

NOTRE GAMME VIS POUR CONSTRUCTIONS EN BOIS

SOMMAIRE

INFORMATIONS DE BASE

Vis à bois pour projets de construction en bois individuels	4
Nos productions	6
Assurance de la qualite	1
La structure d'une vis à bois	
Matériau et revêtement	7
Distances minimales de vis	:Э
PANELTWISTEC	
Paneltwistec AG30 – 3	0
Paneltwistec galvanisée bleu/jaune	3
Paneltwistec Acier inoxydable trempé	7
Paneltwistec Acier inoxydable A4/A2	,, 5
Paneltwistec 1000	'J
TK AG Stronghead	
TR AO Silonghedd/2 /	J
Tige filetée BRUTUS 76 – 7	7
Tigo molec brotos	′
VIS À FILETAGE COMPLET KONSTRTUX	
KonstruX ST, galvanisée	1
KonstruX, acier inoxydable A482 – 8	13
Exemples d'application	3
Tableaux techniques)5
Construction à ossature bois avec KonstruX ST106 – 11	3
KonstruX DUO	
KonstruX, 13 mm E12	
120 12	
SAWTEC 126 – 13	RΩ
5717129 120	, 0
VIS EN BANDE	
Paneltwistec, acier galvanisé bleu131 – 13	N
Paneltwistec, acier inoxydable trempé	
HBS, vis à bois universelle	14
Paneltwistec, acier galvanisé bleu	,5 }
Talleli Misioc, aciel galialise bieu	, 0
TOPDUO	15
101 000 14	
VIS SYSTÈME RILIE-POWER 146 – 15	1

AUTRES VIS	
Hobotec	152 - 155
EcoTec	156 - 159
Vis d'assemblage LBS	160 - 163
Vis d'assemblage bois-béton	164 – 167
Vis pour équerre	168 - 173
Vis de forage à ailettes	174 – 177
Vis d'écartement/Mini	178 – 181
Justitec	178 – 181
OSB Fix	182 – 183
()	
ÉTAGÈRE DE VENTE	184 – 185

DIFFÉRENTES VIS À BOIS POUR DES PROJETS DE CONSTRUCTION EN BOIS INDIVIDUELS

La construction en bois professionnelle requiert des solutions de fixation sophistiquées satisfaisant aux exigences les plus rigoureuses, autant au niveau de la qualité qu'à celui de la polyvalence. C'est ici que séduisent les vis à bois pour l'utilisation individuelle que vous trouvez dans notre vaste gamme de vis. Nous proposons à nos clients un grand choix de vis et, par là même, la solution idéale pour toute construction en bois – que ce soit pour la construction de bâtiments complexes à plusieurs étages, de maisons en bois, de clôtures, de halles industrielles, de revêtements de plafonds ou pour les structures de toit.

Une des caractéristiques remarquables des vis à bois d'Eurotec est le grand choix de dimensions et de types de vis qui sont disponibles pour différentes applications dans la construction en bois. Que vous ayez besoin p. ex. de vis pour panneaux d'agglomérés pour des assemblages précis de panneaux de bois, de vis à filet complet pour des fixations robustes et sûres dans des pièces rapportées ou encore de vis spéciales pour la construction de toits – vous trouverez dans ce catalogue la vis qui vous convient pour de tels projets. Nous disposons également de vis à bois en bande. Nos vis se distinguent par différentes spécificités qui définissent leur performance et leur fiabilité. Vous pouvez p. ex. faire votre choix parmi un grand nombre de dimensions, de têtes (formes), de pointes ou de filets. Pour satisfaire aux exigences individuelles des projets de construction en bois, les vis à bois sont disponibles en différentes duretés et avec différents revêtements.

Un autre aspect important est **l'Évaluation Technique Européenne** qu'a obtenue une grande partie de nos vis. Cette certification confirme la conformité des vis avec les **standards européens les plus rigoureux** pour des produits de construction et garantit leur excellente performance et sécurité.

Nous misons sur une excellente qualité et des **solutions faites sur mesure** pour vous et vos projets. Avec les produits que nous avons sélectionnés, nous mettons à votre disposition une vaste gamme pour que vous puissiez réaliser des structures sûres, stables et robustes avec les vis à bois requises.

NOS PRODUCTIONS

Quelles que soient vos exigences, nous sommes en mesure de tout vous livrer nous-mêmes. Dans notre production, nous utilisons différents procédés tels que la technique de découpage et de découpage/cambrage, le formage à froid, le moulage par injection et la technique d'extrusion. Les vis d'une longueur maximale de 3 000 mm sont fabriquées sur des machines entièrement automatiques.

PRODUCTIONS

- · Vis de 40 mm à 3 000 mm, avec un diamètre de 3 à 14 mm
- · Filetage simple, double ou réduit
- · Pointes fraisantes
- · Différents matériaux
- · Différents revêtements
- · Souhaits individuels des clients

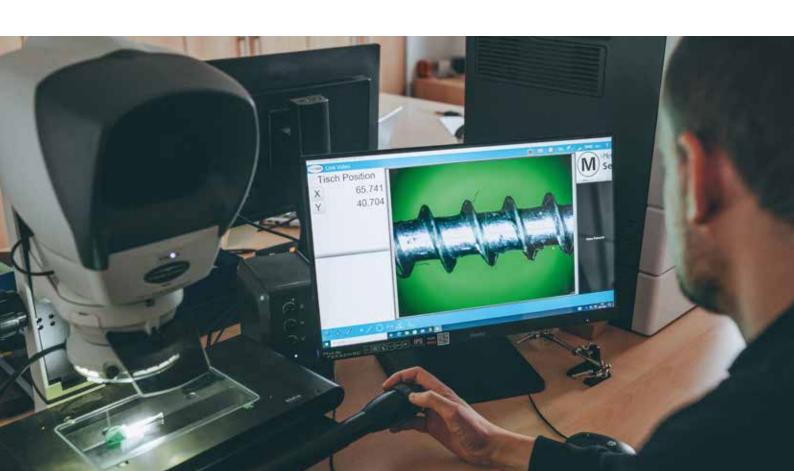
TRAITEMENT DE SURFACE

Du zinc au revêtement galvanisé bleu pour une performance à long terme dans les secteurs exposés aux intempéries (C4 – C5).

RESPECT DE L'ENVIRONNEMENT

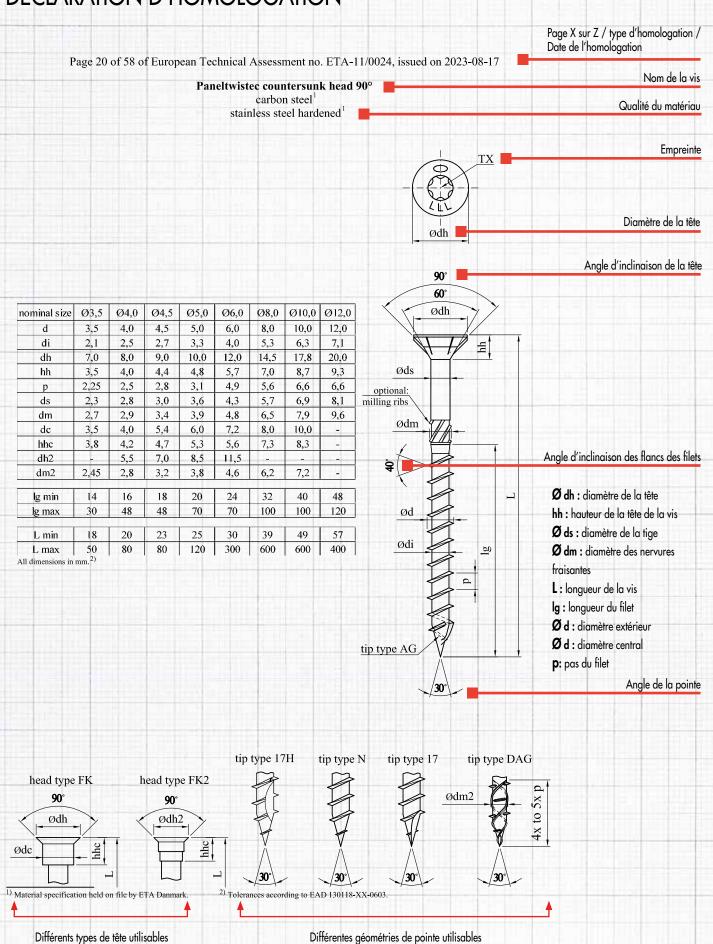
Pas d'huile sur le sol, pas d'émissions de gaz polluants dans l'atmosphère, production d'électricité sur notre propre toit. Nous nous engageons à respecter les dispositions réglementaires et administratives dans un cadre économique et à promouvoir une action respectueuse de l'environnement.

ASSURANCE QUALITÉ


Notre objectif premier est de proposer à nos clients des produits et services sans défaut et de garantir le respect des délais à 100 %. Nous attendons de chacun de nos collaborateurs un engagement sans faille pour la qualité. La formation et le développement d'une réflexion et d'une action axées sur les clients et sur la qualité sont toujours au premier plan.

Nous nous engageons à respecter les exigences réglementaires et administratives dans un cadre économique tout en promouvant une action respectueuse de l'environnement.

Nous sommes fiers de pouvoir proposer une certification ETA pour presque tous nos produits dans le segment bois, façades et béton. Il va de soi que notre service assurance qualité contrôle tous les jours si les lots produits sont conformes aux standards, par exemple aux signes, à la fonctionnalité, à l'aspect visuel et s'ils respectent les exigences spécifiques des clients.


C'est le seul moyen pour nous de nous assurer que nous livrons toujours à nos clients les produits de qualité supérieure auxquels ils sont habitués.

LA QUALITÉ EST LE FONDEMENT DE TOUTES NOS ACTIVITÉS.

DÉCLARATION D'HOMOLOGATION

CERTIFICATIONS

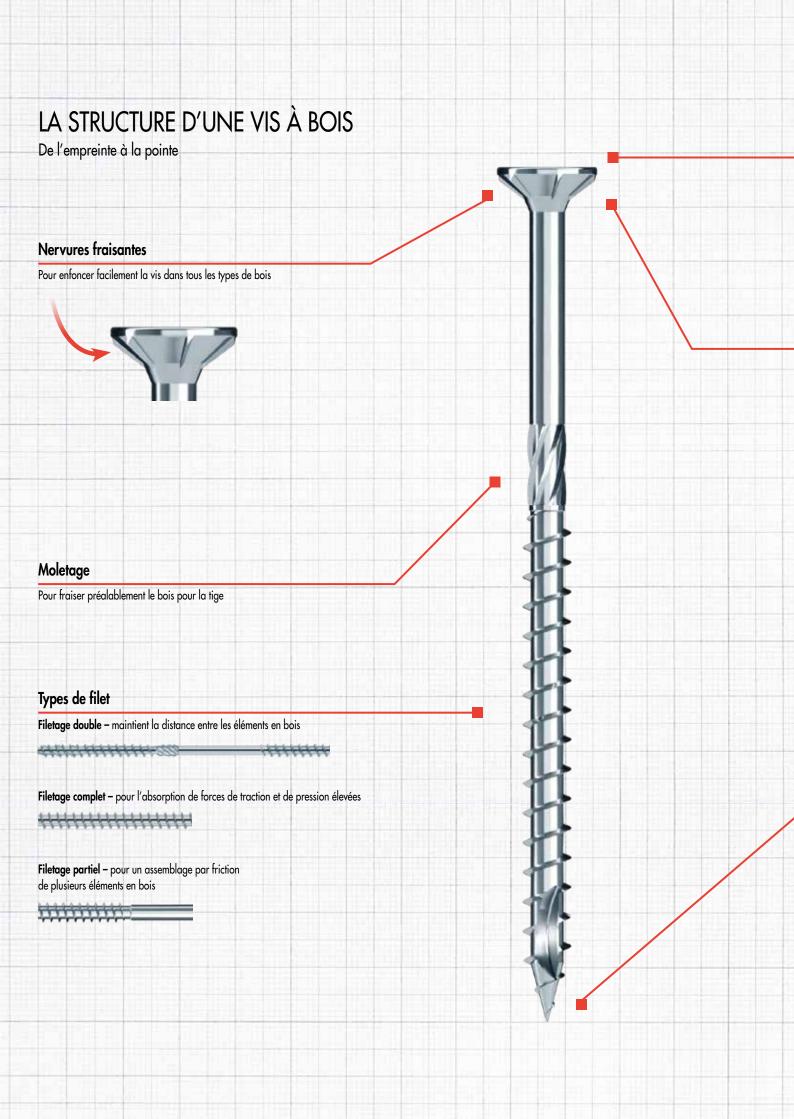
L'Évaluation Technique Européenne ETE (ou ETA - European Technical Assessment - ETA) est la preuve de la performance d'un produit qui débouche sur le marquage CE et permet la commercialisation de produits dans tout l'Espace Économique Européen, en Suisse et en Turquie, souvent même dans le monde entier.

