sobre el nivel	$10^{\circ} < \text{DN} \leq 25^{\circ}$	2,11	2,05	1,97	1,94	1,97	1,90	1,85	2,14	2,01	2,74	2,57	2,38	3,23	2,93
del mar	$25^{\circ} < \text{DN} \leq 40^{\circ}$	2,48	2,41	2,28	2,35	2,41	2,35	2,18	2,67	2,49	3,48	3,22	2,96	4,42	3,79
≤ 285 m	$40^{\circ} < DN \leq 60^{\circ}$	2,31	2,30	2,56	2,65	2,74	2,65	2,42	2,96	2,74	4,00	3,70	3,48	4,87	4,47
Zona de nevadas 3 ^{f)}	$0^{\circ} \leq DN \leq 10^{\circ}$	2,65	2,54	2,39	2,34	2,26	2,23	2,34	2,34	2,16	2,46	2,32	2,19	2,86	2,65
Zona de viento 29) Altura sobre el nivel	$10^{\circ} < \text{DN} \leq 25^{\circ}$	4,04	3,81	3,55	3,33	3,33	3,15	3,15	2,99	2,99	3,66	3,37	3,06	4,37	3,74
del mar	$25^{\circ} < \text{DN} \leq 40^{\circ}$	4,46	4,16	3,84	3,58	3,58	3,58	3,37	3,37	3,37	4,67	4,20	3,92	e)	e)
≤ 400 m	$40^{\circ} < DN \leq 60^{\circ}$	3,55	3,26	3,26	3,26	3,44	3,26	2,96	3,66	3,44	e)	4,67	4,27	e)	e)

a) Indicación de cantidades siempre relativa al valor menos favorable de Topduo Cabeza plana y Cabeza cilindrica

Otros supuestos:

Cálculo con software de cálculo ECS según ETA 11/0024, ángulo de atornillado tornillo contra empuje del tejado 65°/tornillo contra la fuerza del impacto del viento 90°; tejado de dos vertientes; altura máx. de cumbrera sobre el nivel del suelo 18 m; densidad aparente aislante 1,50 kN/m²; cabrios C24 8/≥12 cm; contralistón C24 4/6 cm; distancia al eje de cabrios 0,70 m; tara de tejado 0,55 kN/m²; sistema de recolección de nieve existente, determinación de cantidades en función de la fuerza del impacto del viento según el sector más desfavorecido del tejado.

Todos los valores indicados deben considerarse en relación con las suposiciones realizadas. Por lo tanto, representan ejemplos de cálculo y su aplicación está sujeta a errores tipográficos o de impresión.

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

b) Solo Topduo Cabeza plana, c) Incluye zona de nevadas 1, 2 y 2*, d) Incluye todas las zonas de viento, a excepción de islas del Mar del Norte

e) Se recomienda el uso de nuestro servicio de cálculo específico para proyectos Los ejemplos de cálculo mencionados aquí representan situaciones desfavorables, es decir, estáticamente seguras.

f) Incluye zona de nevadas 1, 2 y 3, g) Incluye zona de viento 1 y 2 (sin salida al mar)

b) Solo Topduo Cabeza plana, c) Incluye zona de nevadas 1, 2 y 2* con sistema de recolección de nieve, d) Incluye todas las zonas de viento, a excepción de islas del Mar del Norte

e) Se recomienda el uso de nuestro servicio de cálculo específico para proyectos Los ejemplos de cálculo mencionados aquí representan situaciones desfavorables, es decir, estáticamente seguras.

f) Incluye zona de nevadas 1, 2 y 3, g) Incluye zona de viento 1 y 2 (sin salida al mar)

Aislamiento sobrepuesto según ETA-11/0024

Por teléfono 02331/6245-444 · Por fax 02331 6245-200 · Por correo electrónico c

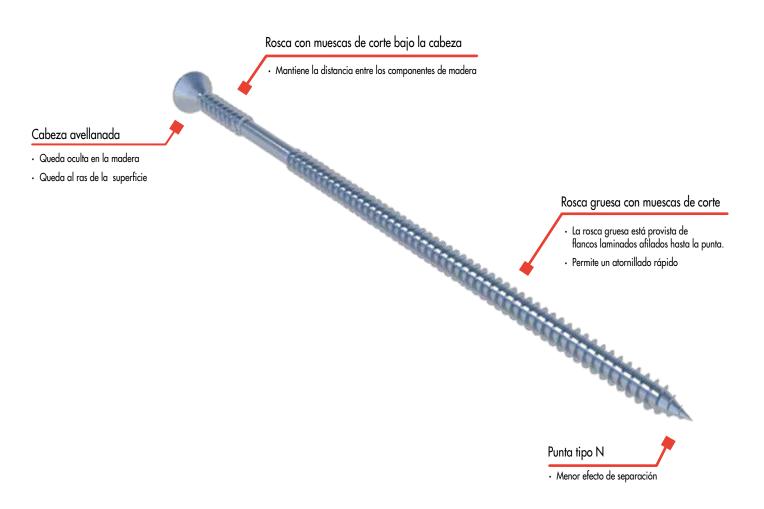
Póngase en contacto con nuestro departamento técnico o use el servicio gratuito Servicio de diseño en el área de servicio en nuestra página de inicio: https://www.eurotec.team/es/servicio

Comerciantes:	_	Ejecutor:
Persona de contacto:	_	Persona de contacto:
Correo electrónico:	_	Teléfono:
Proyecto de construcción:	_	Correo electrónico:
Datos sobre el proyecto de construcción		
☐ Tejado a una sola agua ☐ Tejado a dos aguas ☐ Tejado a	cuatro	
Longitud del edificio lado del canalón:	_ m	Ancho del fronton Longitud del lado del clero
Ancho del frontón:	_ m	Ancho del contralistón: n
Longitud de cabrios: (indicación facultativa)	_ m	Altura del contralistón: n (mínimo 40 mm)
Altura de la cumbrera: (sobre el terreno)	_ m	Longitud del contralistón: [longitud de las piezas de contralistón realmente montadas]
Saliente de tejado: Alero /Canalón (la determinación de la cantidad se lleva a cabo para la completa superficie de tejado		Carga de la cubierta de tejado y ripia:
Inclinación del tejado: Tejado principal /A cuatro aguas	0	☐ Cubierta de reborde vertical metálica 0,35 kN/n
		☐ Teja de cemento, tejas 0,55 kN/n
Nombre de producto Aislamiento: (Designación del fabricante del producto aislante)	_	☐ Teja plana doble/corona 0,75 kN/n
Grosor del aislamiento:	_ mm	o kN/r
Ancho de los cabrios:	_ mm	Código postal del proyecto: (para determinar la zona de carga de viento y nieve)
Altura de los cabrios:	_ mm	Carga de nieve característica en el suelo sk:kN/r (sólo para municipios con normativa especial)
distancia entre cabios:	_ mm	Elevación del terreno S.N.M: n
Grosor del encofrado:	_ mm	¿Se ha previsto una rejilla para captar la nieve? □ Sí □ No
Elección de tornillo		

^{**}Solo para materiales aislantes con resistencia a la presión 50 kPa

^{** *}También para materiales aislantes no resistentes a la presión

TORNILLO DE SISTEMA BLUE-POWER

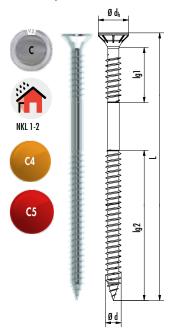

Para la fijación de subestructuras de madera sobre hormigón o mampostería

El sistema sistema de fijación de fachadas Blue-Power

ofrece una solución eficiente para la fijación rápida de subestructuras de madera sobre hormigón o mampostería. Los tornillos del sistema soportan fácilmente las fuerzas de tracción y transversales, especialmente en aplicaciones sobre aislamiento de fachadas.

El material aislante absorbe parte de las fuerzas transversales y requiere una resistencia a la compresión de al menos 50 kPa al 10 % de compresión. Para una máxima estabilidad, la sección transversal del listón de soporte C24 debe ser de al menos 30 x 50 mm.

El sistema es resistente a la corrosión según EN 12944-6 en C4 largo y C5-M largo, apto para las clases de utilización 1 y 2 según EN 1995-1-1. Resiste los esfuerzos mecánicos, pero no es adecuado para maderas que contengan tanino. Gracias a la instalación sin tacos y a los cortos tiempos de instalación, el sistema de fijación de fachadas Blue-Power es una solución pragmática para proyectos de construcción eficientes.

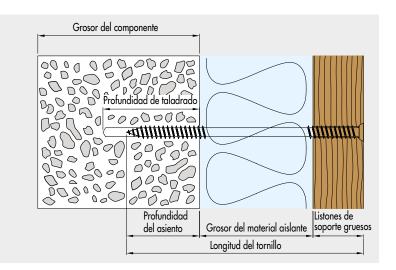


TORNILLO DE SISTEMA BLUE-POWER

Para la fijación de subestructuras de madera sobre hormigón o mampostería

Tornillo de sistema Blue-Power

Cabeza avellanada, acero al carbono endurecido, revestimiento a base de cinc



N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/lg2[mm]	Accionamiento	Cantidad
110390	7,5	180	14,5	45/125	TX40 •	100
110391	7,5	200	14,5	45/125	TX40 •	100
110392	7,5	220	14,5	45/145	TX40 •	100
110393	7,5	240	14,5	45/145	TX40 •	100
110394	7,5	260	14,5	45/145	TX40 •	100
110395	7,5	280	14,5	45/145	TX40 •	100
110396	7,5	300	14,5	45/145	TX40 •	100
110397	7,5	320	14,5	45/145	TX40 •	100
110398	7,5	340	14,5	45/145	TX40 •	100
110399	7,5	360	14,5	45/145	TX40 •	100
110400	7,5	380	14,5	45/145	TX40 •	100
110401	7,5	400	14,5	45/145	TX40 •	100
110404	7,5	450	14,5	45/145	TX40 •	100
110407	7,5	500	14,5	45/145	TX40 •	100

MONTAJE

- 1 Pretaladrar el listón de soporte a 6,5 mm
- 2 Pretaladrar el sustrato
- Colocar el tornillo de sistema Blue-Power en el sustrato a través del listón de soporte

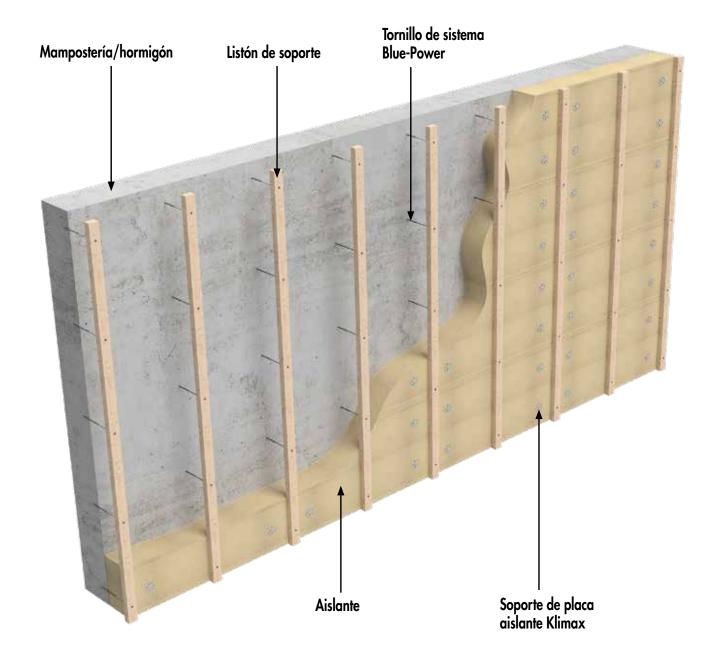
VALORES ESTÁTICOS

Sustrato	Ø de broca para el sustrato [mm]	mín. profundidad de taladrado [mm]	mín. profundidad de colocación del tornillo [mm]	Procedimiento de perforación ^{a)}	mín. espesor del componente [mm]	mín. distancia al borde [mm]	mín. distancia entre ejes [mm]	Capacidad de carga de tracción car. N _{Rk} ^{b)} [kN]	Capacidad de carga transversal car. V _{RK} [kN]
Hormigón C20/25	6,0	70	50	Н	100	50	100	2,5	0,75
Ladrillo	6,0	70	50	Н	115	50	100	3,5	0,6
Ladrillo silicocalcáreo macizo	6,0	70	50	H	115	50	100	3,5	0,5
Hormigón celular	5,0	85	70	D	115	50	100	0,9	0,3
Ladrillo silicocalcáreo perforado	5,0	85	70	D	115	50	100	2,0	0,6
Ladrillo perforado	6,5	140	120	D	175	50	100	0,5	0,4
Madera	c)	c)	50	D	60	25	100	d)	d)

a) H= perforación con martillo, D= perforación rotatoria

d) Debe ser dimensionado conforme a EN 1995-1-1:2010-12.