Il est possible de solliciter une ETA pour tout produit de construction qui n'est pas couvert par une norme harmonisée ou ne l'est pas complètement. Contrairement à la norme harmonisée, l'ETA peut être ajustée à chaque produit. Par ailleurs, il est possible de documenter dans l'ETA des caractéristiques de performance qui font défaut dans les normes harmonisées existantes.

La plus grande portée géographique de l'ETA s'avère être plus avantageuse que l'homologation nationale. Dans le cas d'un certificat ETA, il faut cependant toujours mettre en cohérence la performance avérée et les exigences nationales auxquelles doit satisfaire l'ouvrage.

ETA-11/0024 – Vis pour structures en bois porteuses

Vis à filetage partiel et complet pour les applications bois-bois et les fixations acier-bois, fixation de systèmes d'isolation sur chevrons, redoublement de poutres, fixation de poutres maîtresses/poutres auxiliaires, renforts transversaux (traction et pression), etc. dans le bois de résineux (bois de sciage, bois de construction, lamel-lé-collé, lamellé-croisé (CLT), placage stratifié), placage stratifié de hêtre et différents autres matériaux dérivés du bois.



ETA-16/0864 – Vis pour structures d'assemblage bois-béton

Les vis d'assemblage bois-béton TCC-II 7,3 et TCC-II 8 sont des vis spéciales à filetage partiel, utilisées pour l'assemblage souple de structures porteuses de plaques de béton et de structures porteuses de bois composées de poutres ou de panneaux. Les vis d'assemblage sont utilisées dans la rénovation de plafonds à poutres et dans la construction de structures porteuses hybrides bois-béton.

Empreinte TX

- · Pas de coups sur les vis lors du vissage
- · Transmission de couple élevée

Formes de tête

Tête fraisée

- · Disparaît dans le bois
- · À fleur avec la surface

Embase

Accroît la surface de contact, ainsi les valeurs de pénétration de la tête peuvent être plus élevées

Tête décorative

- · Petite tête discrète
- · Idéale pour vissages visibles

Tête cylindrique

- · Disparaît dans le bois
- Tête discrète pour vis à double filetage et à filetage complet

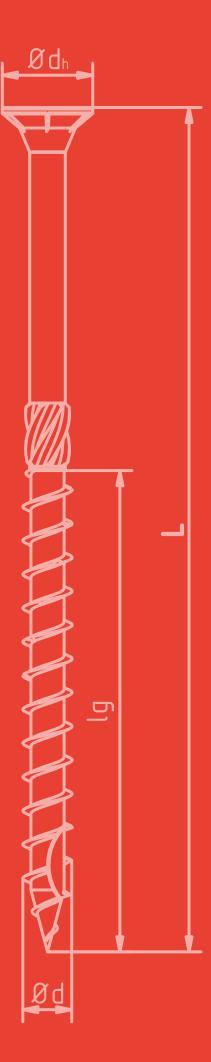
Pointes de vis

Fût

· Vissage simple et rapide

- · Couple de vissage réduit
- · Effet de fendillement réduit

DAG



- · Couple de vissage réduit
- · Fendillement réduit
- · Meilleur « mordant » de la vis

Pointe de forage

- Couple de vissage réduit
- Aucune nécessité de pré-perçage

MATÉRIAU ET REVÊTEMENT

Aperçu général

Eurotec mise sur des matériaux et des revêtements d'excellente qualité pour garantir une robustesse et une résistance à la corrosion dans le long terme. Ces propriétés revêtent une importance déterminante car elles prolongent la durée de vie de moyens de fixation et améliorent leur performance dans différents domaines d'utilisation – pour des assemblages robustes dans le cadre de projets de construction en bois jusqu'aux applications industrielles.

Acier au carbone trempé + galvanique, galvanisé bleu/jaune

- · Utilisable dans les classes d'utilisation 1 et 2 selon la norme DIN EN 1995 (eurocode 5)
- C
- · Bonne résistance aux sollicitations mécaniques
- · Ne convient pas aux bois contenant des tanins

Acier au carbone trempé+ revêtement spécial 1000

- Utilisable dans les classes d'utilisation 1 et 2 selon la norme DIN EN 1995 (eurocode 5)
- Résiste à l'essai au brouillard salin pendant 1 000 heures maximum conformément à la norme DIN EN ISO 9227 NSS
- Catégorie de corrosivité C4 longue / C5-M longue selon la norme DIN EN ISO 12944-6
- · Bonne résistance aux sollicitations mécaniques
- · Ne convient pas aux bois contenant des tanins

Acier inoxydable trempé

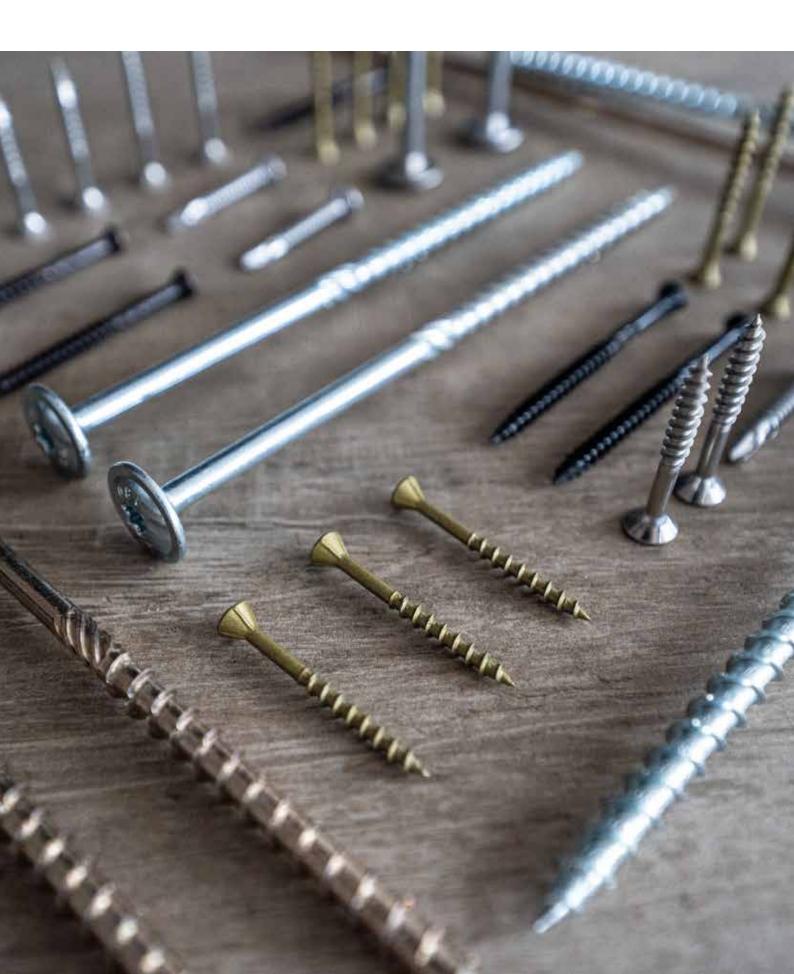
· Acier inoxydable selon la norme DIN 10088 (magnétisable)

- Résistant aux acides sous certaines réserves
- 10 ans d'expérience sans problème de corrosion sur des bois appropriés
- · Couple de rupture supérieur de 50 % à celui de A2 et A4
- · Utilisable dans les classes 1, 2 et 3
- Ne convient pas aux bois contenant de nombreux tanins comme le cumaru, le chêne, le merbau, le robinier, etc.
- · Ne convient pas aux milieux salins et chlorés

Acier inoxydable A2

· Convient sous certaines réserves aux milieux salins

- · Résistant aux acides sous certaines réserves
- · Ne convient pas aux milieux chlorés
- · Utilisable dans les classes 1, 2 et 3
- · Ne convient pas aux bois contenant de nombreux tanins



Acier inoxydable A4

- · Convient aux bois contenant des tanins
- · Convient aux milieux salins
- · Résistant aux acides
- · Utilisable dans les classes 1, 2 et 3
- Ne convient pas aux milieux chlorés

SYSTÈMES DE REVÊTEMENT ORIENTÉS SUR LA PRATIQUE POUR LES VIS À BOIS

La durée de vie estimée pendant laquelle les vis à bois dans la construction à bois doivent résister en cas d'utilisation dans les règles de l'art est de 50 ans. Pour les structures dont la durée d'utilisation prévue est plus courte ou pour les éléments de construction qui peuvent être remplacés, il est possible de tenir compte de catégories supplémentaires T3 (15) et C4 (15) pour une durée de vie attendue de 15 ans en cas d'utilisation de revêtements alternatifs.

Plusieurs facteurs à respecter existent pour définir quelle est la vis adéquate et quand c'est le cas.

Premier facteur : ce sont les classes d'utilisation qui décrivent quelle sera l'humidité du bois (humidité de compensation) d'un élément en bois sur une période prolongée dans un environnement donné (en plein air, pièces sèches à l'intérieur, etc.).

CLASSES D'UTILISATION

NKL

NKL 2

NKL :

NKL 1-2

NKL 1–3

Le deuxième facteur est la catégorie C qui décrit la corrosivité causée par différents environnements atmosphériques (ville, campagne, industrie, proximité de la côte, etc.). Les classes CRC (classes de résistance à la corrosion) s'appliquent aux aciers inoxydables, et non la catégorie C.

CATÉGORIE C

C2

C3

C4

C5

CRC II

CRC III

CRC IV

CRC V

Le troisième facteur est la catégorie T qui décrit la corrosion causée par le bois (type de bois, traitement protecteur, etc.).

CATÉGORIE T

T2

T4

T5

CLASSES – SELON L'EUROCODE 5 EN 1995-1-1:2010-12

Les classes d'utilisation (NKL) indiquent le positionnement de l'élément en bois dans une structure en ce qui concerne son éventuelle humidification ou encore l'humidité de compensation que l'on constatera sur une période prolongée dans l'élément en bois ainsi positionné. L'humidité de compensation attendue est déterminée via l'humidité relative de l'air, la température et la durée d'action.

Selon l'acier dont est composée la vis (acier au carbone revêtu ou acier inoxydable), une vis à bois ne peut être utilisée dans les structures porteuses que dans les classes d'utilisation 1 et 2 ou dans les trois classes. Dans la plupart des cas, nous indiquons NKL 1 – 2, ce qui signifie que les deux premières classes conviennent ou NKL 1 – 3, ce qui signifie que les trois classes sont correctes.

À l'aide du tableau suivant, vous pouvez déterminer la classe d'utilisation correcte sur la base des facteurs cités et choisir la vis qui convient à chaque situation.

Classe d'utilisation	Lieu	Humidité de l'air		Humidité du bois	
		Moyenne annuelle Valeur max.		Moyenne annuelle	Valeur max.
NKL 1	Intérieur	50 %	65 %	10 %	12 %
NKL 2	Extérieur, protégé de manière constructive	75 %	85 %	16 %	20 %
NKL 3	Extérieur, sans protection	85 %	95 %	18 %	24 %

CATÉGORIES C – SELON LA NORME DIN EN 14592:2022

La catégorie C décrit la catégorie de corrosion atmosphérique pour les vis avec revêtement en zinc, revêtement galvanisé à chaud et revêtements alternatifs. En conséquence, elle est déterminante pour la partie de la vis qui n'est pas vissée dans le bois. Donc pour la tête de la vis dans la majorité des cas. L'effet de l'atmosphère sur la corrosion dépend de l'humidité relative de l'air, de la pollution de l'air, de la teneur en chlorures (teneur en sel dans l'air) et de l'exposition ou non-exposition de l'assemblage aux intempéries. À l'aide du tableau suivant, vous pouvez déterminer la catégorie C correcte sur la base des facteurs cités et choisir la vis qui convient à chaque situation.