		Para espesores de aislante de hasta ^{a)}							
N.º de art.:	Hormigón, ladrillo de mampostería y ladrillo macizo de arenisca calcárea [mm]º)	Hormigón poroso y ladrillo perforado de arenisca calcárea	Ladrillo perforado [mm] ^{o)}						
110390	100	80	30						
110391	120	100	50						
110392	140	120	70						
110393	160	140	90						
110394	180	160	110						
110395	200	180	130						
110396	220	200	150						
110397	240	220	170						
110398	260	240	190						
110399	280	260	210						
110400	300	280	230						
110401	320	300	250						
110404	340	320	270						
110407	360	340	290						

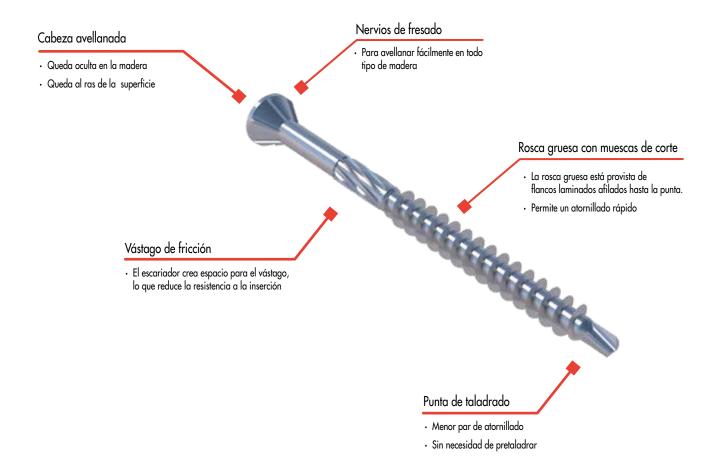

a) para un espesor de listón de soporte de 30 mm

Longitud del tornillo ≥ mín. profundidad de colocación + espesor del aislante + espesor del listón de soporte

b) La resistencia a la tracción de la cabeza car. Fax, head, sid en el listón de soporte se deberá tener en cuenta. Fax, head, sid (px 350)= 1,45 kN. El listón de soporte se debe pretaladrar a 6,5 mm.

c) El sustrato hecho de madera no necesita pretaladrado.

ESTRUCTURA ESQUEMÁTICA


HOBOTEC

Acero galvanizado y acero inoxidable endurecido

Los tornillos Hobotec permiten una unión madera-madera sencilla, rápida y limpia. Estos tornillos son especialmente adecuados en aplicaciones donde el riesgo de formación de grietas y aberturas es elevado. La novedosa rosca y la innovadora punta de taladrado garantizan un asiento limpio, así como unos valores altos de resistencia a la extracción. Los tornillos Hobotec están disponibles en acero endurecido y en acero galvanizado.

Hobotec cabeza avellanada Acero inoxidable endurecido

VENTAJAS

- · Sin necesidad de pretaladrar
- · Sin agrietamiento ni rajaduras en bordes
- · Atornillado firme gracias a su huella TX

N° de art.	Medidas [mm]	Huella	Cantidad
903323	4,0 x 30	TX15 ◆	500
110299	4,0 x 40	TX15 ●	500
110300	4,0 x 45	TX15 ●	500
110301	4,0 x 50	TX15 ●	500
110302	4,0 x 60	TX15 ●	500
110319	4,5 x 40	TX20 •	200
944839	4,5 x 45	TX20 •	200
110303	4,5 x 50	TX20 •	200
110304	4,5 x 60	TX20 •	200
110305	4,5 x 70	TX20 •	200
110306	4,5 x 80	TX20 •	200
110307	5,0 x 50	TX25 ●	200
110308	5,0 x 60	TX25 ●	200
110309	5,0 x 70	TX25 ●	200
110310	5,0 x 80	TX25 ●	200
110311	5,0 x 90	TX25 ●	200
110312	5,0 x 100	TX25 ●	200
110313	6,0 x 80	TX25 ●	100
110314	6,0 x 90	TX25 ●	100
110315	6,0 x 100	TX25 ●	100
110316	6,0 x 120	TX25 ●	100
110317	6,0 x 140	TX25 ●	100
110318	6,0 x 160	TX25 •	100

Hobotec cabeza ornamental Acero inoxidable endurecido

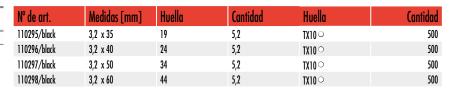
APLICACIÓN

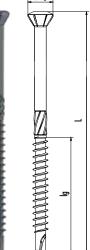
- Fachadas
- Vallados
- Terrazas

Atención:

Los tornillos con $\emptyset = 3,2$ mm no están regulados según ETA, sino según EN 14592.

N° de art.	Medidas [mm]	Huella	Cantidad
900782	3,2 x 25*	TX10°	500
110294	3,2 x 30	01XT	500
110295	3,2 x 35	7X10 ○	500
110296	3,2 x 40	7X10○	500
110297	3,2 x 50	O1XT	500
110298	3,2 x 60	O1XT	500
945040	4,0 x 40	TX15 •	500
945653	4,0 x 45	TX15 •	500
945041	4,0 x 50	TX15 •	500
945042	4,0 x 60	TX15 •	500
945043	4,0 x 70	TX15 •	500
945044	4,0 x 80	TX15 •	500
945045	4,5 x 40	TX20 •	200
945046	4,5 x 45	TX20 •	200
945047	4,5 x 50	TX20 •	200
945048	4,5 x 60	TX20 •	200
945049	4,5 x 70	TX20 •	200
945050	4,5 x 80	TX20 •	200
945051	5,0 x 50/30	TX25 •	200
945052	5,0 x 60/36	TX25 •	200
945053	5,0 x 70/42	TX25 •	200
945054	5,0 x 80/48	TX25 •	200
945055	5,0 x 90/54	TX25 •	200
945056	5,0 x 100/60	TX25 •	200
*Sin las nervaduras de fresado			


Su tipo de rosca e innovadora punta de broca permiten un atornillado firme y prolijo, con elevados valores de arrancamiento. Particularmente adecuado para maderas frágiles. No apto no apto para maderas con alto contenido de taninos, como el cumarú, roble, merbau, robinia, etc.



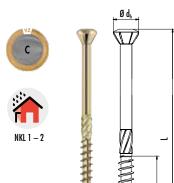
Hobotec cabeza ornamental

Rost

VENTAJAS:

- · La novedosa rosca y la innovadora punta de perforación permiten un ajuste limpio y altos valores de extracción
- · Especialmente adecuado para maderas quebradizas
- · No apto para maderas con alto contenido en taninos, como cumarú, roble, merbau, robinia, etc.

APLICACIÓN

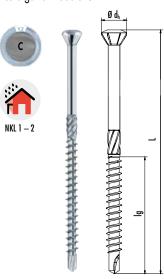

- · Listones de cobertura en construcción de fachadas
- Vallas
- · Listones en construcción de terrazas

Atención:

Los tornillos con \emptyset = 3,2 mm no están regulados según ETA, sino según EN 14592.

Hobotec cabeza ornamental Acero inoxidable endurecido

N° de art.	Medidas [mm]	Huella	Cantidad
110280	3,2 x 20*	TX10 O	500
110281	3,2 x 25*	TX10 O	500
110282	3,2 x 30	TX10 O	500
110283	3,2 x 35	TX10 O	500
110284	3,2 x 40	TX10 O	500
110285	3,2 x 50	TX10 O	500
110286	3,2 x 60	TX10 O	500
944778	4,2 x 70	TX15 ●	200
944779	4,2 x 80	TX15 ●	200

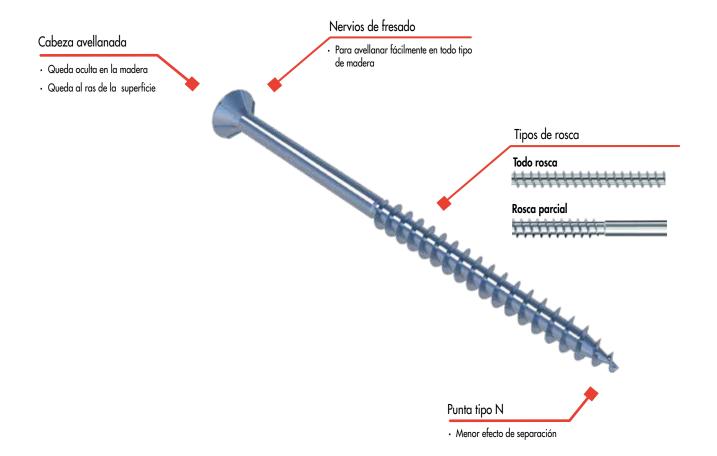

^{*} Sin las nervaduras de fresado

110 I			1		
№ de art.	Medidas [mm]	Huella	Cantidad	Huella	Cantidad
111494	4,0 x 30	21	7,7	TX15 •	1000
111495	4,0 x 35	24	7,7	TX15 •	1000
111496	4,0 x 40	26	7,7	TX15 •	1000
111497	4,0 x 45	28	7,7	TX15 •	500
111498	4,0 x 50	30	7,7	TX15 •	500
111499	4,0 x 60	36	7,7	TX15 •	200
111501	4,5 x 35	24	8,7	TX20 -	500
111502	4,5 x 40	26	8,7	TX20 •	500
111503	4,5 x 45	28	8,7	TX20 -	500
111504	4,5 x 50	30	8,7	TX20 -	500
111505	4,5 x 60	36	8,7	TX20 -	200
111506	4,5 x 70	42	8,7	TX20 •	200
111507	5,0 x 40	26	9,7	TX25 •	200
111508	5,0 x 50	30	9,7	TX25 •	200
111509	5,0 x 60	36	9,7	TX25 •	200
111510	5,0 x 70	42	9,7	TX25 •	200
111511	5,0 x 80	48	9,7	TX25 •	200
111512	5,0 x 90	54	9,7	TX25 •	200
903623	5,0 x 100	60	9,7	TX25 •	200
903117	6,0 x 80	48	11,7	TX25 •	200
903118	6,0 x 90	54	11,7	TX25 •	100
903119	6,0 x 100	60	11,7	TX25 •	100
903120	6,0 x 120	60	11,7	TX25 •	100
903121	6,0 x 140	70	11,7	TX25 •	100
903122	6,0 x 160	70	11,7	TX25 •	100

Hobotec cabeza ornamental Acero galvanizado azul

N° de art.	Medidas [mm]	Huella	Cantidad	Huella	Cantidad
110287	3,2 x 20*	Todo rosca	5,2	TX10 °	500
110288	3,2 x 25*	Todo rosca	5,2	TX10 o	500
110289	3,2 x 30	17,5	5,2	TX10 o	500
110290	3,2 x 35	19	5,2	TX10 o	500
110291	3,2 x 40	24	5,2	TX10 o	500
110292	3,2 x 50	34	5,2	TX10 o	500
110293	3,2 x 60	44	5,2	TX10 o	500
w110288**	3,2 x 25*	Todo rosca	5,2	TX10 o	500
w110289**	3,2 x 30	17,5	5,2	TX10 o	500
w110290**	3,2 x 35	19	5,2	TX10 o	500
w110291**	3,2 x 40	24	5,2	TX10 o	500
w110292**	3,2 x 50	34	5,2	TX10 o	500
w110293**	3,2 x 60	44	5,2	TX10 o	500

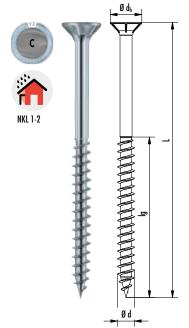
^{*}Sin las nervaduras de fresado **barnizado, blanco


Eurotec | EcoTec

ECOTEC

Tornillo para tablero de aglomerado para interiores

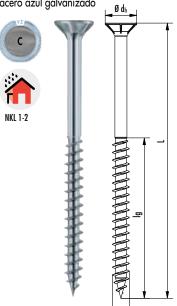
El tornillo para aglomerado EcoTec es un tornillo para la construcción en madera que se utiliza principalmente en interiores. Está disponible en acero al carbono galvanizado, endurecido y en A2. También está disponible con rosca parcial para una conexión forzada de varios componentes de madera, así como todo rosca para absorber grandes fuerzas de tracción y compresión.