Caté	gorie Atmosphère	Climat / humidité de l'air	Exposition aux chlorures	Exposition aux polluants		
			Environnement typique	Taux de déposition de chlorures [mg/m² x d]¹	Environnement typique	Niveau de la pollution - teneur en SO2 [µg/m³]
(1	sans importance	sec / faible humidité de l'air	Régions éloignées de la ligne côtière	~ 0	Pièces chauffées	~ 0
C2	faible	modéré / condensation rare	distance > 10 km de la ligne côtière	≤3	Régions rurales peu polluées, petites villes	<5
C3	moyen	modéré / condensation occasionnelle	distance 10 km — 3 km de la ligne côtière	3 – 60	Ville moyennement polluée et zones industrielles	5 – 30
C 4	fort	modéré / condensation fréquente	distance 3 km $-$ 0,25 km de la ligne côtière (sans brouillard)	60 – 300	Ville fortement polluée et zones industrielles	30 – 90
C5	très fort	modéré, subtropical / durablement : condensation très fréquente	$\label{eq:distance} \mbox{distance} < 0,\!25 \mbox{ km de la ligne côtière, brouillard occasion-nel, condensation fréquente}$	300 – 1 500	Environnement avec très forte pollution industrielle	90 – 250

CATÉGORIES CRC SELON LA NORME DIN EN 1993-1-4: 2015-10

La catégorie CRC décrit la classe de résistance à la corrosion atmosphérique pour l'acier inoxydable. En conséquence, elle est déterminante pour la partie de la vis qui n'est pas vissée dans le bois. Donc pour la tête de la vis dans la majorité des cas. Elle s'oriente sur le facteur de résistance à la corrosion CRF qi décrit le risque d'exposition et, par là même, la distance par rapport à la ligne côtière, ceci sur la base de la teneur en chlorures dans l'atmosphère.

Il a été affecté à nos vis en acier inoxydable, en plus de la catégorie CRC, une catégorie C, pour permettre une comparaison directe entre les vis inoxydables et les vis revêtues Dans ce cas, cette valeur C ne doit être considérée qu'avec prise en compte de la teneur en chlorures. Étant donné que nos aciers inoxydables sont à affecter aux catégories CRC II et CRC III, nous les expliquerons dans le tableau ci-dessous.

Classe de résistance à la corrosion CRC	Classe de résistance à la corrosion CRC	Risque d'exposition	Distance par rapport à la mer
CRCI	1	Pièces intérieures	
CRCII	0 à -7	faible à élevé	> 0,25 km
CRCIII	-7 à -15	élevé à très élevé	≤ 0,25 km
CRC IV	-15 à -20	très élevé	≤ 0,25 km
CRC V	< - 20	très élevé	≤ 0,25 km

ATMOSPHÈRE DE PISCINE

Dans le cas des métaux, le chlore dans l'atmosphère peut entraîner une corrosion sous tension. Pour éviter ce risque, les éléments de construction porteurs doivent uniquement être en acier inoxydable. Vous trouverez dans le tableau ci-dessous la catégorie CRC que vous devez utiliser dans une situation donnée.

Éléments porteurs dans une atmosphère de piscine	Classe CRC requise
Éléments porteurs qui sont nettoyés régulièrement 1)	CRC III, CRC IV
Éléments porteurs qui ne sont pas nettoyés régulièrement	CRC V
Toutes les pièces de fixation, moyens de connexion, pièces filetées	CRCV

¹⁾ Plus le nettoyage est fréquent, plus il est avantageux. L'intervalle entre les nettoyages ne devrait pas dépasser une semaine. Un plan de nettoyage et de contrôle précis doit toujours être vérifié par un expert en fonction de la situation. Une fois fixé, le nettoyage devrait s'appliquer à tous les éléments de l'ouvrage et pas seulement à ceux qui sont d'accès facile et bien visibles.

CATÉGORIES T SELON LA NORME DIN EN 14592:2022

La catégorie T décrit la corrosion causée par le bois. Elle ne concerne donc que la partie de la vis qui est vissée dans le bois. L'effet de la corrosion causée par le bois dépend de l'humidité, du type de bois, du pH et du traitement protecteur. À l'aide de la valeur d'humidité, il est possible d'affecter approximativement les classes T aux classes d'utilisation. Dans la plupart des zones climatiques, le taux d'humidité annuel moyen dans le bois tendre ne dépasse pas les valeurs suivantes :

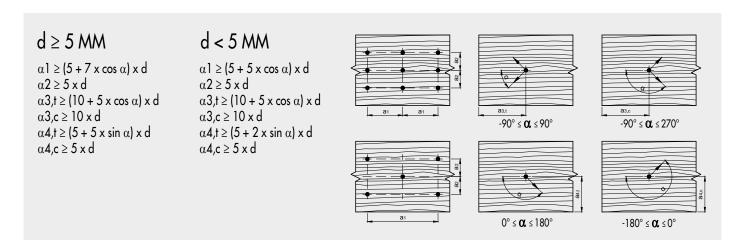
 ω = 10 % dans les secteurs chauffés \rightarrow T1 est à affecter approximativement à la classe d'utilisation 1

 ω = 16 % dans les secteurs non chauffés, mais protégés par des mesures constructives \rightarrow T2 est à affecter approximativement à la classe d'utilisation 2

ω = 20 % dans les secteurs exposés à la pluie mais sans contact avec le sol \rightarrow T3 et T4 sont à affecter approximativement à la catégorie d'utilisation 3

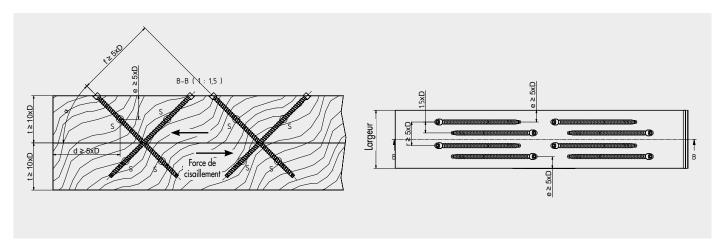
 ω > 20 % T5 s'applique à toutes les autres structures qui sont à affecter à la classe d'utilisation 3

À l'aide du tableau suivant, vous pouvez déterminer la catégorie T correcte sur la base des facteurs cités et choisir la vis qui convient à chaque situation.


Catégorie de bois	Taux d'humidité annuel moyendes	Types de bois selon le pH	Exemples de types de bois	Traitement protecteur
TI	ω<10	Tous	Tous	Non traité et traité
T2	10 ≤ ω ≤16 %	Tous	Tous	Non traité et traité
T3	$16 < \omega \le 20 \%$	pH > 4	Mélèze, pin, bouleau, épicéa, sapin	Non traité
T4	$16 < \omega \le 20 \%$	pH ≤ 4	Chêne, châtaignier, cèdre rouge, sapin de Douglas, hêtre	Non traité et traité
T5	Durablement ω > 20 %	Tous	Tous	Non traité et traité

DISTANCES MINIMALES ENTRE LES VIS

Ces distances minimales entre les vis permettent de répartir régulièrement la charge et évitent que les vis soient trop proches les unes des autres, ce qui pourrait altérer l'intégrité structurelle. Ces règles peuvent être fixées dans différents standards de construction, règles de construction ou directives de conception. En respectant ces règles, il est possible de réduire les risques tels que les ruptures, les défaillances ou des déformations inattendues, ce qui permet de réaliser une structure plus sûre et plus fiable.


RÈGLES DE DISTANCE MINIMALE POUR LES CONTRAINTES DE CISAILLEMENT

Distances minimales et distances au bord des vis pour les contraintes de cisaillement et les charges axiales. Les distances minimales ci-dessous, basées sur la norme EN 1995-1-1, se réfèrent à des vis soumises à une contrainte latérale, sans pré-perçage, d'un diamètre nominal donné pour assemblages boisbois dans lesquels le bois a une densité caractéristique de 420 kg/m³ au plus. Dans les formules ci-dessous, α est l'angle entre la force et le sens des fibres du bois. Dans les assemblages acier-bois, les distances minimales a₁ et a₂ peuvent être réduites d'un facteur de multiplication de 0,7.

RÈGLES DE DISTANCE MINIMALE POUR LES CHARGES AXIALES

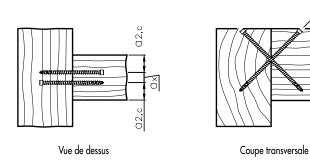
Pour les vis Eurotec dans des trous pré-percés, soumises uniquement à des contraintes axiales, et pour les vis avec pointe de forage (du type KonstruX ST), il convient de respecter conformément à ETA-11/0024 les distances minimales suivantes compte tenu d'une épaisseur minimale du matériau de t = 10 · d et d'une largeur minimale de w = max (8 · d; 60 mm). La distance entre les vis cruciformes doit être d'au moins 1,5 d.

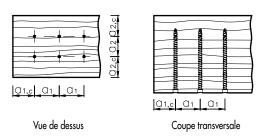
DISTANCES MINIMALES POUR CONTRAINTES DE CISAILLEMENT DANS DES TROUS PRÉ-PERCÉS

lpha=0, fixation bois-bois												
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13	
al	15	17,5	20	22,5	25	30	33	40	50	57	65	
α2	9	10,5	12	13,5	15	18	20	24	30	34	39	
a3,t	36	42	48	54	60	72	78	96	120	136	156	
a3,c	21	24,5	28	31,5	35	42	46	56	70	79	91	
a4,t	9	10,5	12	13,5	15	18	20	24	30	34	39	
a4,c	9	10,5	12	13,5	15	18	20	24	30	34	39	
					$\alpha = 90$, fixatio	n bois-bois						
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13	
al	12	14	16	18	20	24	26	32	40	45	52	
α2	12	14	16	18	20	24	26	32	40	45	52	
a3,t	21	24,5	28	31,5	35	42	46	56	70	79	91	
a3,c	21	24,5	28	31,5	35	42	46	56	70	79	91	
a4,t	15	17,5	20	22,5	35	42	46	56	70	79	91	
a4,c	9	10,5	12	13,5	15	18	20	24	30	34	39	

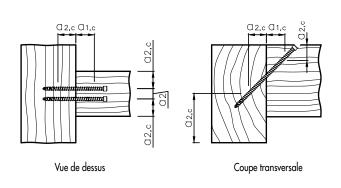
DISTANCES MINIMALES POUR CONTRAINTES DE CISAILLEMENT SANS TROUS PRÉ-PERCÉS

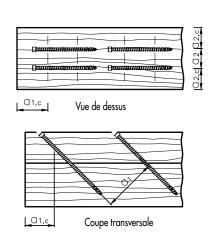
	$\alpha=0$, fixation bois-bois												
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13		
$\mathfrak{a}_{\mathfrak{l}}$	30	35	40	45	60	72	78	96	120	136	156		
\mathfrak{a}_2	15	17,5	20	22,5	25	30	33	40	50	57	65		
A3 _{3 t}	45	52,5	60	67,5	75	90	98	120	150	170	195		
A33c	30	35	40	45	50	60	65	80	100	113	130		
A3 _{4 t}	15	17,5	20	22,5	25	30	33	40	50	57	65		
A3 _{4 c}	15	17,5	20	22,5	25	30	33	40	50	57	65		
					$\alpha = 90$, fixati	on bois-bois							
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13		
a _l	15	17,5	20	22,5	25	30	33	40	50	57	65		
\mathfrak{a}_2	15	17,5	20	22,5	25	30	33	40	50	57	65		
A3 _{3 t}	30	35	40	45	50	60	65	80	100	113	130		
A33c	30	35	40	45	50	60	65	80	100	113	130		
a _{4,†}	21	24,5	28	31,5	50	60	65	80	100	113	130		
A3 _{4 c}	15	17,5	20	22,5	25	30	33	40	50	57	65		

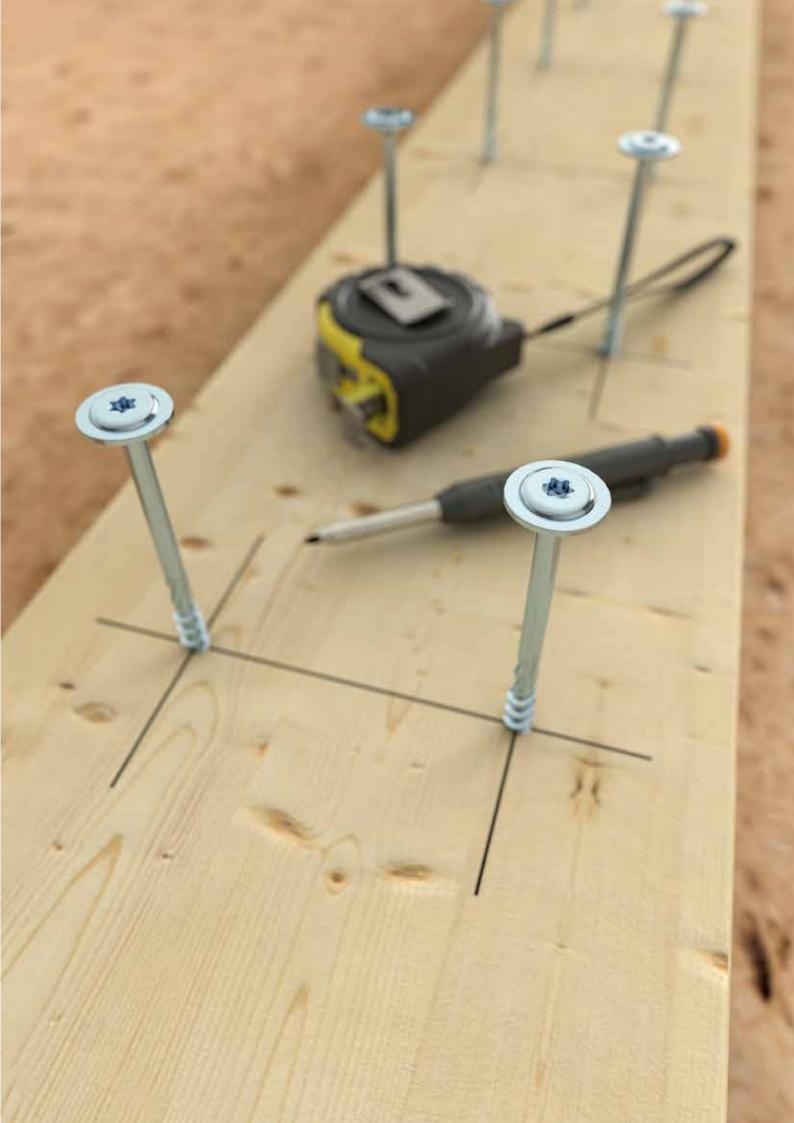

Information: pour une fixation a cier-bois, vous devez simplement multiplier les valeurs par 0,7.


DISTANCES MINIMALES POUR CHARGES AXIALES

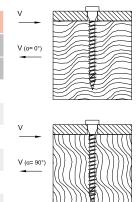
	Pointe de forage					Pointe AG					
	Avec et sans trous pré-percés			Ti	ous pré-percés		San	s trous pré-perco	és		
Ø [mm]	Règles relatives aux distances	6,5	8	10	Règles relatives aux distances	11,3	13	Règles relatives aux distances	11,3	13	
a _l	5 · d	33	40	50	5 · d	57	65	5 · d	57	65	
\mathfrak{a}_2	5 · d	33	40	50	5 · d	57	65	5 · d	57	65	
\mathbf{a}_{2red}	2,5 · d	16	20	25	2,5 · d	29	33	2,5 · d	29	33	
A3 _{1 c}	5 · d	33	40	50	5 · d	57	65	5 · d	113	130	
A3 _{2 c}	$3\cdot d$	20	24	30	$3\cdot d$	34	39	$3\cdot d$	46	52	
a_{1x}	1,5 · d	10	12	15	1,5 · d	17	20	1,5 · d	17	20	


VIS DISPOSÉES EN CROIX SOUS CONTRAINTE DE TRACTION




VIS PERPENDICULAIRES À LA VEINE DU BOIS

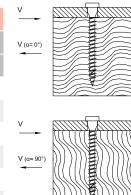
VIS EN BIAIS PAR RAPPORT À LA VEINE DU BOIS SOUS CONTRAINTE DE TRACTION, ANGLE α


CAS SPÉCIAUX

CLOUS D'ANCRAGE

ST	Clou	α = 0 °					
ρk ≤ 420 kg/m³	Pré- _l	percé	No	Non pré-percé			
ρκ ≤ 420 kg/ III°	x d	4	x d		4		
a ₁	3,5	14	7		28		
\mathfrak{a}_2	2,1	9	3,5		14		
A3 _{3 t}	12	48	15		60		
A3 _{3 c}	7	28	10		40		
a _{4,t}	3	3 12			20		
A3 _{4 c}	3	12	5		20		

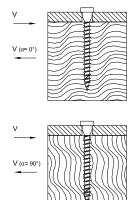
TZ	Clou	s d'ancrage		α = 90 °
ale < 490 len /m³	Pré- _l	oercé	No	on pré-percé
ρ k \leq 420 kg/m ³	x d	4	Х	4
\mathfrak{a}_1	2,8	11	3,5	i 14
\mathfrak{a}_2	2,8	11	3,5	i 14
A3 _{3 t}	7	28	10	40
A33c	7	28	10	40
a _{4,t}	5	20	7	28
A3 _{4 c}	3	12	5	20



VIS POUR ÉQUERRE

ST		WBS		α = 0 °		
ρ k ≤ 420 kg/m ³	Pré- _l	oercé	No	Non pré-percé		
ρ κ ≥ 420 kg/ III°	x d	5	x d	5		
\mathfrak{a}_1	3,5	18	8,4	42		
\mathfrak{a}_2	2,1	11	3,5	18		
A3 _{3 t}	12	60	15	75		
A3 ₃ ,	7	35	10	50		
a _{4,1}	3	15	5	25		
A3 _{4 c}	3	15	5	25		

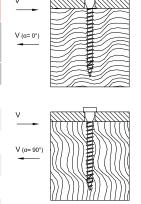
ST		WBS	α = 90 °		
ρk ≤ 420 kg/m³	Pré- _l	percé	Non pré-percé		
ρ κ ≥ 420 kg/ III°	x d	5	хс	J 5	
aı	2,8	14	3,5	18	
\mathfrak{a}_2	2,8	14	3,5	18	
A3 _{3 t}	7	35	10	50	
A3 ₃ ,	7	35	10	50	
a _{4,t}	7	35	10	50	
A3 _{4 c}	3	15	5	25	



VIS POUR ÉQUERRE STRONG

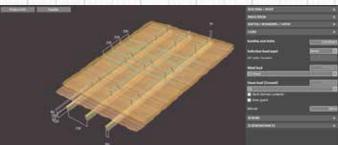
ST		WBS	α = 0 °					
- le - 2 400 less /ss-3	P	ré-perc	é	Nor	Non pré-percé			
ρ k \leq 420 kg/m ³	x d	8	10	x d	8	10		
aı	3,5	28	35	8,4	67	84		
\mathfrak{a}_2	2,1	17	21	3,5	28	35		
A3 _{3 t}	12	96	120	15	120	150		
A3 _{3 c}	7	56	70	10	80	100		
a _{4,t}	3	24	30	5	40	50		
A3 _{4 c}	3	24	30	5	40	50		

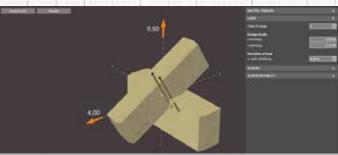
ST		WBS S	α = 90 °				
ρ k ≤ 420 kg/m ³	P	ré-perc	é	Non pré-percé			
ρk ≤ 420 kg/III°	x d	8	10	x d	8	10	
aı	2,8	22	28	3,5	28	35	
\mathfrak{a}_2	2,8	22	28	3,5	28	35	
A3 _{3†}	7	56	70	10	80	100	
A3 _{3 c}	7	56	70	10	80	100	
a _{4,t}	7	56	70	10	80	100	
A3 _{4 c}	3	24	30	5	40	50	



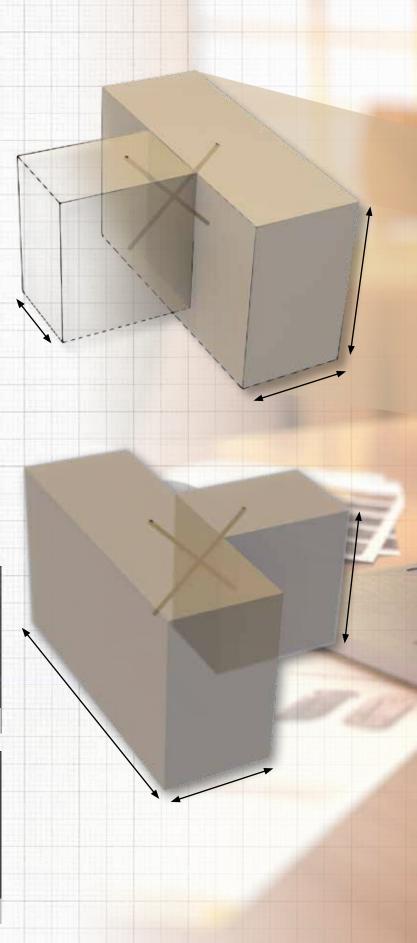
VIS POUR ÉQUERRE ZK HARDWOOD

ST		WBS ZK H		α = 0 °			
ρk	Pré-	percé		é-percé : 420	Non pré-percé ρk ≤ 500		
[kg/m³]	x d	5,6	x d	5,6	x d	5,6	
aı	3,5	20	8,4	47	10,5	59	
\mathfrak{a}_2	2,1	12	3,5	20	4,9	27	
A3 _{3 t}	12	67	15	84	20	112	
A33c	7	39	10	56	15	84	
a _{4,t}	3	3 17		28	7	39	
A3 _{4 c}	3	17	5	28	7	39	


ST		WBS ZK I		α = 90 °			
ρ k	Pré-	percé		é-percé : 420	Non pré-percé ρk ≤ 500		
[kg/m³]	x d	5,6	x d	5,6	x d	5,6	
\mathfrak{a}_{l}	2,8	16	3,5	20	4,9	27	
a ₂	2,8	16	3,5	20	4,9	27	
A3 _{3 t}	7	39	10	56	15	84	
A33c	7	39	10	56	15	84	
a _{4,t}	7 39		10	10 56		67	
a _{4 c}	3	17	5	28	7	39	

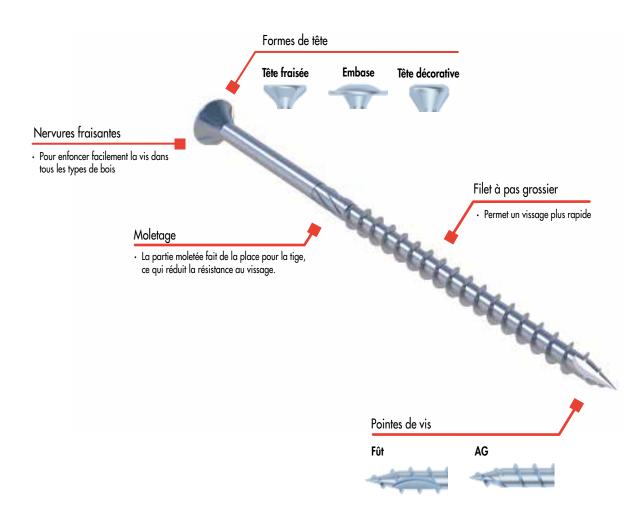

APPRENEZ-EN PLUS SUR NOTRE LOGICIEL ECS

Le logiciel ECS est un logiciel gratuit et convivial permettant de dimensionner au préalable les vis à bois d'Eurotec. Les modules portent sur les assemblages de poutres maîtresses et poutres auxiliaires, les renforts transversaux (traction et pression), les assemblages chevrons-pannes, les fixations de systèmes d'isolation sur toitures et façades ainsi que de nombreuses autres fonctions.


- Le logiciel vous permet d'adapter complètement votre assemblage individuel en modifiant des paramètres tels que la géométrie, le type de matériau (p. ex. lamellé-collé BSH et bois massif dans différentes classes de résistance), les limites de charge (charges variables et permanentes), la classe de sollicitation et plus, en fonction de vos besoins.
- → Il permet par ailleurs d'optimiser la solution de fixation en ajustant le diamètre de la vis et la longueur de la vis et en vérifiant le facteur d'utilisation de la résistance affiché en bas à droite de l'écran.
- Une fois que vous avez sélectionné la solution d'assemblage, vous obtiendrez un rapport de calcul conformément à ETA-11/0024 et EN 1995 (eurocode 5), y compris les dessins correspondants au format PDF.

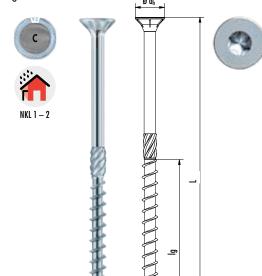
Module de fixation de matériaux d'isolation sur les chevrons avec Topduo

Module d'assemblage chevrons-pannes avec Paneltwistec et KonstruX



PANELTWISTEC

La vis Paneltwistec est une vis à bois avec pointe spéciale et nervures fraisantes au-dessus du filet. La fente de fraisage à la pointe de la vis permet un mordant rapide et un moindre fendillement lors du vissage. En revanche, Paneltwistec AG dispose d'un pas de filet rabattu qui réduit la résistance au vissage. Les vis à bois Paneltwistec sont disponibles avec tête fraisée, tête décorative et embase, en acier à carbone revêtu et dans différents aciers inoxydables.