Eurotec | EcoTec

EcoTec

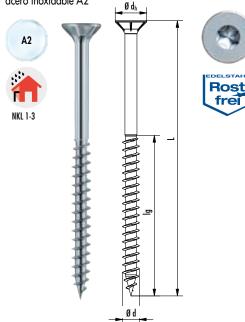
Tornillo para tablero de aglomerado, acero azul galvanizado


.º de art.	Ø d [mm]	L[mm]	lg [mm]	Accionamiento	Cantidad
3714	3,0	13	Todo rosca	TX10○	1000
3715	3,0	15	Todo rosca	TX10 o	1000
3716	3,0	20	Todo rosca	TX10 °	1000
3717	3,0	25	Todo rosca	TX10 o	1000
3718	3,0	30	Todo rosca	TX10 o	1000
3719	3,0	35	Todo rosca	TX10 o	1000
3720	3,0	40	23	TX10 °	1000
13721	3,0	45	23	TX10 o	1000
3722	3,5	12	Todo rosca	TX20 •	1000
3723	3,5	15	Todo rosca	TX20 •	1000
3724	3,5	20	Todo rosca	TX20 •	1000
3725	3,5	25	Todo rosca	TX20 •	1000
3726	3,5	30	Todo rosca	TX20 •	1000
3727	3,5	35	21	TX20 •	1000
3728	3,5	40	23	TX20 •	1000
3729	3,5	45	25	TX20 •	500
3730	3,5	50	30	TX20 •	500
3731	4,0	15	Todo rosca	TX20 •	1000
3732	4,0	20	Todo rosca	TX20 •	1000
3733	4,0	25	Todo rosca	TX20 •	1000
3734	4,0	30	Todo rosca	TX20 •	1000
3735	4,0	35	Todo rosca	TX20 •	1000
3736	4,0	40	23	TX20 •	1000
3737	4,0	45	25	TX20 -	500
3738	4,0	50	30	TX20 •	500
3739	4,0	60	39	TX20 -	200
13740	4,0	70	44	TX20 -	200
13783	4,0	80	44	TX20 -	200
13741	4,5	20	Todo rosca	TX20 -	500
13741	4,5	25	Todo rosca	TX20 -	500
13742		30	Todo rosca	TX20 -	500
	4,5	35			
3744	4,5		Todo rosca	TX20 -	500
13745	4,5	40	23	TX20 -	500
3746	4,5	45	25	TX20 -	500
3747	4,5	50	30	TX20 •	500
3748	4,5	60	39	TX20 •	200
3749	4,5	70	44	TX20 -	200
3750	4,5	80	44	TX20 •	200
3751	5,0	20	Todo rosca	TX20 •	500
3752	5,0	25	Todo rosca	TX20 •	500
3753	5,0	30	Todo rosca	TX20 •	500
3754	5,0	35	Todo rosca	TX20 •	500
3755	5,0	40	23	TX20 •	200
3756	5,0	45	25	TX20 •	200
3757	5,0	50	30	TX20 •	200
3758	5,0	60	39	TX20 •	200
3759	5,0	70	44	TX20 •	200
3760	5,0	80	44	TX20 •	200
3761	5,0	90	54	TX20 •	200
3762	5,0	100	54	TX20 •	200
3763	5,0	120	70	TX20 •	200
3764	6,0	40	Todo rosca	TX30 •	200
3765	6,0	50	Todo rosca	TX30 •	200
3766	6,0	60	39	TX30 •	200
3767	6,0	70	44	TX30 •	200
3768	6,0	80	44	TX30 •	200
	6,0	90	54	TX30 •	100

ATENCIÓN: Los tornillos con \emptyset = 3,0 mm no están regulados según ETA

EcoTec | Eurotec°

Tornillo para tablero de aglomerado, acero azul galvanizado g_{d_h}



N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903770	6,0	100	11,5	60	TX30 •	100
903771	6,0	120	11,5	70	TX30 •	100
903772	6,0	140	11,5	70	TX30 •	100
904540	6,0	160	11,5	70	TX30 •	100
904541	6,0	180	11,5	70	TX30 •	100
904542	6,0	200	11,5	70	TX30 •	100
904617	6,0	220	11,5	70	TX30 •	100
904618	6,0	240	11,5	70	TX30 •	100
904619	6,0	260	11,5	70	TX30 •	100
904620	6,0	280	11,5	70	TX30 •	100
904621	6,0	300	11,5	70	TX30 •	100

ATENCIÓN: Los tornillos con $\emptyset = 3,0$ mm no están regulados según ETA

EcoTec A2

Tornillo para tablero de aglomerado, acero inoxidable A2

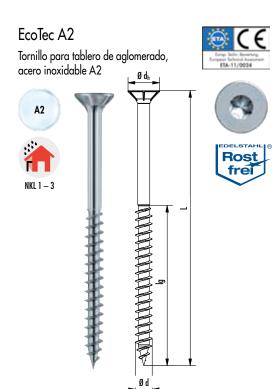
N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903680*	3,0	16	6,0	Todo rosca	TX100	500
903681*	3,0	20	6,0	Todo rosca	TX100	500
903682*	3,0	25	6,0	Todo rosca	TX100	500
903683*	3,0	30	6,0	18	TX100	500
903600*	3,0	35	6,0	Todo rosca	TX100	500
903684	3,5	16	7,0	Todo rosca	TX100	500
903685	3,5	20	7,0	Todo rosca	TX100	500
903686	3,5	25	7,0	Todo rosca	TX100	500
903775	3,5	30	7,0	18	TX100	500
903776	3,5	35	7,0	21	TX100	500
903777	3,5	40	7,0	23	TX100	200
903601	4,0	20	8,0	Todo rosca	TX20-	500
903602	4,0	25	8,0	Todo rosca	TX20°	500
903824	4,0	30	8,0	Todo rosca	TX20 -	500
903791	4,0	35	8,0	24	TX20 •	1000
903792	4,0	40	8,0	24	TX20 -	1000
903793	4,0	45	8,0	30	TX20 •	500
903794	4,0	50	8,0	30	TX20 -	500
903795	4,0	60	8,0	36	TX20 -	200
903796	4,0	70	8,0	42	TX20 -	200
903797	4,0	80	8,0	48	TX20 -	200
903836	4,5	20	9,0	Todo rosca	TX20 -	500
903837	4,5	25	9,0	Todo rosca	TX20 -	500
903838	4,5	30	9,0	Todo rosca	TX20 -	500
903839	4,5	35	9,0	Todo rosca	TX20 -	500
903840	4,5	40	9,0	23	TX20 -	500
903798	4,5	45	9,0	30	TX20 •	500
903799	4,5	50	9,0	30	TX20 -	500
903800	4,5	60	9,0	36	TX20 -	200
903801	4,5	70	9,0	42	TX20 -	200
903802	4,5	80	9,0	48	TX20 •	200
903841	5,0	40	10,0	23	TX25 •	500
903803	5,0	50	10,0	30	TX25 •	200
903804	5,0	60	10,0	36	TX25 •	200
903805	5,0	70	10,0	42	TX25 •	200
000007		00	100	40		000

*EcoTec A2 no regulado según ETA-11/0024.

5,0

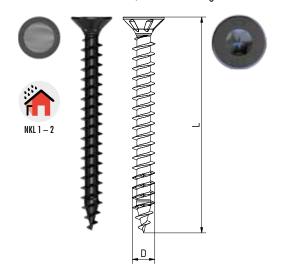
80

10,0


48

TX25 •

903806

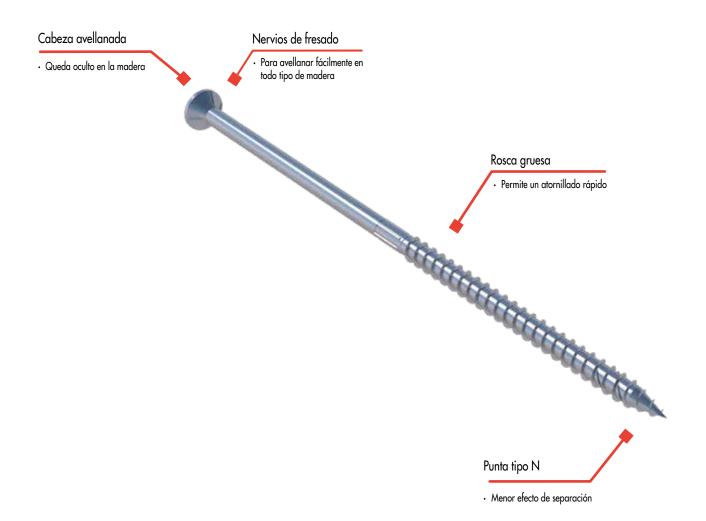

200

Eurotec | EcoTec

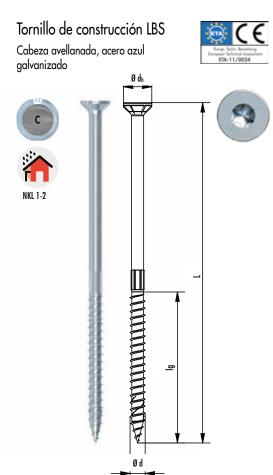
N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903807	5,0	90	10,0	54	TX25 •	200
903808	5,0	100	10,0	60	TX25 •	200
903809	5,0	120	10,0	70	TX25 •	200
903810	6,0	50	12,0	30	TX25 •	200
903811	6,0	60	12,0	36	TX25 •	200
903812	6,0	70	12,0	42	TX25 •	200
903813	6,0	80	12,0	48	TX25 •	200
903814	6,0	90	12,0	54	TX25 •	100
903815	6,0	100	12,0	70	TX25 •	100
903816	6,0	120	12,0	70	TX25 •	100
903817	6,0	140	12,0	70	TX25 •	100
903818	6,0	160	12,0	70	TX25 •	100
903825	6,0	180	12,0	70	TX25 •	100
903826	6,0	200	12,0	70	TX25 •	100

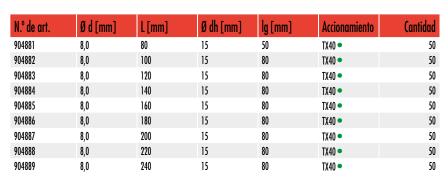
Eco-Black-Tec Tornillo para tableros aglomerados, acero al carbono endurecido, recubrimiento negro

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	Accionamiento	Cantidad
903715/BLACK	3,0	16	6,0	TX10 o	200
903716/BLACK	3,0	20	6,0	TX10 o	200
903717/BLACK	3,0	25	6,0	TX10 o	200
903718/BLACK	3,0	30	6,0	TX10 o	200
903723/BLACK	3,5	16	7,0	TX20 -	200
903724/BLACK	3,5	20	7,0	TX20 -	200
903725/BLACK	3,5	25	7,0	TX20 -	200
903726/BLACK	3,5	30	7,0	TX20 •	200
903695/BLACK	3,5	40	7,0	TX20 -	200
903731/BLACK	4,0	16	7,5	TX20 •	200
903732/BLACK	4,0	20	7,5	TX20 -	200
903733/BLACK	4,0	25	7,5	TX20 -	200
903734/BLACK	4,0	30	7,5	TX20 -	200
903735/BLACK	4,0	35	7,5	TX20 •	200
903696/BLACK	4,0	40	7,5	TX20 -	200
903697/BLACK	4,0	50	7,5	TX20 •	200
903698/BLACK	4,5	40	8,5	TX20 -	200
903699/BLACK	4,5	50	8,5	TX20 •	200
903702/BLACK	5,0	40	9,5	TX20 -	200
903789/BLACK	5,0	50	9,5	TX20 •	200



TORNILLO DE CONSTRUCCIÓN LBS


Tornillo para madera dura para fijar elementos de madera laminada de haya




El tornillo de construcción LBS Eurotec es un tornillo para madera con el que pueden unirse entre sí componentes de chapa de madera de haya o fijarse piezas de montaje de otras maderas, materiales de madera y acero. El tornillo de construcción LBS está previsto para el uso en construcciones portantes en las clases de uso 1 y 2. Gracias al recubrimiento deslizante optimizado resulta idóneo para el uso en madera dura. La geometría especial de la rosca y el par de rotura particularmente alto permiten colocar el tornillo sin pretaladrar.

Eurotec | Tornillo de construcción LBS

Tornillo de construcción LBS en chapa de madera de haya

INFORMACIÓN TÉCNICA TORNILLO DE CONSTRUCCIÓN LBS, CABEZA AVELLANADA, ACERO AZUL GALVANIZADO

	Dimensiones		Resistencia a la extracción	Resistencia a la tracción de la cabeza	Ciz	izallamiento madera-madera			Cizallamiento acero-madera		
		ET AD	N Fax,90,Rk	Fax,head,Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 90°)	AD ET AD	77.77	A	V -	(α= 0°)	
d1 x L [mm]	dk AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
							$\alpha_{AD} = 0^{\circ}$	α _{AD} = 90 °			
					$\alpha = 0^{\circ}$	α= 90 °	α_{ET} = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	15,0 40	40	9,60	9,93	9,58	8,37	9,58	8,37	3	9,58	8,37
8,0 x 100	15,0 40	60	14,40	9,93	9,66	8,46	9,66	8,46	3	10,78	9,57
80, x 120	15,0 40	80	19,20	9,93	9,66	8,46	9,66	8,46	3	11,98	10,77
8,0 x 140	15,0 60	80	19,20	9,93	9,66	8,46	9,66	8,46	3	11,98	10,77
8,0 x 160	15,0 80	80	19,20	9,93	9,66	8,46	9,66	8,46	3	11,98	10,77
8,0 x 180	15,0 100	80	19,20	9,93	9,66	8,46	8,46	9,66	3	11,98	10,77
8,0 x 200	15,0 120	80	19,20	9,93	9,66	8,46	8,46	9,66	3	11,98	10,77
8,0 x 220	15,0 140	80	19,20	9,93	9,66	8,46	8,46	9,66	3	11,98	10,77
8,0 x 240	15,0 160	80	19,20	9,93	9,66	8,46	8,46	9,66	3	11,98	10,77

Cálculo según valores de prueba para la obtención de una Evaluación Técnica Europea (ETA). Densidad aparente de chapa laminada de madera dura madera dura madera dura pk= 730 kg/m³ (sin pretaladrado). Todos los valores mecánicos indicados se deben considerar en función de las valoraciones hechas y representan ejemplos de cálculo. Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_d: R_d = R_k x k_{med} / γM. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d (R_d ≥ E_d).

Ejemplo:

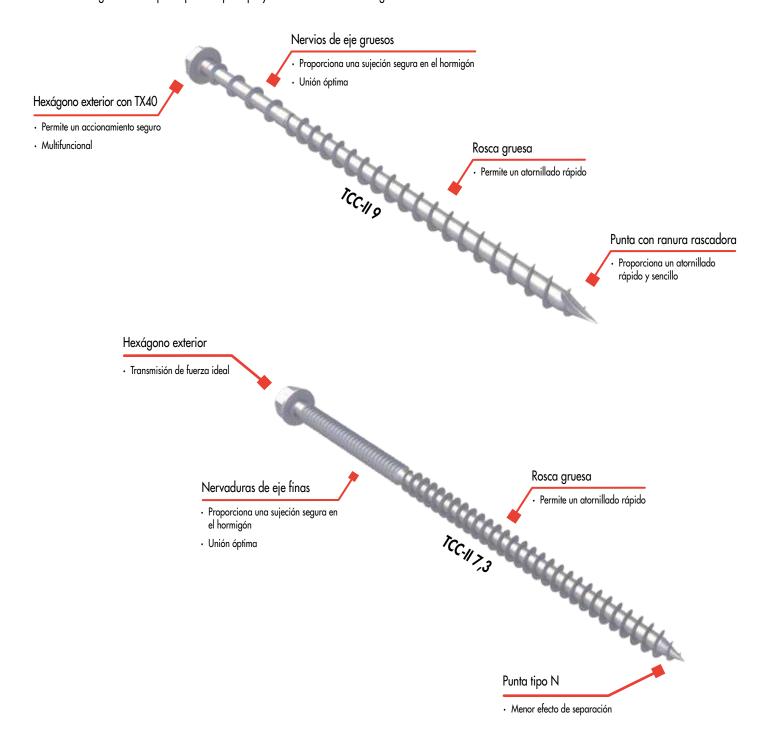
Valor característico para efecto permanente (carga muerta) $G_k = 2,00 \text{ kN}$ y acción variable (por ejemplo, carga de nieve) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= $\overline{7,20~kN}$.

La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.

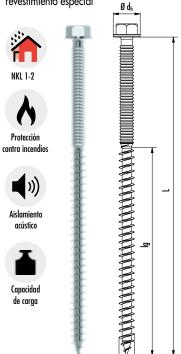
¿Los valores aquí mencionados son valores de prueba!

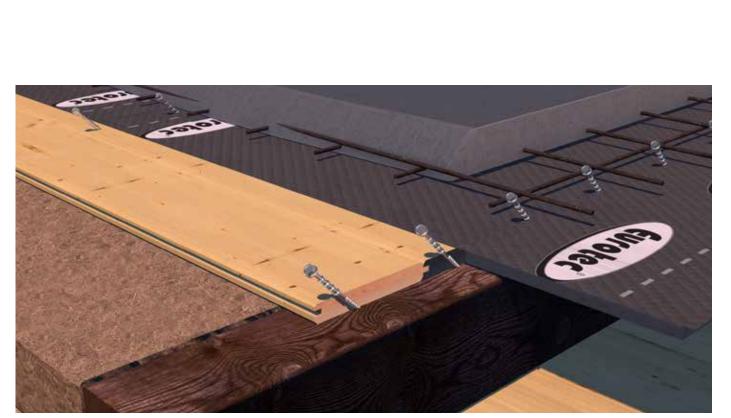

TORNILLO DE UNIÓN MADERA-HORMIGÓN

Para el refuerzo estructural de cubiertas de pisos en nuevas construcciones y renovaciones

Los proyectos de construcción con con grandes vanos y cargas útiles elevadas requieren un alto grado de rigidez.. Los techos de vigas de madera alcanzan aquí sus límites rápidamente. El innovador compuesto de madera y hormigón con tornillos de unión permite aprovechar eficazmente las mejores propiedades de la madera y el hormigón armado, lo que tiene como resultado una estructura resistente.

El sistema se utiliza en obra nueva para aumentar los vanos y en renovaciones de edificios con cambios de uso. Las ventajas son una mayor capacidad de carga, una mayor rigidez, un mejor aislamiento acústico y una mayor resistencia al fuego. La renovación se beneficia de la conservación de las vigas existentes y a menudo también del encofrado, lo que resulta ventajoso desde los puntos de vista económico y ecológico. El sistema de unión madera-hormigón es una opción pionera para proyectos de construcción exigentes.


Eurotec° | Tornillo de unión madera-hormigón


TCC-II 7,3

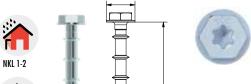
Hexágono exterior, acero al carbono, con revestimiento especial

N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
981841	7,3	150	12,7	98	Hexágono exterior	200

Techo HBV en detalle

TCC-II 9

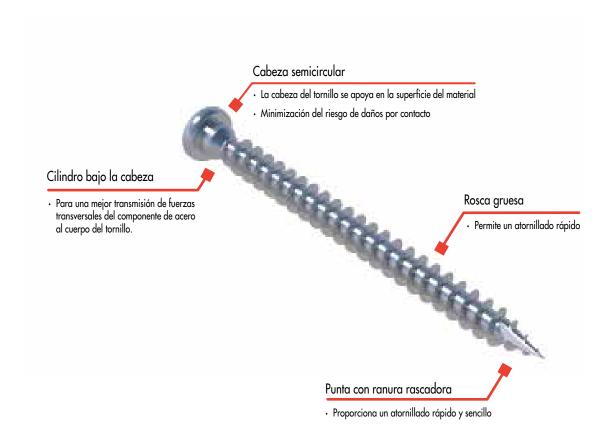
Protección


Aislamiento

Capacidad de carga

Hexágono exterior, acero al carbono, con revestimiento especial

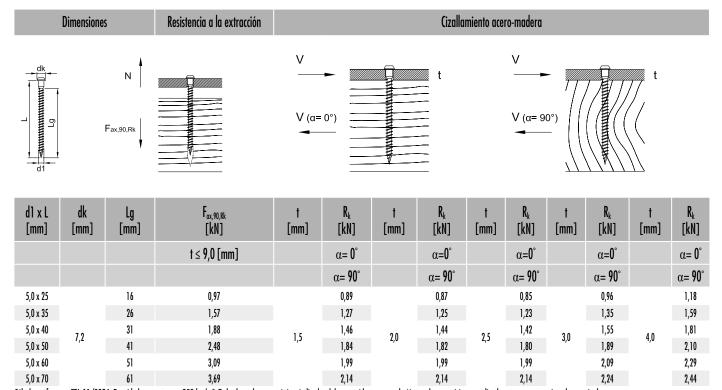
N.º de art.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Accionamiento	Cantidad
903592	9,0	180	15,5	125	TX40 •	200


Aislamiento acústico de impactos y pavimento en el techo HBV

TORNILLO PARA ESCUADRAS DE ÁNGULO (WBS)

Para un atornillado rápido y sencillo

El tornillo para escuadras de ángulo (WBS) está fabricado en acero al carbono endurecido y se ha diseñado especialmente para uniones entre chapa de acero y madera. El efecto de hendidura en la madera se reduce gracias a la geometría de la punta del tornillo. Además, entre otras cosas, el tornillo también se caracteriza por el vástago liso bajo la cabeza que permite la transferencia de carga durante el cizallamiento.



Eurotec | Tornillo para escuadras de ángulo

N.º de art.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Accionamiento	Cantidad
945343	5,0	25	16	7,2	TX20 •	250
945232	5,0	35	26	7,2	TX20 -	250
945241	5,0	40	31	7,2	TX20 •	250
945233	5,0	50	41	7,2	TX20 -	250
945344	5,0	60	51	7,2	TX20 •	250
945345	5,0	70	61	7,2	TX20 -	250

INFORMACIÓN TÉCNICA TORNILLO PARA ESCUADRAS DE ÁNGULO, ACERO AZUL GALVANIZADO

Cálculo conforme a ETA-11/0024. Densidad aparente ρ_k = 350 kg/m³. Todos los valores mecánicos indicados deben considerarse en relación con las suposiciones realizadas y representan ejemplos nominales.