PANELTWISTEC AG, TÊTE FRAISÉE

Paneltwistec AG

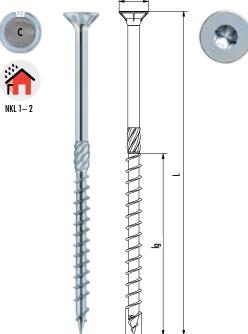
Tête fraisée, pointe AG, galvanisée bleu

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945436	3,5	30	7,0	18	TX15 ●	1000
945838	3,5	35	7,0	21	TX15 •	1000
945437	3,5	40	7,0	24	TX15 ●	1000
945490	3,5	50	7,0	30	TX15 •	500
945491	4,0	30	8,0	18	TX20 •	1000
945836	4,0	35	8,0	21	TX20 •	1000
945492	4,0	40	8,0	24	TX20 •	1000
945493	4,0	45	8,0	27	TX20 •	500
945494	4,0	50	8,0	30	TX20 •	500
945495	4,0	60	8,0	36	TX20 •	200
945496	4,0	70	8,0	42	TX20 •	200
945497	4,0	80	8,0	48	TX20 •	200
945498	4,5	40	9,0	24	TX25 •	500
945588	4,5	45	9,0	27	TX25 •	500
945499	4,5	50	9,0	30	TX25 •	500
945567	4,5	60	9,0	36	TX25 •	200
945568	4,5	70	9,0	42	TX25 •	200
945569	4,5	80	9,0	48	TX25 •	200
945574	5,0	40	10,0	24	TX25 •	200
945837	5,0	45	10,0	27	TX25 •	200
945575	5,0	50	10,0	30	TX25 •	200
945576	5,0	60	10,0	36	TX25 •	200
945577	5,0	70	10,0	42	TX25 •	200
945578		80		48	TX25 •	200
	5,0		10,0			200
945579 945580	5,0	90 100	10,0	54 60	TX25 ● TX25 ●	200
945581	5,0		10,0	70		200
945600	5,0	120	10,0	30	TX25 •	200°
945601	5,0	50	10,0		TX30 •	200°
	5,0	60	10,0	36	TX30 •	200°
945602	5,0	70	10,0	42	TX30 •	
945603	5,0	80	10,0	48	TX30 •	200°
945604	5,0	90	10,0	54	TX30 •	200*
945605	5,0	100	10,0	60	TX30 •	200°
945607	5,0	120	10,0	70	TX30 •	200°
945583	6,0	60	12,0	36	TX30 •	200
945584	6,0	70	12,0	42	TX30 •	200
945632	6,0	80	12,0	48	TX30 •	200
945633	6,0	90	12,0	54	TX30 •	100
945634	6,0	100	12,0	60	TX30 •	100
945635	6,0	110	12,0	70	TX30 •	100
945636	6,0	120	12,0	70	TX30 •	100
945637	6,0	130	12,0	70	TX30 •	100
945638	6,0	140	12,0	70	TX30 •	100
945639	6,0	150	12,0	70	TX30 •	100
945640	6,0	160	12,0	70	TX30 •	100
945641	6,0	180	12,0	70	TX30 •	100
945642	6,0	200	12,0	70	TX30 •	100
945643	6,0	220	12,0	70	TX30 •	100
945644	6,0	240	12,0	70	TX30 •	100
945645	6,0	260	12,0	70	TX30 •	100
945646	6,0	280	12,0	70	TX30 •	100
945647	6.0	300	120	70	TY20 •	100

70

12,0

TX30 •


100

300

6,0

⁹⁴⁵⁶⁴⁷ * y compris bit

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945632-TX40	6,0	80	12,0	48	TX40 •	200
945634-TX40	6,0	100	12,0	60	TX40 •	100
945636-TX40	6,0	120	12,0	70	TX40 •	100
945638-TX40	6,0	140	12,0	70	TX40 •	100
945640-TX40	6,0	160	12,0	70	TX40 •	100
945641-TX40	6,0	180	12,0	70	TX40 •	100
945642-TX40	6,0	200	12,0	70	TX40 •	100
945643-TX40	6,0	220	12,0	70	TX40 •	100
945644-TX40	6,0	240	12,0	70	TX40 •	100
945648	6,0	320	12,0	70	TX40 •	100
945649	6,0	340	12,0	70	TX40 •	100
945650	6,0	360	12,0	70	TX40 •	100
945651	6,0	380	12,0	70	TX40 •	100
945652	6,0	400	12,0	70	TX40 •	100
944715	8,0	80	14,5	50	TX40 •	50
944716	8,0	100	14,5	60	TX40 •	50
944717	8,0	120	14,5	70	TX40 •	50
944718	8,0	140	14,5	100	TX40 •	50
944719	8,0	160	14,5	100	TX40 •	50
944720	8,0	180	14,5	100	TX40 •	50
944721	8,0	200	14,5	100	TX40 •	50
944722	8,0	220	14,5	100	TX40 •	50
944723	8,0	240	14,5	100	TX40 •	50
944724	8,0	260	14,5	100	TX40 •	50
944725	8,0	280	14,5	100	TX40 •	50
944726	8,0	300	14,5	100	TX40 •	50
944727	8,0	320	14,5	100	TX40 •	50
944728	8,0	340	14,5	100	TX40 •	50
944729	8,0	360	14,5	100	TX40 •	50
944730	8,0	380	14,5	100	TX40 •	50
944731	8,0	400	14,5	100	TX40 •	50
944732	8,0	420	14,5	100	TX40 •	50
944733	8,0	440	14,5	100	TX40 •	50
944734	8,0	460	14,5	100	TX40 •	50
944735	8,0	480	14,5	100	TX40 •	50
944736	8,0	500	14,5	100	TX40 •	50
944737	8,0	550	14,5	100	TX40 •	50
944739	8,0	600	14,5	100	TX40 •	50
945687	10,0	100	17,8	60	TX50 ●	50
945688	10,0	120	17,8	70	TX50 ●	50
945689	10,0	140	17,8	100	TX50 ●	50
945690	10,0	160	17,8	100	TX50 ●	50
945691	10,0	180	17,8	100	TX50 ◆	50
945692	10,0	200	17,8	100	TX50 ●	50
945693	10,0	220	17,8	100	TX50 ●	50
945694	10,0	240	17,8	100	TX50 ●	50
945695	10,0	260	17,8	100	TX50 ●	50
945696	10,0	280	17,8	100	TX50 ●	50
945697	10,0	300	17,8	100	TX50 ●	50
945698	10,0	320	17,8	100	TX50 ●	50
945699	10,0	340	17,8	100	TX50 ●	50
945703	10,0	360	17,8	100	TX50 ●	50
945709	10,0	380	17,0	100	TX50 ●	50
945711	10,0	400	17,0	100	TX50 ●	50
7 4 3/11	10,0	400	17,0	100	IVON -	JU

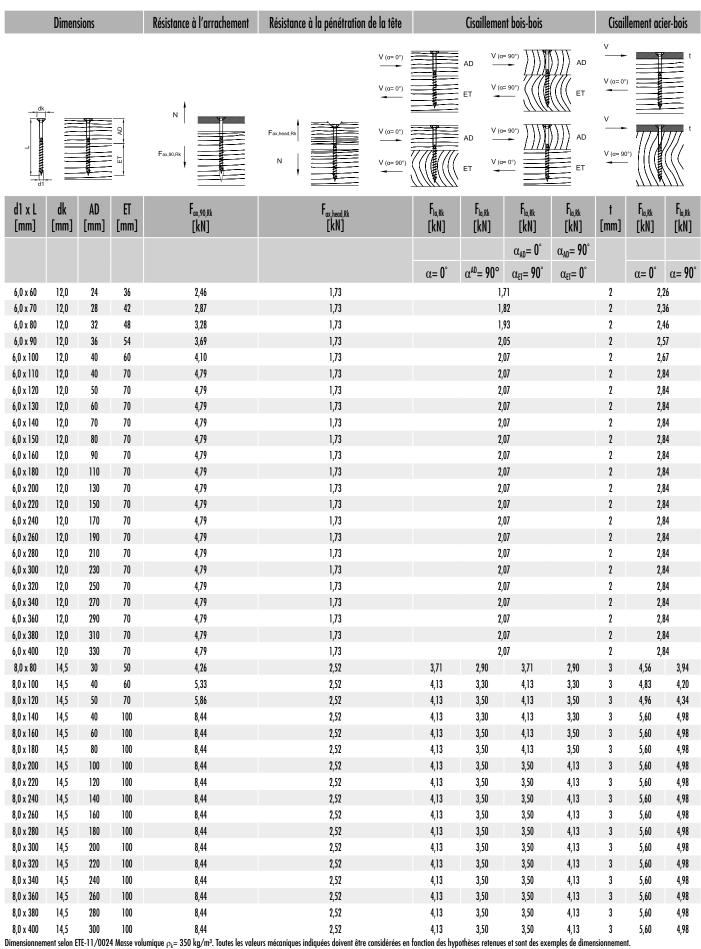
INFORMATIONS TECHNIQUES PANELTWISTEC AG, TÊTE FRAISÉE, GALVANISÉE BLEU

	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration	de la tête		Cisaillement l	oois-bois		Cisaille	ment acier-bois
dk			ET AD	N Fax,90,Rk	Fax.head.Rk	V (a= 0*) V (a= 0*) V (a= 0*) V (a= 90*)	AD ET	V (α= 90°) V (α= 90°) V (α= 90°)		ET \	' (α= 0°)	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	$ \begin{array}{ccc} F_{l\alpha,Rk} & F_{l\alpha,Rk} \\ [kN] & [kN] \end{array} $
22				£2				r	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		L
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm EI} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		$\alpha = 0^{\circ} \alpha = 90^{\circ}$
3,5 x 30	7,0	12	18	0,84	0,59			0,62	3.El 10	3,[1	1	0,86
3,5 x 35	7,0	14	21	0,98	0,59			0,67			1	0,92
3,5 x 40	7,0	16	24	1,12	0,59			0,70			1	0,95
3,5 x 45	7,0	18	27	1,26	0,59			0,74			1	0,99
3,5 x 50	7,0	20	30	1,40	0,59			0,78			1	1,02
4,0 x 30	8,0	12	18	0,93	0,77			0,71			2	0,91
4,0 x 35	8,0	14	21	1,08	0,77			0,80			2	1,07
4,0 x 40	8,0	16	24	1,24	0,77			0,84			2	1,15
4,0 x 45	8,0	18	27	1,39	0,77			0,88			2	1,19
4,0 x 50	8,0	20	30	1,55	0,77			0,92			2	1,23
4,0 x 60	8,0	24	36	1,86	0,77			1,01			2	1,31
4,0 x 70	8,0	28	42	2,17	0,77			1,03			2	1,38
4,0 x 80	8,0	32	48	2,48	0,77			1,03			2	1,46
4,5 x 40	9,0	16	24	1,35	0,97			1,00			2	1,34
4,5 x 45	9,0	18	27	1,52	0,97			1,03			2	1,40
4,5 x 50	9,0	20	30	1,69	0,97			1,08			2	1,44
4,5 x 60	9,0	24	36	2,03	0,97			1,17			2	1,53
4,5 x 70	9,0	28	42	2,36	0,97			1,26			2	1,61
4,5 x 80	9,0	32	48	2,70	0,97			1,26			2	1,70
5,0 x 40	10,0	16	24	1,45	1,20			1,11			2	1,44
5,0 x 45	10,0	18	27	1,63	1,20			1,20			2	1,62
5,0 x 50	10,0	20	30	1,82	1,20			1,24			2	1,67
5,0 x 60	10,0	24	36	2,18	1,20			1,34			2	1,76
5,0 x 70	10,0	28	42	2,54	1,20			1,44			2	1,85
5,0 x 80	10,0	32	48	2,90	1,20			1,52			2	1,94
5,0 x 90	10,0	36	54	3,27	1,20			1,52			2	2,03
5,0 x 100	10,0	40	60	3,63	1,20			1,52			2	2,12
5,0 x 120	10,0	50	70	4,24	1,20			1,52			2	2,27

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{mod} / \gamma_{Mc}$.

Exemple:


Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

 $[\]rightarrow$ Valeur de dimensionnement de l'effet E_d= 2,00 \cdot 1,35 + 3,00 \cdot 1,5= 7,20 kN.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · k, and / YNc. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd ≥ Ed).