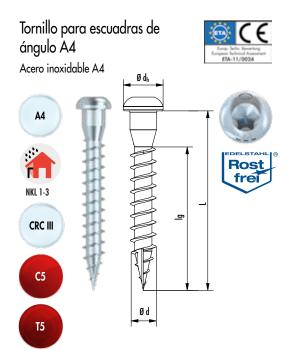
Todos los valores son valores mínimos calculados y están sujetos a errores tipográficos y de impresión.

a) Los valores característicos de la capacidad de carga R_k no deben equipararse a la acción máxima posible (fuerza máxima). Los valores característicos de la capacidad de carga R_k deben reducirse con respecto a la clase de utilización y a la clase de la duración de la carga a los valores nominales R_k : $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$. Los valores nominales de la capacidad de carga R_d deben compararse con los valores de cálculo de los efectos E_d ($R_d \ge E_d$).

Fiemnlo:

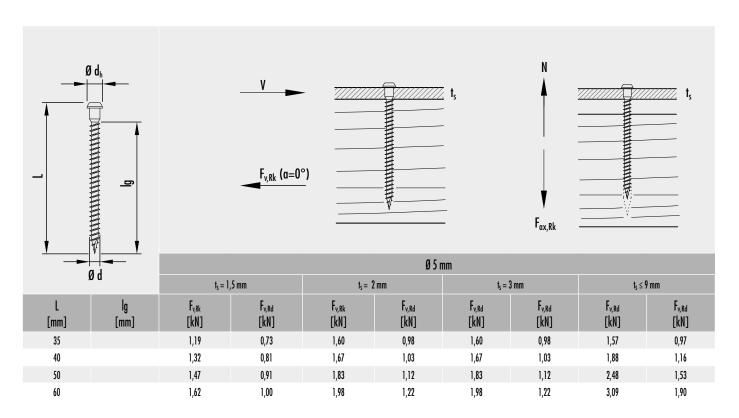
 $Valor\ característico\ para\ efecto\ permanente\ (carga\ muerta)\ G_k=2,00\ kN\ y\ acción\ variable\ (por\ ejemplo,\ carga\ de\ nieve)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{Nl}=1,3.$

 \rightarrow Valor nominal del efecto E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.


La capacidad de carga de la conexión se considera probada si $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

Es decir, el valor mínimo característico de la capacidad de carga se calcula como: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7.20 \text{ kN} \cdot 1.3/0, 9 = 10.40 \text{ kN} \rightarrow \text{Comparación con los valores de la tabla.}$

Atención: Se trata de ayudas a la planificación. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas.


Atención: Compruebe las suposiciones establecidad. Los valores, el tipo y el número de elementos de fijación proporcionados se basan en cálculos previos. Los proyectos deben ser dimensionados exclusivamente por personas autorizadas de acuerdo con el reglamento de la construcción del Land. Si desea un certificado de estabilidad con coste, contacte con un/a proyectista cualificado/a según el LBauO (reglamento de la construcción del Land). Estaremos encantados de proporcionarle un contacto.

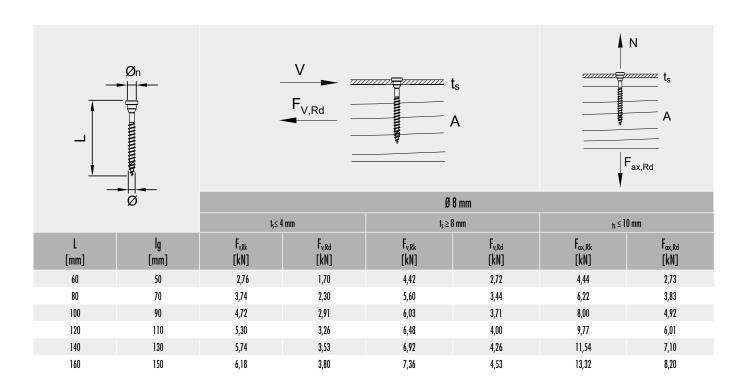
ArtNr.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Accionamiento	Cantidad
945621	5,0	35	26	7,2	TX20 •	250
945622	5,0	40	31	7,2	TX20 -	250
945623	5,0	50	41	7,2	TX20 •	250
945625	5,0	60	51	7,2	TX20 •	250

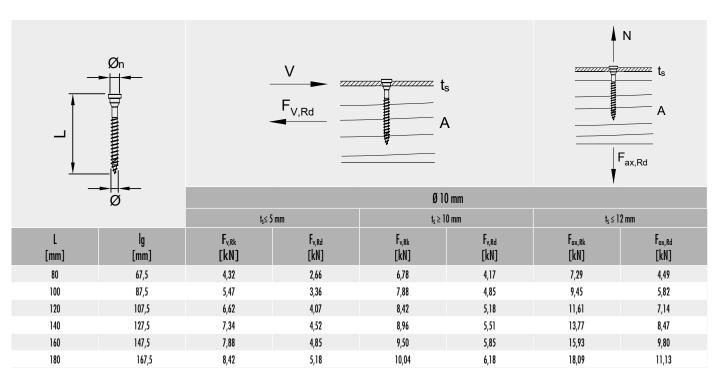
CAPACIDADES DE CARGA DE LOS TORNILLOS CON LONGITUDES MÍNIMAS REQUERIDAS

Calculado según ETA-11/0024 teniendo en cuenta agujeros no pretaladrados y una densidad de madera pk = 350 kg/m³. Los valores nominales Fizi se han calculado teniendo en cuenta k_{mod} = 0,8 y y_M = 1,3. Se considera chapa gruesa un espesor de chapa de acero ts ≥ 2,0 mm según ETA-11/0024. L es la longitud mínima del tornillo necesaria para alcanzar la respectiva capacidad de carga.

Tenga en cuenta lo siguiente: Se trata de ayudas a la planificación. Los proyectos solo pueden ser calculados por personas autorizadas.

Eurotec° | Tornillo para escuadras de ángulo


ArtNr.	Ød[mm]	L[mm]	lg [mm]	Ø dh [mm]	Accionamiento	Cantidad
945383	5,0	35	31	7,2	TX20 •	250
945384	5,0	40	36	7,2	TX20 -	250
945385	5,0	50	46	7,2	TX20 -	250
945386	5,0	60	56	7,2	TX20 -	250

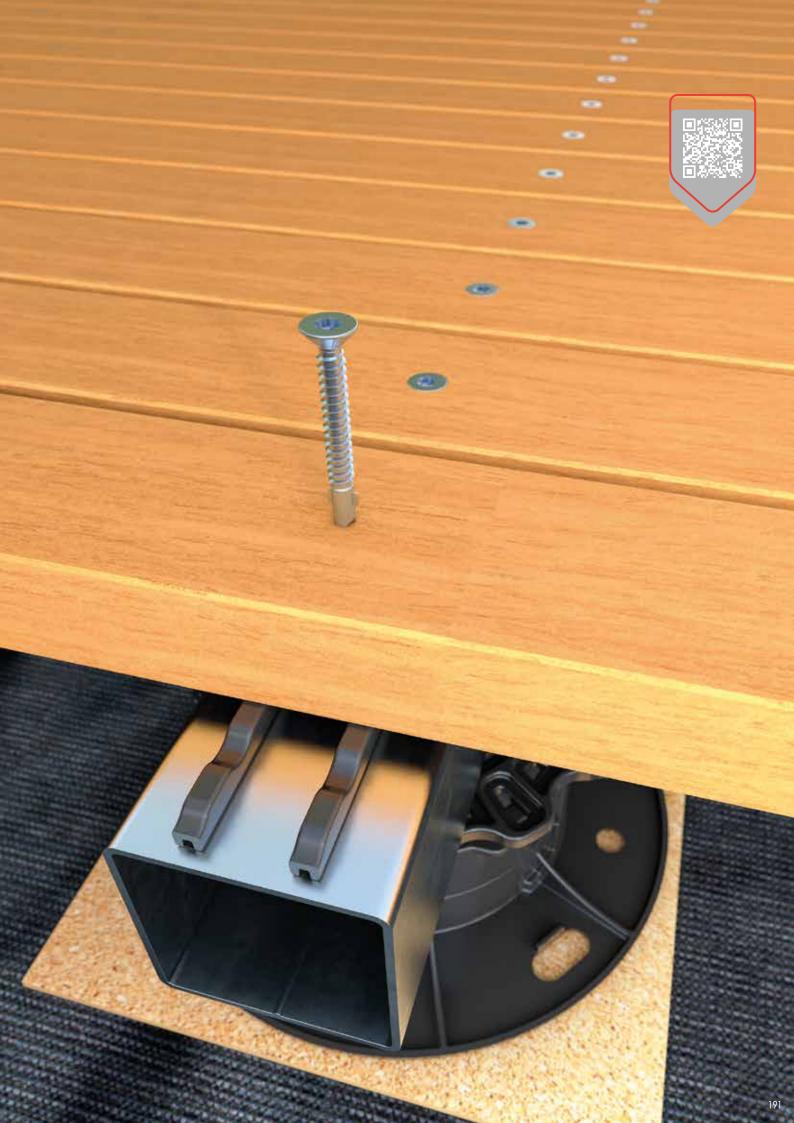


N.º de art.	Ød[mm]	L[mm]	lg [mm]	Ø dh [mm]	Accionamiento	Cantidad
975815	8,0	60	50	13,5	TX40 •	50
975816	8,0	80	70	13,5	TX40 •	50
975817	8,0	100	90	13,5	TX40 •	50
975818	8,0	120	110	13,5	TX40 •	50
975819	8,0	140	130	13,5	TX40 •	50
975820	8,0	160	150	13,5	TX40 •	50
975821	10,0	80	67,5	16,5	TX50 ●	50
975822	10,0	100	87,5	16,5	TX50 ●	50
975823	10,0	120	107,5	16,5	TX50 ●	50
975824	10,0	140	127,5	16,5	TX50 ●	50
975825	10,0	160	147,5	16,5	TX50 ●	50
975826	10,0	180	167,5	16,5	TX50 ●	50

INFORMACIÓN TÉCNICA TORNILLO PARA ESCUADRAS DE ÁNGULO STRONG, ACERO AZUL GALVANIZADO

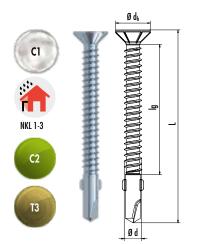
Calculado según ETA-11/0024 teniendo en cuenta agujeros no pretaladrados y una densidad de madera $\rho_k = 350 \text{ kg/m}^3$. Los valores nominales F_{Rd} se han calculado teniendo en cuenta $k_{mod} = 0.8 \text{ y } \gamma_M = 1.3$. Para diferentes grosores de chapa, la resistencia al cizallamiento puede interpolarse entre chapas de acero finas y gruesas. Les la longitud mínima del tornillo necesaria para alcanzar la respectiva capacidad de carga.

Tenga en cuenta lo siguiente: Se trata de ayudas a la planificación. Los proyectos solo pueden ser calculados por personas autorizadas.


TORNILLO PARA MADERA-METAL CON PUNTA AUTOTALADRANTE

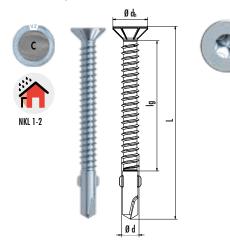
Para la fijación de perfiles estrechos

El tornillo para madera-metal con punta autotaladrante de acero inoxidable endurecido o acero al carbono es un tornillo especialmente desarrollado para la fijación de perfiles estrechos. El tornillo presenta una punta de taladrado con alas de raspado especiales y una cabeza avellanada con accionamiento TX. Estos tornillos se caracterizan por la posibilidad de utilizarse sin pretaladrado, ya que las alas de raspado taladran el orificio más grande que el diámetro de la rosca. Perforan tanto el orificio principal como la contrarrosca en el propio acero.


Es importante saber que el acero galvanizado y el acero inoxidable endurecido no son resistentes a los ácidos y, por tanto, no son adecuados para la fijación de maderas que contengan taninos, como el roble. En exteriores recomendamos utilizar estos tornillos solo para uniones acero-madera, de modo que es suficiente un tornillo por punto de fijación.