INFORMATIONS TECHNIQUES PANELTWISTEC AG, TÊTE FRAISÉE, GALVANISÉE BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la	ête		Cisaillemen	t bois-bois		Cisaillement acier-bois		
dk			ET AD	N Fax.90,Rk	V (c	= 0°) = 0°) = 0°) = 90°)		AD	= 90°)	AD ET	V (α= 0° V (α= 90)	77/	t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	$\alpha^{AD} = 90^{\circ}$	$\alpha_{\rm EI}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 420	14,5	300	100	8,44	2,52		4,13	3,50	3,50	4,13	3	5,60	4,98
8,0 x 440	14,5	300	100	8,44	2,52		4,13	3,50	3,50	4,13	3	5,60	4,98
8,0 x 460	14,5	300	100	8,44	2,52		4,13	3,50	3,50	4,13	3	5,60	4,98
8,0 x 480	14,5	300	100	8,44	2,52		4,13	3,50	3,50	4,13	3	5,60	4,98
8,0 x 500	14,5	300	100	8,44	2,52		4,13	3,50	3,50	4,13	3	5,60	4,98
8,0 x 550	14,5	300	100	8,44	2,52		4,13	3,50	3,50	4,13	3	5,60	4,98
8,0 x 600	14,5	300	100	8,44	2,52		4,13	3,50	3,50	4,13	3	5,60	4,98
10,0 x 100	17,8	40	60	6,48	3,63		5,73	4,37	5,73	4,37	3	6,78	5,81
10,0 x 120	17,8	50	70	7,13	3,63		6,07	4,87	6,07	4,87	3	6,94	5,97
10,0 x 140	17,8	40	100	10,26	3,63		5,73	4,37	5,73	4,37	3	7,72	6,76
10,0 x 160	17,8	60	100	10,26	3,63		6,07	5,10	6,07	5,10	3	7,72	6,76
10,0 x 180	17,8	80	100	10,26	3,63		6,07	5,10	6,07	5,10	3	7,72	6,76
10,0 x 200	17,8	100	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 220	17,8	120	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 240	17,8	140	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 260	17,8	160	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 280	17,8	180	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 300	17,8	200	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 320	17,8	220	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 340	17,8	240	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 360	17,8	260	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 380	17,8	280	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76
10,0 x 400	17,8	300	100	10,26	3,63		6,07	5,10	5,10	6,07	3	7,72	6,76

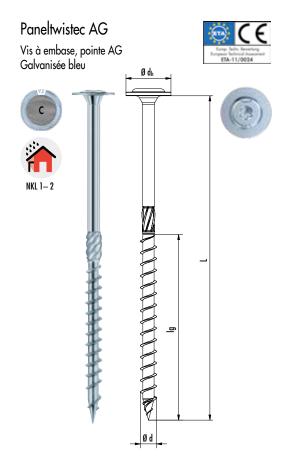
Dimensionnement selon ETA-11/0024 Masse volumique ρ_i = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{R_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

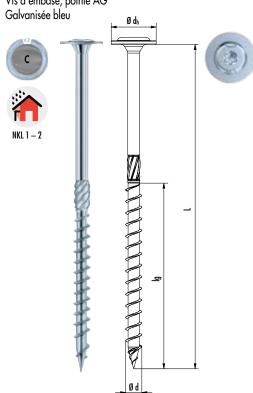
 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge \overline{E_d} \longrightarrow min R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

PANELTWISTEC AG, VIS À EMBASE


Galvanisée bleu

NO J	α.Ι1	1.51	α .ll. r1	l., r1		nii
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
946158	4,0	40	10,0	24	TX20 -	500
946159	4,0	50	10,0	30	TX20 -	500
946160	4,0	60	10,0	36	TX20 -	500
946161	4,5	50	11,0	30	TX20 •	200
946162	4,5	60	11,0	36	TX20 •	200
946163	4,5	70	11,0	42	TX20 -	200
946037	5,0	50	12,0	30	TX25 ●	200
946038	5,0	60	12,0	36	TX25 ●	200
946039	5,0	70	12,0	42	TX25 •	200
946040	5,0	80	12,0	48	TX25 ●	200
946042	5,0	100	12,0	60	TX25 •	200
945947	6,0	30	14,0	24	TX30 •	100
945948	6,0	40	14,0	24	TX30 •	100
945712	6,0	50	14,0	30	TX30 •	100
945713	6,0	60	14,0	36	TX30 •	100
945716	6,0	70	14,0	42	TX30 •	100
945717	6,0	80	14,0	48	TX30 •	100
945718	6,0	90	14,0	54	TX30 •	100
945719	6,0	100	14,0	60	TX30 •	100
945720	6,0	110	14,0	66	TX30 •	100
945721	6,0	120	14,0	70	TX30 •	100
945722	6,0	130	14,0	70	TX30 •	100
945723	6,0	140	14,0	70	TX30 •	100
945724	6,0	150	14,0	70	TX30 •	100
945725	6,0	160	14,0	70	TX30 •	100
945726	6,0	180	14,0	70	TX30 •	100
945727	6,0	200	14,0	70	TX30 •	100
945728	6,0	220	14,0	70	TX30 •	100
945729	6,0	240	14,0	70	TX30 •	100
945730	6,0	260	14,0	70	TX30 •	100
945731	6,0	280	14,0	70	TX30 •	100
945732	6,0	300	14,0	70	TX30 •	100
945717-TX40	6,0	80	14,0	48	TX40 •	100
945719-TX40	6,0	100	14,0	60	TX40 •	100
945721-TX40	6,0	120	14,0	70	TX40 •	100
945723-TX40	6,0	140	14,0	70	TX40 •	100
945725-TX40	6,0	160	14,0	70	TX40 •	100
945726-TX40	6,0	180	14,0	70	TX40 •	100
945727-TX40	6,0	200	14,0	70	TX40 •	100
945728-TX40	6,0	220	14,0	70	TX40 •	100
945729-TX40	6,0	240	14,0	70	TX40 •	100
945733	6,0	320	14,0	70		100
945734	6,0	340	14,0	70	TX40 •	100
					TX40 •	
945735	6,0	360	14,0	70	TX40 •	100
945736	6,0	380	14,0	70	TX40 •	100
945737	6,0	400	14,0	70	TX40 •	100

PANELTWISTEC AG, VIS À EMBASE

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945806	8,0	60	22,0	50	TX40 •	50
944588	8,0	80	22,0	60	TX40 •	50
944589	8,0	100	22,0	70	TX40 •	50
944590	8,0	120	22,0	100	TX40 •	50
944591	8,0	140	22,0	100	TX40 •	50
944592	8,0	160	22,0	100	TX40 •	50
944593	8,0	180	22,0	100	TX40 •	50
944594	8,0	200	22,0	100	TX40 •	50
944595	8,0	220	22,0	100	TX40 •	50
944596	8,0	240	22,0	100	TX40 •	50
944597	8,0	260	22,0	100	TX40 •	50
944598	8,0	280	22,0	100	TX40 •	50
944599	8,0	300	22,0	100	TX40 •	50
944600	8,0	320	22,0	100	TX40 •	50
944601	8,0	340	22,0	100	TX40 •	50
944602	8,0	360	22,0	100	TX40 •	50
944603	8,0	380	22,0	100	TX40 •	50
944604	8,0	400	22,0	100	TX40 •	50
944605	8,0	420	22,0	100	TX40 •	50
944606	8,0	440	22,0	100	TX40 •	50
944607	8,0	460	22,0	100	TX40 •	50
944608	8,0	480	22,0	100	TX40 •	50
944609	8,0	500	22,0	100	TX40 •	50
944610	8,0	550	22,0	100	TX40 •	50
944611	8,0	600	22,0	100	TX40 •	50
945750	10,0	80	25,0	48	TX50 ●	50
945751	10,0	100	25,0	60	TX50 ●	50
945752	10,0	120	25,0	70	TX50 ●	50
945753	10,0	140	25,0	100	TX50 ●	50
945754	10,0	160	25,0	100	TX50 ●	50
945755	10,0	180	25,0	100	TX50 ●	50
945756	10,0	200	25,0	100	TX50 ●	50
945757	10,0	220	25,0	100	TX50 ●	50
945758	10,0	240	25,0	100	TX50 ●	50
945759	10,0	260	25,0	100	TX50 •	50
945760	10,0	280	25,0	100	TX50 ●	50
945761	10,0	300	25,0	100	TX50 ●	50
945762	10,0	320	25,0	100	TX50 ●	50
945763	10,0	340	25,0	100	TX50 ●	50
945764	10,0	360	25,0	100	TX50 ●	50
945765	10,0	380	25,0	100	TX50 ◆	50
945766	10,0	400	25,0	100	TX50 ●	50
	10,0	100	23,0		17.50	30

INFORMATIONS TECHNIQUES PANELTWISTEC AG, VIS À EMBASE, GALVANISÉE BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de l	a tête		Cisaillemen	t bois-bois		Cisail	lement ac	ier-bois
dk gamming di			ЕТ ДО	N Fax90,Rk	Faxhead,Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 0°)		ET V(C	i= 90°) i= 90°) i= 90°)	AD ET	V (\arr 90)		t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
נווווון	[111111]	LIIIIII	LIIIIII	[vii]	[KW]		[KII]	[KII]			נוווווו	[KII]	[KII]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							$\alpha = 0^{\circ}$	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\rm H}$ = 0°		α= 0 °	α= 90 °
4,0 x 40	10,0	16	24	1,24	1,20			0,9	15		2	1,	,15
4,0 x 50	10,0	20	30	1,55	1,20			1,0	13		2	1,	,23
4,0 x 60	10,0	24	36	1,86	1,20			1,1	2		2 2	I,	,31
4,5 x 50 4,5 x 60	11,0 11,0	20 24	30 36	1,69 2,03	1,45 1,45			1,2 1,2	!U 10			I,	,44 ,53
4,5 x 00 4,5 x 70	11,0	28	42	2,05 2,36	1,45			1,3	.7 18		2 2	1,	,61
5,0 x 50	12,0	20	30	1,82	1,73			1,3	17		2	1	,67
5,0 x 60	12,0	24	36	2,18	1,73			1,4	 17		2	1.	,76
5,0 x 70	12,0	28	42	2,54	1,73			1,!	57		2	1,	,85
5,0 x 80	12,0	32	48	2,90	1,73			1,5 1,6	5		2	1,	,85 ,94
5,0 x 100	12,0	40	60	3,63	1,73			1,6	5		2	2,	,12 ,20
6,0 x 30	14,0	6	24	1,64	2,35			0,6	15		2	1,	,20
6,0 x 40	14,0	16	24	1,64	2,35			1,3	13		2	I,	,63
6,0 x 50 6,0 x 60	14,0	20	30 36	2,05	2,35 2,35 2,35 2,35 2,35			1,6	10 17			2,	,06 ,26 ,36
6,0 x 00	14,0 14,0	24 28	42	2,46 2,87	2,33			1,0) /) 7		2 2	2,	,20 26
6,0 x 80	14,0	32	48	3,28	2,33			1,1	19		2	2,	46
6,0 x 90	14,0	36	54	3,69	2,35 2,35			2,0 2,1	!]		2	2.	,46 ,57
6,0 x 100	14,0	40	60	4,10	2,35			2,2	13			2,	,67
6,0 x 110	14,0	44	66	4,79	2,35 2,35			2,7 2,7	13		2	2,	,67 ,77
6,0 x 120	14,0	50	70	4,79	2,35			2,2	23		2	2,	,84 ,84
6,0 x 130	14,0	60	70	4,79	2,35 2,35 2,35			2,7	13		2	2,	,84
6,0 x 140	14,0	70	70	4,79	2,35			2,7	13		2	2,	,84
6,0 x 150	14,0	80	70	4,79	2,35			2,2	.3 .a			2,	,84
6,0 x 160	14,0	90	70 70	4,79	2,35			2,7	.3 19		2	Z,	,84 04
6,0 x 180 6,0 x 200	14,0 14,0	110 130	70 70	4,79 4,79	2,35 2,35			2,2 2,2	.J		2		,84 ,84
6,0 x 200 6,0 x 220	14,0	150	70	4,79 4,79	2,35 2,35			2,2	.0		2	2,	,04 ,84
6,0 x 240	14,0	170	70	4,79	2,35			2,2			2		,84
6,0 x 260	14,0	190	70	4,79	2,35			2,2	23		2	2.	,84
6,0 x 280	14,0	210	70	4,79	2,35			2,2	23		2	2,	,84
6,0 x 300	14,0	230	70	4,79	2,35			2,2	!3		2	2,	,84
6,0 x 320	12,0	250	70	4,79	2,35			2,2	23		2		,84
6,0 x 340	12,0	270	70	4,79	2,35			2,7			2		,84
6,0 x 360	12,0	290	70	4,79	2,35			2,7	13		2		,84
6,0 x 380	12,0	310	70	4,79	2,35			2,7			2		,84
6,0 x 400	12,0	330	70	4,79	2,35	.1		2,2		1 1 1	. 2		,84