Tornillo para madera-metal con punta autotaladrante

Acero inoxidable endurecido



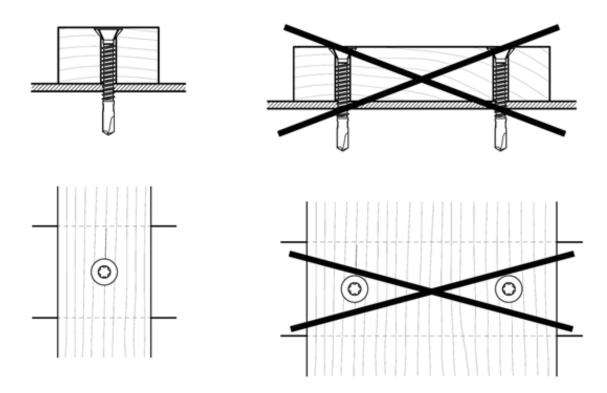
N.º de art.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Acciona- miento	Espesor de sujeción [mm] ^{a)}	Capacidad de taladrado	Cantidad
901990	4,8	38	22	9,5	TX25 •	20	3	200
111404	5,5	45	26,5	10,8	TX30 •	25	3	200
111405	5,5	50	32	10,8	TX30 •	30	3	200
111406	6,3	60	31	12,4	TX30 •	35	5	200
901585	6,3	70	41	12,4	TX30 •	45	5	200
904333	6,3	80	41	12,4	TX30 •	55	5	200
901581	6,3	85	46	12,4	TX30 •	60	5	100
901584	6,3	110	46	12,4	TX30 •	85	5	100

a) Espesor de sujeción = espesor de la pieza de montaje + espesor de chapa t; t_{max} = capacidad de taladrado

Tornillo para madera-metal con punta autotaladrante

Acero, azul galvanizado

N.º de art.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Acciona- miento	Espesor de sujeción [mm]º)	Capacidad de taladrado	Cantidad
111841	4,2	32	17	8,1	TX20 -	15	3	500
111842	4,2	38	23	8,1	TX20 -	20	3	500
111843	4,8	45	27	9,5	TX25 •	25	3	500
111844	5,5	50	32	10,8	TX30 •	30	3	200
111409	5,5	60	41	10,8	TX30 •	40	3	200
111410	5,5	70	51	10,8	TX30 •	50	3	200
111411	5,5	80	61	10,8	TX30 •	60	3	200
111412	5,5	100	81	10,8	TX30 •	80	3	200
111408	5,5	120	101	10,8	TX30 •	100	3	200
111845	6,3	50	31	12,4	TX30 •	25	5	200
111846	6,3	60	31	12,4	TX30 •	35	5	200
111847	6,3	70	41	12,4	TX30 •	45	5	200
111848	6,3	80	46	12,4	TX30 •	55	5	200
111414	6,3	100	46	12,4	TX30 •	75	5	200
111415	6,3	120	46	12,4	TX30 •	95 agridad do taladrado	5	200


a) Espesor de sujeción = espesor de la pieza de montaje + espesor de chapa t; t_{max} = capacidad de taladrado

INDICACIONES DE USO

El tornillo para madera-metal con punta autotaladrante solo está previsto para la fijación de perfiles estrechos, es decir, para aplicaciones con un solo tornillo por punto de fijación.

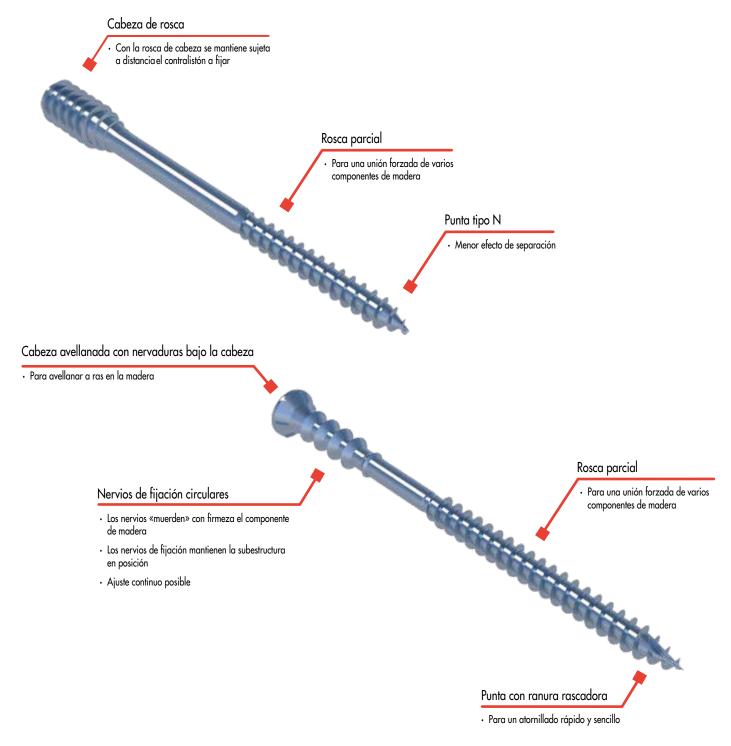
Cuando se fijan elementos como tablas de suelo con dos tornillos por punto de fijación, pueden producirse obstrucciones mutuas si los tornillos quieren doblarse con la madera «trabajada» (en movimiento o deformación). Esto provoca que los tornillos se arranquen, especialmente si se utiliza madera de coníferas relativamente blanda.

El tornillo para madera-metal con punta autotaladrante no es apto para la fijación de conexiones madera-aluminio.

MODO DE FUNCIONAMIENTO DEL TORNILLO PARA MADERA-METAL CON **PUNTA AUTOTALADRANTE**

- · Debido a las alas de raspado, el orificio de perforación de la madera es mayor que el diámetro de rosca del tornillo.
- · La punta de taladrado perfora el orificio principal y forma la contrarrosca en el acero.
- · Sujeción segura de la rosca en la base de anclaje de acero.

Modo de funcionamiento del tornillo para madera-metal con punta autotaladrante


TORNILLO DISTANCIADOR/MINI, JUSTITEC

Para la fijación de subestructuras de madera en los revestimientos de pared y techo

El tornillo distanciador es apto para la fijación de subestructuras de madera en revestimientos de pared y techo, así como para el montaje de listones de cumbrera. A diferencia de los tornillos convencionales, el tornillo distanciador tiene dos roscas diferentes en la cabeza y en la punta. Con la rosca de cabeza se mantiene sujeta (a distancia) el contralistón a fijar. La rosca de punta más fina sirve para la fijación en la subestructura.

Para evitar que reviente el contralistón, recomendamos pretaladrarlo (diámetro de taladrado = Ødh - 2 mm).

El listón de madera se ajusta en las partes superior e inferior con el Justitec. El **tornillo distanciador** también se utiliza para mantener la posición del listón y evitar un **posible desplazamiento.**

Tornillo distanciador

Acero galvanizado, con revestimiento antideslizante

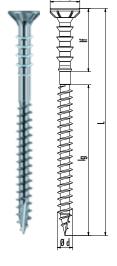
N.º de art.:	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	lf [mm]	Accionamiento	Rango de distancia [mm]	Cantidad
110099	6,0	60	40	10	20	TX25 •	0 – 15	200
110100	6,0	70	40	10	20	TX25 •	15 – 25	200
110101	6,0	80	40	10	20	TX25 •	15 – 35	200
110102	6,0	90	40	10	20	TX25 •	25 – 45	200
110103	6,0	100	40	10	20	TX25 •	35 – 55	200
110104	6,0	120	40	10	20	TX25 •	55 – 75	100
110105	6,0	135	40	10	20	TX25 •	70 – 90	100
110106	6,0	150	40	10	20	TX25 •	75 – 105	100
110107	6,0	180	40	10	20	TX25 •	100 – 135	100
110108	6,0	200	40	10	20	TX25 •	135 – 155	100

Tornillo distanciador mini

Acero galvanizado, con revestimiento antideslizante

NKL 1-2

N.º de art.:	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	lf [mm]	Acciona- miento	Rango de distancia [mm]	Cantidad
110121	4,5	60	30	8	22	TX25 •	0 – 15	100
110122	4,5	80	30	8	22	TX25 •	15 – 35	100
110123	4,5	100	30	8	22	TX25 •	35 – 55	100
110124	4,5	120	30	8	22	TX25 •	55 – 75	100


Justitec

Acero galvanizado, con revestimiento antideslizante, cabeza avellanada

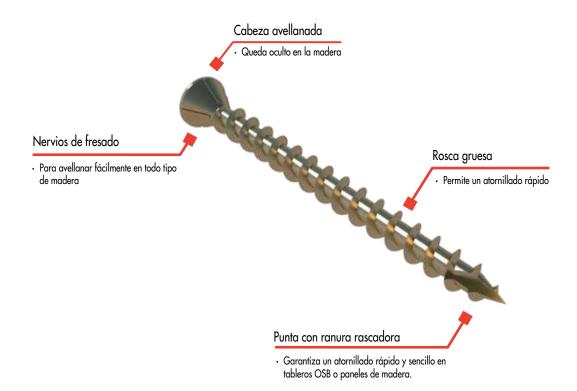
NKL 1-2

N.º de art.:	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	lf [mm]	Acciona- miento	Rango de ajuste [mm]	Cantidad
111804	6,0	60	25	10	25	TX25 •	0-10	200
111805	6,0	70	30	10	25	TX25 •	0 – 20	200
111806	6,0	80	30	10	25	TX25 •	0 – 30	200
111807	6,0	90	40	10	25	TX25 •	0 – 40	100
111808	6,0	100	60	10	25	TX25 •	0 – 50	100
111824	6,0	110	60	10	25	TX25 •	0-60	100
111809	6,0	120	60	10	25	TX25 •	0-70	100
905632	6,0	130	60	10	25	TX25 •	0 - 80	100
905633	6,0	145	60	10	25	TX25 •	0 – 95	100
905634	6,0	160	60	10	25	TX25 •	0-110	100

VENTAJAS

- $\boldsymbol{\cdot}$ No se requiere pretaladrado, ajuste continuo
- No es necesario colocar cuñas debajo, mezanizado de madera sobre madera

Alineación rápida de una subestructura con el Justitec.


Fijación de un listón de madera con ayuda del tornillo distanciador (abajo) y el Justitec (arriba).

Eurotec | OSB Fix

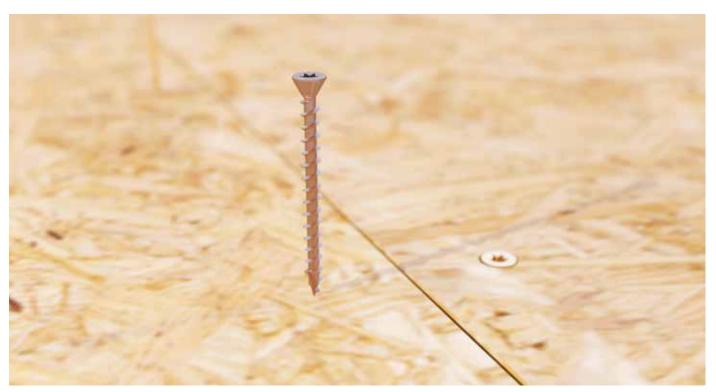
OSB FIX

Tornillo de carbono galvanizado amarillo

El OSB Fix es un tornillo de acero al carbono galvanizado amarillo con cabeza avellanada y rosca completa. El tornillo todo rosca dispone de una cabeza avellanada 60° con nervaduras de fresado y accionamiento TX, así como una punta con ranura rascadora (tipo 17). La geometría especial del tornillo permite una menor generación de grietas al atornillar.

OSB Fix

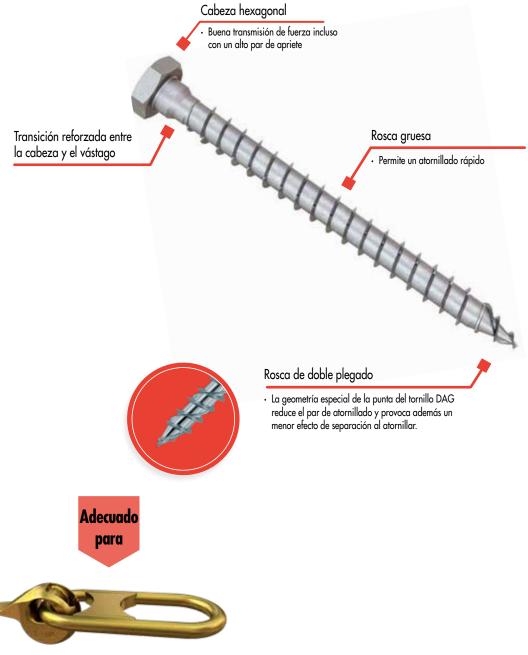
Cabeza avellanada, acero amarillo galvanizado



N.º de art.:	Dimensiones [mm]	Accionamiento	Cantidad
900690	4,3 x 40	TX20 •	250
900691	4,3 x 45	TX20 •	250
900692	4,3 x 50	TX20 •	250
900693	4,3 x 60	TX20 •	250
900694	4,3 x 80	TX20 •	250

CARACTERÍSTICAS

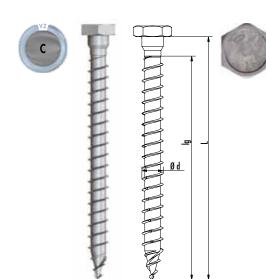
- · La rosca sólida mantiene el tablero en posición
- · Prevención de crujidos
- · Apto para todo tipo de materiales de madera
- · Superficie amarilla galvanizada Cr3



OSB Fix para la fijación de tableros de OSB

TORNILLOS PARA EL ANCLAJE DE TRANSPORTE

Acero de calidad, con punta AG


Este dispositivo de elevación fabricado en acero de gran calidad sirve para elevar todo tipo de piezas de madera. Los anclajes de transporte para el grupo de carga de hasta 1,3 t deben fijarse únicamente con tornillos para el anclaje de transporte Eurotec Ø 11 x 125 mm y Ø 11 x 160 mm. Los tornillos para el anclaje de transporte Eurotec solo se deben utilizar una vez. Se deben atornillar sin pretaladrado en madera maciza (madera de conífera), en madera laminada, en madera laminada encolada, en tableros contralaminados multicapa, en pilas de tableros y en vigas de madera laminada. No está permitido su uso en maderas de árboles de fronda. Las posiciones de montaje posibles o permitidas se pueden consultar en nuestro manual de instrucciones. Con mucho gusto, ponemos a su disposición dicho manual. Aspectos que hay que tener en cuenta.

Anclaje de transporte, acero de calidad

Tornillos para el anclaje de transporte Acero de calidad, con punta AG

N.º de art.:	Dimensiones [mm]	Accionamiento	Cantidad
110359	11,0 x 125	SW 17	20
110360	11,0 x 160	SW 17	20
110371	11,0 x 200	SW 17	20
110372	11,0 x 250	SW 17	20
110373	11,0 x 300	SW 17	20

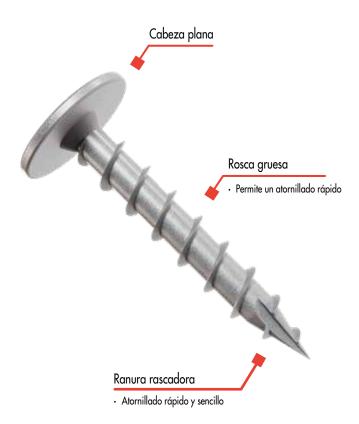
CARACTERÍSTICAS

- · Capacidad de carga alta
- · Elevación, transporte y traslado de componentes grandes de madera poco complicado
- · Tres posibilidades de montaje en función del empleo del tornillo de anclaje para transporte:
 - Tracción axial
 - Tracción oblicua
 - Tracción oblicua con fresado a medida del cabezal de acoplamiento

INDICACIONES DE SEGURIDAD

· Antes de utilizar el producto, lea atentamente la ficha técnica y el manual de instrucciones:

Hoja de datos del producto


Instrucciones de uso

- Es imprescindible leer el manual de instrucciones antes del uso
- · Se debe instruir a los usuarios antes del primer uso
- · No se deben realizar perforaciones previas para los tornillos
- · Los tornillos deben usarse solo una vez
- El nivel de carga del componente que se desea levantar no puede superar los valores permitidos
- Se necesitan, como mínimo, dos puntos de anclaje por cada componente que se desee levantar
- Antes de cada uso, se debe asegurar que el anclaje de transporte no tenga daños y, eventualmente, desecharlo

TORNILLOS DE UNIÓN PARA POSTES

El tornillo para madera destinado a unir madera con chapa de acero

El tornillo de unión para postes es un tornillo autoperforante con cabeza plana que se utiliza para unir chapa de acero a madera. Entre otras cosas, sirve para unir postes de madera con piezas moldeadas de acero, como zapatas para vigas, pies de soporte o anclajes de soporte. Por su geometría especial, la punta del tornillo hace que el efecto de hendidura sea menor. ¡Así ya no es necesario el pretaladrado!

Cantidad

100

100

100

Tornillo de unión para postes 1000 recubrimiento especial

N.º de art.:	Dimensiones [mm]	Accionamiento	Cantidad
r903056	8 x 40	TX40 •	100
r903057	8 x 50	TX40 •	100
975594	10 x 40	TX40 •	50
975595	10 x 50	TX40 •	50

VENTAJAS

- Tornillo de cabeza plana Ø8 mm, diámetro de cabeza Ø22 mm
- · Gracias al diseño especial de la punta se reduce el riesgo de formación de grietas, no es necesario pretaladrar
- · Protección especial contra la corrosión
- · Se puede utilizar, por ejemplo, en la construcción de vallas y pérgolas

No es adecuado para maderas que contienen taninos.

Dimensiones [mm]

Tornillo de unión para postes A2

VENTAJAS

N.º de art.:

975570

975571

975585

- Tornillo de cabeza plana Ø 8 mm, diámetro de cabeza Ø 16 mm

8 x 40

8 x 50

8 x 60

· Gracias al diseño especial de la punta se reduce el riesgo de formación de grietas, no es necesario pretaladrar

Accionamiento

TX40 •

TX40 •

TX40 •

· Resistente a los ácidos bajo ciertas condiciones

Atención

No apto para atmósferas cloradas

Tornillo de unión para postes anclado de forma segura en la madera para una estabilidad máxima en la construcción en madera.

Limitador de par

№ de art.	Versiones disponibles	Punta	Longitud total [mm]	Alojamiento para puntas	Cantidad
100885	Limitador de par 18 Nm	Hexágono 11 mm	120,5	TX40 ● oder TX50 ●	1
100886	Limitador de par 32 Nm	Hexágono 11 mm	120,5	TX40 ● oder TX50 ●	1

VENTAJAS

- · Reduce los daños en los tornillos: evita que los tornillos se giren en exceso y se rompan, algo especialmente importante en uniones de metal y madera y en tornillos con cabeza plana.
- · Calidad homogénea: par de apriete seguro y reproducible en todas las uniones atornilladas.
- · Sin mantenimiento: el acoplamiento con lubricación permanente no requiere un mantenimiento regular.

NOTA

Los acoplamientos de atornillado se suministran con un par preajustado de 18 Nm o 32 Nm y, si es necesario, se pueden adaptar a un par específico según cada proyecto.

Para garantizar una vida útil máxima y un funcionamiento fiable, se recomienda utilizar adaptadores de puntas adecuados y trabajar dentro del rango de par especificado.

Herramienta de atornillado

Nº de art.	Diseño	Portaherramientas	Largo [mm]	Punta	Diámetro (exterior) [mm]	Compatibilidad	Cantidad
100883	Herramienta de atornillado pequeña ESW8	1/4" hexagonal (alojamiento hexagonal)	approx. 65	TX40 • o TX50 •	41,5	Tornillos con accionamiento TX40 (p. ej., Paneltwistec TK Ø 8 x L)	1
100884	Herramienta de atornillado grande ESW13	1/4" hexagonal (alojamiento hexagonal)	approx. 65	TX40 • o TX50 •	41,5	Tornillos conaccionamiento TX40 (p. ej., Paneltwistec) TK Ø 10 x L)	1

VENTAJAS

- · Diseño robusto y duradero para su uso en obras
- · Unión firme gracias al ajuste preciso
- · Evita el deslizamiento o el atascamiento durante el atornillado
- · Apto para el montaje previo y el montaje final en construcciones en madera, fachadas, subestructuras, etc.

Indicaciones de uso

La herramienta está diseñada para su uso con taladradoras/atornilladoras a batería convencionales con alojamiento para puntas de 1/4". Durante el uso, asegúrese de que la herramienta esté colocada en ángulo recto para no dañar la unión atornillada. Para montajes en serie, se recomienda utilizar el acoplamiento de atornillado.

Almacenamiento y mantenimiento

Para garantizar un funcionamiento óptimo a largo plazo, se recomienda almacenar la herramienta en un lugar seco y limpiarla regularmente para eliminar la suciedad y la abrasión del metal. La superficie bruñida sirve de protección fiable contra la oxidación si se maneja correctamente.

EXPOSITOR DE VENTA EUROTEC

Embalajes pequeños

VENTAJAS

Con el expositor de venta de Eurotec, usted podrá clasificar los tornillos según las medidas y los materiales más habituales.

Así, con un solo expositor, usted podrá equipar a sus clientes con todo lo necesario para las tareas cotidianas relacionadas con la construcción en madera.

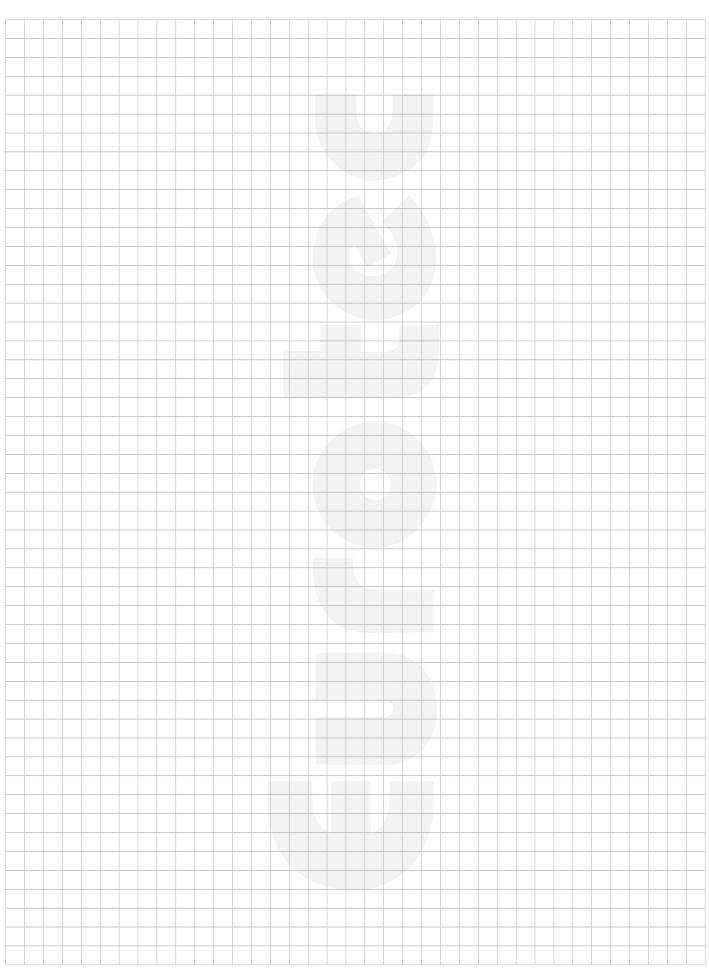
- La parte superior del expositor contiene tornillos empaquetados en bolsas de 10, 15, 20 o 45 unidades.
- En la parte inferior del expositor encontrará tornillos de 50 o 100 piezas empaquetados en cajas de cartón. Todas las cajas disponen de una abertura que se puede volver a cerrar.
- Asimismo, forman parte de este amplio expositor las puntas, las puntas largas y las cajas de puntas con los tamaños TX correspondientes en el sistema de codificación por colores.