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{lk} = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=\underline{7,20\ kN}.$

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq \overline{E_{\text{d.}}} \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

INFORMATIONS TECHNIQUES PANELTWISTEC AG, VIS À EMBASE, GALVANISÉE BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration d	e la tête	Cisaillement bois-bois				Cisaillement acier-bois		
dk			ET AD	N Fax,90,Rk	Fax,head,Rk	V (α= 0°) V (α= 0°) V (α= 0°) V (α= 90°)		ET V	(a=90°) (a=90°) (a=90°) (a=0°)	AD ET ET	V (α= 0°		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	22,0	30	50	4,26	5,81		4,14	3,34	4,14	3,34	3	4,56	3,94
8,0 x 100	22,0	40	60	5,33	5,81		4,83	4,01	4,83	4,01	3	4,83	4,20
8,0 x 120	22,0	50	70	5,86	5,81		4,95	4,32	4,95	4,32	3	4,96	4,34
8,0 x 140	22,0	40	100	8,44	5,81		4,95	4,13	4,95	4,13	3	5,60	4,98
8,0 x 160	22,0	60	100	8,44	5,81		4,95	4,32	4,95	4,32	3	5,60	4,98
8,0 x 180	22,0	80	100	8,44	5,81		4,95	4,32	4,95	4,32	3	5,60	4,98
8,0 x 200	22,0	100	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 220	22,0	120	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 240	22,0	140	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 260	22,0	160	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 280	22,0	180	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 300	22,0	200	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 320	22,0	220	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 340	22,0	240	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 360	22,0	260	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 380	22,0	280	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 400	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 420	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 440	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 460	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 480	22,0	300	100	8,44 8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 500	22,0	300 300	100 100	,	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 550 8,0 x 600	22,0	300	100	8,44 8,44	5,81 5,81		4,95 4,95	4,32 4,32	4,32 4,32	4,95 4,95	3	5,60 5,60	4,98 4,98
0,U X 0UU	22,0	300	100	0,44	3,01		4,73	4,32	4,32	4,70	3	3,00	4,70

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_{\rm X}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k= 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k= 3,00 kN. kmd= 0,9. γ_{M} = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN</u>.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq \overline{E_d. \longrightarrow min } \ R_k = R_d \cdot \gamma_M \ / \ k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ra= Ra $\cdot \gamma_M / k_{mod} \rightarrow R_b = 7,20$ kN $\cdot 1,3/0,9 = 10,40$ kM \rightarrow Mise en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC AG, VIS À EMBASE, GALVANISÉE BLEU

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête	ête Cisaillement bois-bois				Cisaillement acier-bois		
dk			ET AD	N Fax,90,Rk	$\begin{array}{c c} V \ (\alpha=0^{\circ}) \\ \hline \\ V \ (\alpha=0^{\circ}) \\ \hline \\ V \ (\alpha=0^{\circ}) \\ \hline \\ V \ (\alpha=90^{\circ}) \\ \hline \end{array}$		ET V(a	= 90°) = 90°)	AD ET ET	V (α= 0:		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	$\alpha_{\rm EI}$ = 90°	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
10,0 x 100	25,0	40	60	6,48	7,50	6,44	5,08	6,44	5,08	3	6,78	5,81
10,0 x 120	25,0	50	70	7,13	7,50	6,94	5,74	6,94	5,74	3	6,94	5,97
10,0 x 140	25,0	40	100	10,26	7,50	6,70	5,34	6,70	5,34	3	7,72	6,76
10,0 x 160	25,0	60	100	10,26	7,50	7,03	6,07	7,03	6,07	3	7,72	6,76
10,0 x 180	25,0	80	100	10,26	7,50	7,03	6,07	7,03	6,07	3	7,72	6,76
10,0 x 200	25,0	100	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 220	25,0	120	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 240	25,0	140	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 260	25,0	160	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 280	25,0	180	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 300	25,0	200	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 320	25,0	220	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 340	25,0	240	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 360	25,0	260	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 380	0 25,0 280 100 10,26 7,50		7,03	6,07	6,07	7,03	3	7,72	6,76			
10,0 x 400 25,0 300 100 10,26			7,50	7,03	6,07	6,07	7,03	3	7,72	6,76		

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

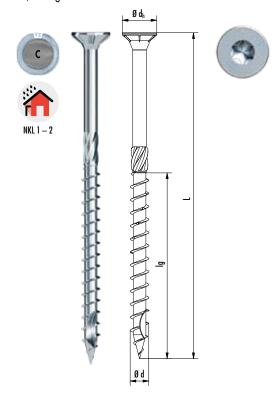
Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mol}=0,9.\ \gamma_{N}=1,3.$

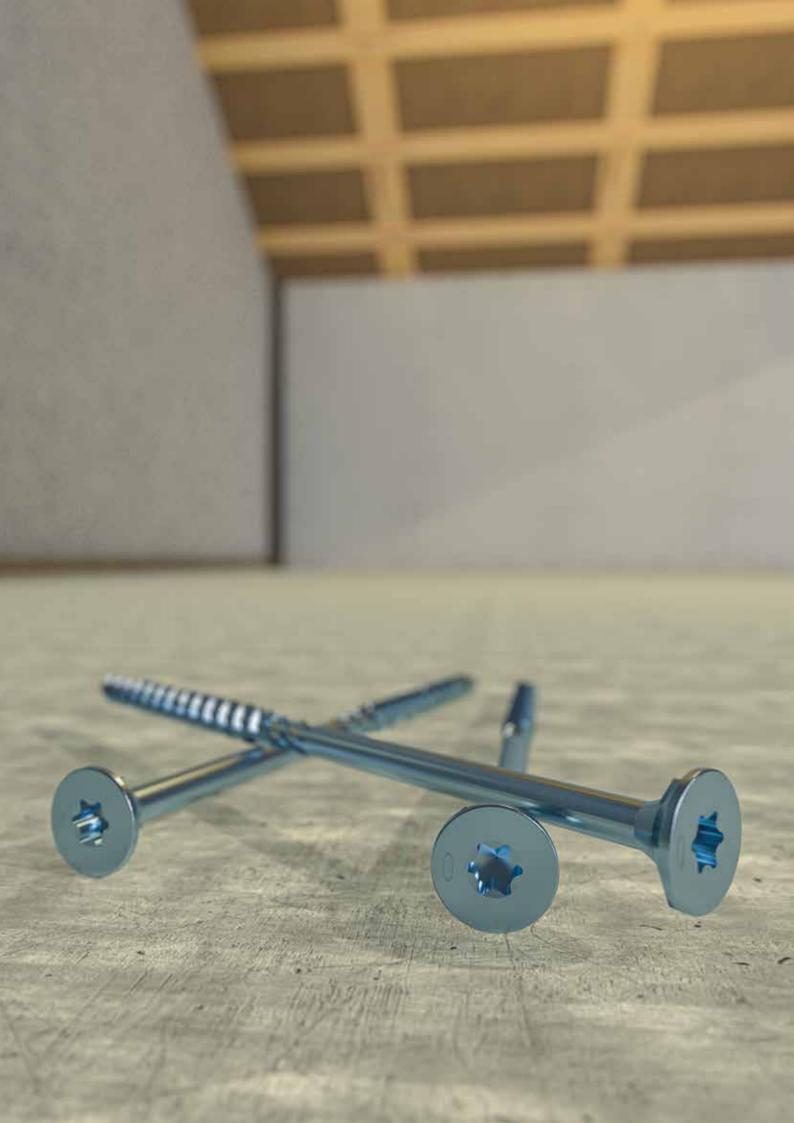
 \rightarrow Valeur de dimensionnement de l'effet E_{d} = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \, / \, k_{\text{mod}}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

PANELTWISTEC

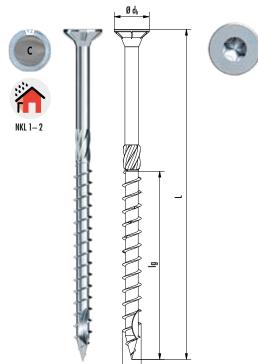
Acier galvanisé bleu


Paneltwistec

Tête fraisée, pointe de vis avec fût, acier galvanisé bleu

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
B903045	3,5	30	7,0	18	TX15 ●	1000
B903044	3,5	35	7,0	21	TX15 ●	1000
B903001	3,5	40	7,0	24	TX15 ●	1000
B903002	3,5	50	7,0	30	TX15 ●	500
B903003	4,0	30	8,0	18	TX20 -	1000
B903603	4,0	35	8,0	21	TX20 -	1000
B903004	4,0	40	8,0	24	TX20 -	1000
B902089	4,0	45	8,0	27	TX20 -	500
B903005	4,0	50	8,0	30	TX20 -	500
B903006	4,0	60	8,0	36	TX20 -	200
B903007	4,0	70	8,0	42	TX20 -	200
B903008	4,0	80	8,0	48	TX20 -	200
B903009	4,5	40	9,0	24	TX25 •	500
B903087	4,5	45	9,0	27	TX25 •	500
B903010	4,5	50	9,0	30	TX25 •	500
B903088	4,5	55	9,0	36	TX25 •	500
B903011	4,5	60	9,0	36	TX25 •	200
B903012	4,5	70	9,0	42	TX25 •	200
B903013	4,5	80	9,0	48	TX25 •	200
B903014	5,0	40	10,0	24	TX25 •	200
B903015	5,0	50	10,0	30	TX25 •	200
B903016	5,0	60	10,0	36	TX25 •	200
B903017	5,0	70	10,0	42	TX25 •	200
B903018	5,0	80	10,0	48	TX25 •	200
B903578	5,0	90	10,0	54	TX25 •	200
B903019	5,0	100	10,0	60	TX25 •	200
B903020	5,0	120	10,0	70	TX25 •	200
B903021	6,0	60	12,0	36	TX30 •	200
B903022	6,0	70	12,0	42	TX30 •	200
B903023	6,0	80	12,0	48	TX30 •	200
B903163	6,0	90	12,0	54	TX30 •	100
B903024	6,0	100	12,0	60	TX30 •	100
B903025	6,0	120	12,0	70	TX30 •	100
B903026	6,0	130	12,0	70	TX30 •	100
B903027	6,0	140	12,0	70	TX30 •	100
B903030	6,0	150	12,0	70	TX30 •	100
B903029	6,0	160	12,0	70	TX30 •	100
B903031	6,0	180	12,0	70	TX30 •	100
B903032	6,0	200	12,0	70	TX30 •	100
B903033	6,0	220	12,0	70	TX30 •	100
B903034	6,0	240	12,0	70	TX30 •	100
B903035	6,0	260	12,0	70	TX30 •	100
B903036	6,0	280	12,0	70	TX30 •	100
B903037	6,0	300	12,0	70	TX30 •	100

Autres tailles à la page suivante



Eurotec® | Paneltwistec

Paneltwistec

Tête fraisée, pointe de vis avec fût, acier galvanisé bleu

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903443	8,0	80	14,5	48	TX40 ●	1000
903435	8,0	100	14,5	60	TX40 •	1000
903419	8,0	120	14,5	66	TX40 •	1000
903420	8,0	140	14,5	95	TX40 •	500
903421	8,0	160	14,5	95	TX40 •	1000
903422	8,0	180	14,5	95	TX40 •	1000
903423	8,0	200	14,5	95	TX40 •	1000
903424	8,0	220	14,5	95	TX40 •	500
903425	8,0	240	14,5	95	TX40 •	1000
903426	8,0	260	14,5	95	TX40 •	200
903427	8,0	280	14,5	95	TX40 •	200
903428	8,0	300	14,5	95	TX40 •	200
903429	8,0	320	14,5	95	TX40 ●	500
903430	8,0	340	14,5	95	TX40 •	500
903431	8,0	360	14,5	95	TX40 •	500
903432	8,0	380	14,5	95	TX40 •	500
903433	8,0	400	14,5	95	TX40 ●	200
975780	12,0	120	20,0	80	TX50 ●	25
975781	12,0	140	20,0	80	TX50 ●	25
975782	12,0	160	20,0	80	TX50 ●	25
975783	12,0	180	20,0	80	TX50 ●	25
975784	12,0	200	20,0	80	TX50 ●	25
975785	12,0	220	20,0	100	TX50 ●	25
975786	12,0	240	20,0	100	TX50 ●	25
975787	12,0	260	20,0	100	TX50 ●	25
975788	12,0	280	20,0	100	TX50 ●	25
975789	12,0	300	20,0	100	TX50 ●	25
975790	12,0	320	20,0	100	TX50 ●	25
975791	12,0	340	20,0	120	TX50 ●	25
975792	12,0	360	20,0	120	TX50 ●	25
975793	12,0	380	20,0	120	TX50 ●	25
975794	12,0	400	20,0	120	TX50 ●	25
975795	12,0	500	20,0	120	TX50 ●	25
975796	12,0	600	20,0	120	TX50 ●	25