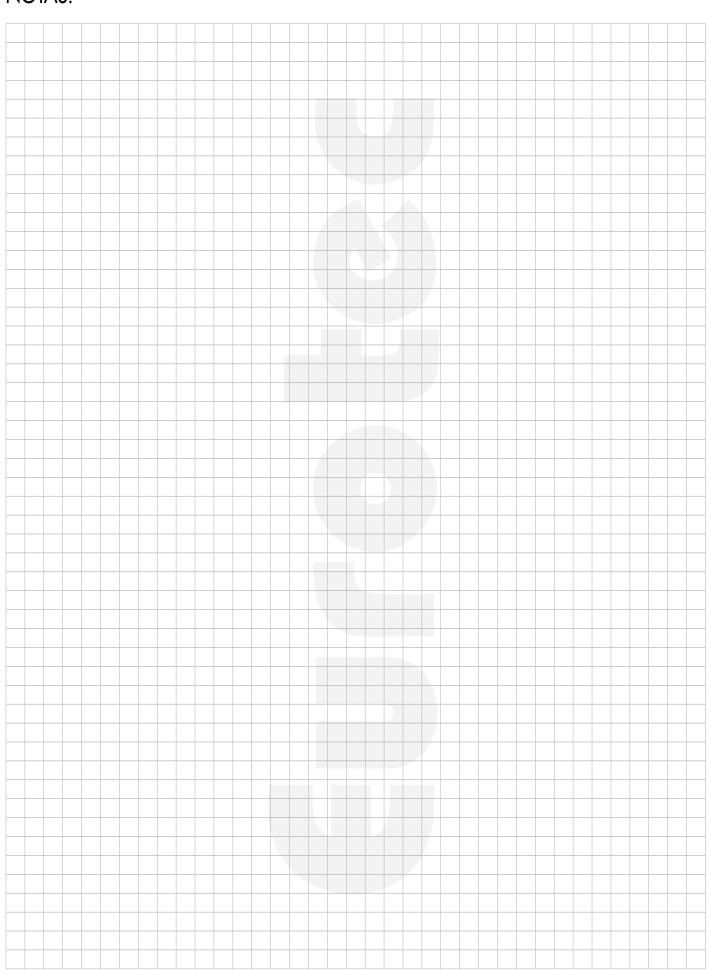
EN ESTE EXPOSITOR ENCONTRARÁ LOS SIGUIENTES

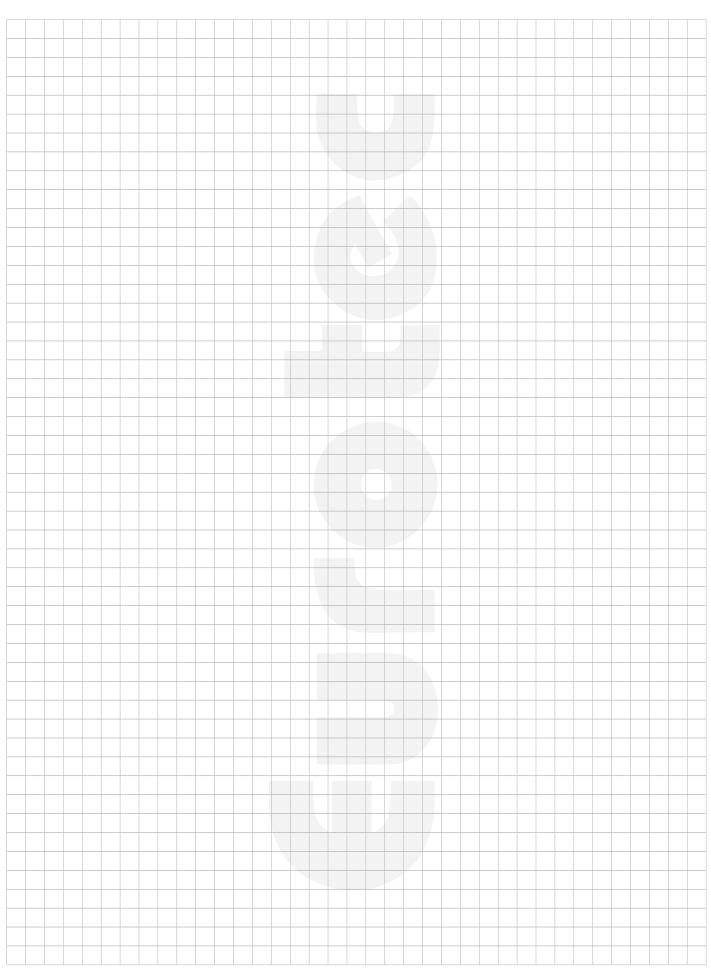
TIPOS DE TORNILLOS Y DIMENSIONES

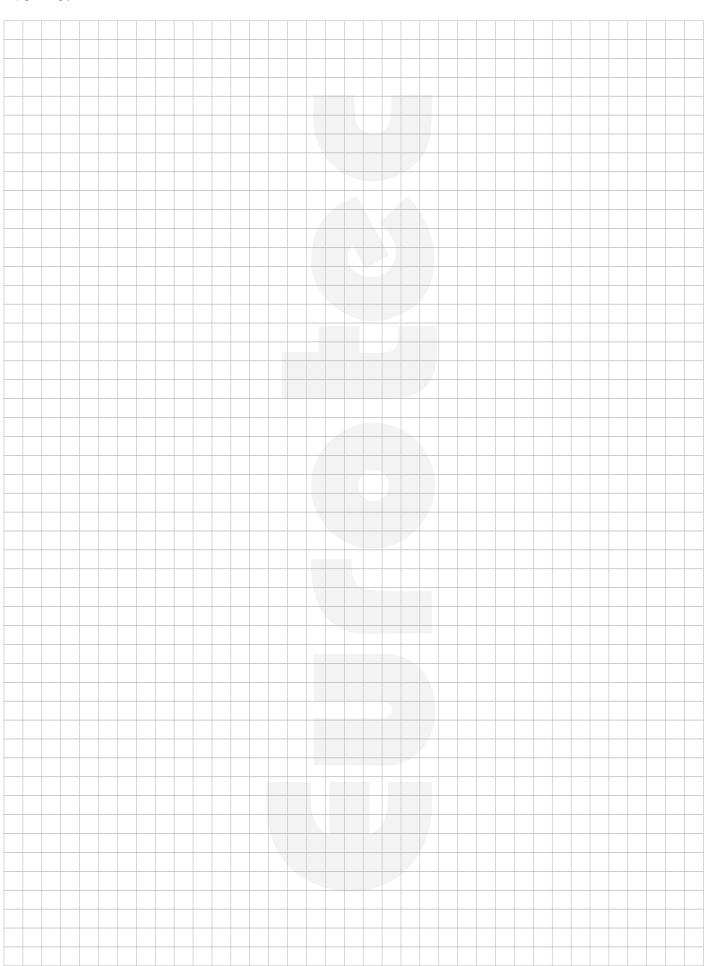
- Paneltwistec AG con revestimiento especial,
 cabeza avellanada Ø 3,5 x 30 mm hasta Ø 6,0 x 120 mm
- Tornillo para tablero de aglomerado EcoTec A2,
 cabeza avellanada Ø 4,0 x 40 mm hasta Ø 6,0 x 120 mm
- Hapatec acero inoxidable endurecido,
 cabeza decorativa Ø 4,0 x 30 mm hasta Ø 5,0 x 80 mm

EUROPALÉS Y EMBALAJES MAXI Con embalajes Eurotec Maxi de 8, 16 o 24




Eurotec° | Tornillos para madera


ÍNDICE DE PALABRAS CLAVE


Cabeza plana, acero al carbono endurecido, galvanizado	
Eco-Black-Tec, Tornillo para tableros aglomerados,	
acero al carbono endurecido, recubrimiento	
EcoTec A2, Tornillo para tablero de aglomerado, inoxidable A2	
EcoTec, Tornillo para tablero de aglomerado, acero azul galvanizado	
Expositor de venta Eurotec	
HBS Encintado, acero azul galvanizado	
Herramienta de atornillado ************************************	
Hobotec, acero galvanizado azul	
Hobotec, acero inoxidable endurecido	
Hobotec, acero inoxidable endurecido	•••••
lustitec, acero galvanizado, con revestimiento antideslizante,	
abeza avellanada	
KonstruX, 13 mm E12	
ConstruX DUO	
ConstruX todo rosca, acero inoxidable A4	
imitador de par	
OSB Fix, Cabeza avellanada, acero amarillo galvanizado	
Paneltwistec 1000, acero amarillo con revestimiento especial	
Paneltwistec AG	
Paneltwistec, acero azul galvanizado	
Paneltwistec, acero amarillo galvanizado	
Paneltwistec AG, acero inoxidable endurecido	
Paneltwistec, acero inoxidable A2	
Paneltwistec, acero inoxidable A4	
Paneltwistec encintado, acero inoxidable endurecido, cabeza avellanada	
Paneltwistec encintado, roscado corto, acero azul galvanizado	
Paneltwistec encintado, acero azul galvanizado, cabeza avellanada	
Paneltwistec TK AG Stronghead	
Paneltwistec TK AG Stronghead SawTec Fornillo de construcción LBS	
SawTec	
Fameltwistec TK AG Stronghead SawTec Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9	
Fameltwistec TK AG Stronghead SawTec Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2	
Fameltwistec TK AG Stronghead SawTec Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000	
Faneltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power	
Faneltwistec TK AG Stronghead Fornillo de construcción LBS	
Faneltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo distanciador mini, Forero galvanizado, con revestimiento antideslizante	
Faneltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo distanciador mini, Facero galvanizado, con revestimiento antideslizante Fornillo para escuadras de ángulo A4, acero inoxidable A4	
Faneltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo distanciador mini, Facero galvanizado, con revestimiento antideslizante Fornillo para escuadras de ángulo A4, acero inoxidable A4 Fornillo para escuadras de ángulo, acero, azul galvanizado	
Fameltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo distanciador mini, Cacero galvanizado, con revestimiento antideslizante Fornillo para escuadras de ángulo A4, acero inoxidable A4 Fornillo para escuadras de ángulo, acero, azul galvanizado Fornillo para escuadras de ángulo Strong	
Farnellwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo para escuadras de ángulo A4, acero inoxidable A4 Fornillo para escuadras de ángulo, acero, azul galvanizado Fornillo para escuadras de ángulo Strong Fornillo para escuadras de ángulo Strong Fornillo para escuadras de ángulo ZK Hardwood	
Fameltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo distanciador mini, Fornillo para escuadras de ángulo A4, acero inoxidable A4 Fornillo para escuadras de ángulo Strong Fornillo para escuadras de ángulo Strong Fornillo para escuadras de ángulo ZK Hardwood Fornillo para madera-metal con punta autotaladrante,	
Fameltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes A2 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo para escuadras de ángulo A4, acero inoxidable A4 Fornillo para escuadras de ángulo, acero, azul galvanizado Fornillo para escuadras de ángulo Strong Fornillo para escuadras de ángulo ZK Hardwood Fornillo para madera-metal con punta autotaladrante, Acero inoxidable endurecido	
Fameltwistec TK AG Stronghead Fornillo de construcción LBS Fornillo de unión madera-hormigón TCC-II 7,3 Fornillo de unión madera-hormigón TCC-II 9 Fornillo de unión para postes A2 Fornillo de unión para postes 1000 Fornillo de sistema Blue-Power Fornillo distanciador, acero galvanizado, con revestimiento antideslizante Fornillo distanciador mini, Fornillo para escuadras de ángulo A4, acero inoxidable A4 Fornillo para escuadras de ángulo Strong Fornillo para escuadras de ángulo Strong Fornillo para escuadras de ángulo ZK Hardwood Fornillo para madera-metal con punta autotaladrante,	