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER GALVANISÉ BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la têt	е	Cisaillem	ent bois-bois		Cisail	lement ac	ier-bois
dk dt dt dt	_		ET AD	N Fax,90,Rk	V (a=	0")	ET V	(a= 90°) (a= 90°) (a= 0°)	AD ET	V (α= 0) V (α= 9)		t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						$\alpha = 0^{\circ}$	α^{AD} = 90°	α_{EI} = 90°	$\alpha_{\rm H}$ = 0°		$\alpha = 0^{\circ}$	α= 90 °
3,5 x 30	7,0	12	18	0,84	0,59			0,62	-	1	0,	,86
3,5 x 35	7,0	14	21	0,98	0,59			0,67		1		,92
3,5 x 40	7,0	16	24	1,12	0,59			0,70		1	0,	,95
3,5 x 45	7,0	18	27	1,26	0,59			0,74		1	0,	,99
3,5 x 50	7,0	20	30	1,40	0,59			0,78		1	1,	,02
4,0 x 30	8,0	12	18	0,93	0,77			0,71		2	0,	,91
4,0 x 35	8,0	14	21	1,08	0,77			0,80		2	1,	,07
4,0 x 40	8,0	16	24	1,24	0,77			0,84		2	1,	,15
4,0 x 45	8,0	18	27	1,39	0,77			0,88		2	1,	,19
4,0 x 50	8,0	20	30	1,55	0,77			0,92		2	1,	,23
4,0 x 60	8,0	24	36	1,86	0,77			1,01		2		,31
4,0 x 70	8,0	28	42	2,17	0,77			1,03		2		,38
4,0 x 80	8,0	32	48	2,48	0,77			1,03		2		,46
4,5 x 40	9,0	16	24	1,35	0,97			1,00		2		,34
4,5 x 45	9,0	18	27	1,52	0,97			1,03		2		,40
4,5 x 50	9,0	20	30	1,69	0,97			1,08		2		,44
4,5 x 55	9,0	19	36	2,03	0,97			1,05		2		,53
4,5 x 60	9,0	24	36	2,03	0,97			1,17		2		,53
4,5 x 70	9,0	28	42	2,36	0,97			1,26		2		,61
4,5 x 80	9,0	32	48	2,70	0,97			1,26		2		,70
5,0 x 40	10,0	16	24	1,45	1,20			1,11		2		,44
5,0 x 50	10,0	20	30	1,82	1,20			1,24		2		,67
5,0 x 60	10,0	24	36	2,18	1,20			1,34		2		,76
5,0 x 70	10,0	28	42	2,54	1,20			1,44		2		,85
5,0 x 80	10,0	32	48	2,90	1,20			1,52		2		,94
5,0 x 90	10,0	36	54	3,27	1,20			1,52		2		,03
5,0 x 100	10,0	40	60	3,63	1,20			1,52		2		,12
5,0 x 120	10,0	50	70	4,24	1,20			1,52		2	2,	,27

Dimensionnement selon ETA-11/0024 Masse volumique ρ_i = 350 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{mod} / \gamma_{Mc}$.

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{Nl} = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet Ed= 2,00 \cdot 1,35 + 3,00 \cdot 1,5= <u>7,20 kN.</u>

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

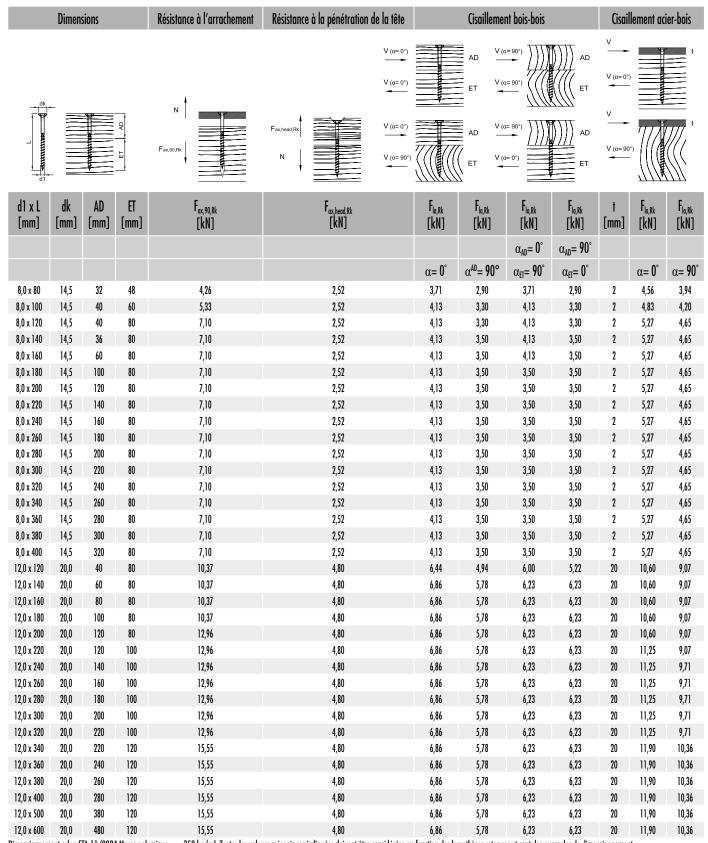
C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ra= Rd · γ_M / k_{mod} \rightarrow Ra= 7,20 kN · 1,3/0,9= $\frac{10,40 \text{ kN}}{1,3/0,9}$ \rightarrow Mise en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER GALVANISÉ BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration	on de la tête		Cisailleme	nt bois-bois		Cisaill	ement ac	ier-bois
dk annummer			ET AD	N Fax,90,Rk	Faxhead.Rk	V (a= 0°) V (a= 0°) V (a= 0°)	E	D $V(a=90)$ $V(a=90)$ $V(a=90)$ $V(a=90)$	27)	AD ET ET	V (α= 0°) V (α= 90°)		t t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,heod,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
							۸۰	AD 000	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		٥٥	000
				• "			α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
6,0 x 60	12,0	24	36	2,46	1,73				,71		2		,26
6,0 x 70 6,0 x 80	12,0	28 32	42	2,87 3,28	1,73				,82 ,93		2		,36 ,46
6,0 x 90	12,0 12,0	36	48 54	3,69	1,73 1,73				,95 ,05		2		,40 ,57
6,0 x 100	12,0	40	60	4,10	1,73				,07		2		,67
6,0 x 110	12,0	40	70	4,79	1,73				,07		2		,84
6,0 x 120	12,0	50	70	4,79	1,73				,07		2		,84
6,0 x 130	12,0	60	70	4,79	1,73				,07		2		,84
6,0 x 140	12,0	70	70	4,79	1,73				,07		2		,84
6,0 x 150	12,0	80	70	4,79	1,73				,07		2		,84
6,0 x 160	12,0	90	70	4,79	1,73			2	,07		2	2	,84
6,0 x 180	12,0	110	70	4,79	1,73			2	,07		2	2	,84
6,0 x 200	12,0	130	70	4,79	1,73			2	,07		2	2	,84
6,0 x 220	12,0	150	70	4,79	1,73			2	,07		2	2	,84
6,0 x 240	12,0	170	70	4,79	1,73			2	,07		2	2	,84
6,0 x 260	12,0	190	70	4,79	1,73			2	,07		2	2	,84
6,0 x 280	12,0	210	70	4,79	1,73			2	,07		2	2	,84
6,0 x 300	12,0	230	70	4,79	1,73			2	,07		2	2	,84

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{R_k}$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_k ($R_k \ge E_k$).


Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

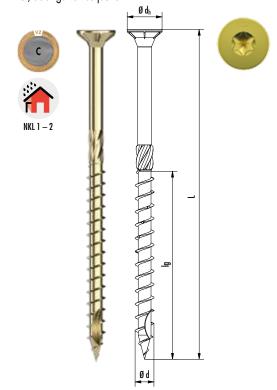
Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{th}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_u = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

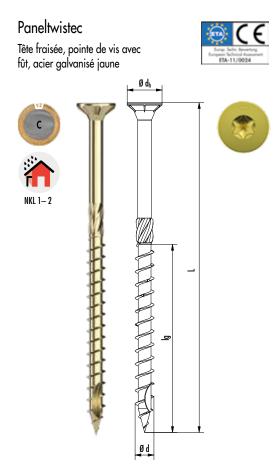
La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

PANELTWISTEC

Acier galvanisé jaune

Paneltwistec


Tête fraisée, pointe de vis avec fût, acier galvanisé jaune

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903000	3,5	30	7,0	18	TX20 •	1000
903044	3,5	35	7,0	21	TX20 •	1000
903001	3,5	40	7,0	24	TX20 •	1000
903002	3,5	50	7,0	30	TX20 •	500
903003	4,0	30	8,0	18	TX20 -	1000
903603	4,0	35	8,0	21	TX20 •	1000
903004	4,0	40	8,0	24	TX20 •	1000
902089	4,0	45	8,0	27	TX20 •	500
903005	4,0	50	8,0	30	TX20 •	500
903006	4,0	60	8,0	36	TX20 •	200
903007	4,0	70	8,0	42	TX20 •	200
903008	4,0	80	8,0	48	TX20 -	200
903046	4,5	35	9,0	24	TX20 •	500
903009	4,5	40	9,0	27	TX20 •	500
903087	4,5	45	9,0	30	TX20 •	500
903010	4,5	50	9,0	36	TX20 -	500
903011	4,5	60	9,0	42	TX20 •	200
903012	4,5	70	9,0	48	TX20 -	200
903013	4,5	80	9,0	24	TX20 •	200
903014	5,0	40	10,0	27	TX20 -	200
903015	5,0	50	10,0	30	TX20 •	200
903016	5,0	60	10,0	36	TX20 -	200
903017	5,0	70	10,0	42	TX20 •	200
903018	5,0	80	10,0	48	TX20 •	200
903578	5,0	90	10,0	54	TX20 •	200
903019	5,0	100	10,0	60	TX20 •	200
903020	5,0	120	10,0	70	TX20 •	200
903071	5,0	40	10,0	24	TX25 •	200
903072	5,0	50	10,0	30	TX25 •	200
903073	5,0	60	10,0	36	TX25 •	200
903074	5,0	70	10,0	42	TX25 •	200
903075	5,0	80	10,0	48	TX25 •	200
903582	5,0	90	10,0	54	TX25 •	200
903076	5,0	100	10,0	60	TX25 •	200
903077	5,0	120	10,0	70	TX25 •	200
903021	6,0	60	12,0	36	TX30 •	200
903022	6,0	70	12,0	42	TX30 •	200
903023	6,0	80	12,0	48	TX30 •	200
903163	6,0	90	12,0	54	TX30 •	100
903024	6,0	100	12,0	60	TX30 •	100
903039	6,0	110	12,0	70	TX30 •	100
903025	6,0	120	12,0	70	TX30 •	100
903026	6,0	130	12,0	70	TX30 •	100
903027	6,0	140	12,0	70	TX30 •	100
903028	6,0	150	12,0	70	TX30 •	100
903029	6,0	160	12,0	70	TX30 •	100
903031	6,0	180	12,0	70	TX30 •	100
903032	6,0	200	12,0	70	TX30 •	100
903033	6,0	220	12,0	70	TX30 •	100
903034	6,0	240	12,0	70	TX30 •	100
903035	6,0	260	12,0	70	TX30 •	100
903036	6,0	280	12,0	70	TX30 •	100
903037	6,0	300	12,0	70	TX30 •	100
903550	8,0	80	14,5	48	TX40 •	50
903551	8,0	100	14,5	60	TX40 •	50
902920	8,0	120	14,5	80	TX40 •	50
902919	8,0	140	14,5	80	TX40 •	50
902921	8,0	160	14,5	80	TX40 •	50
INLILI	0,0	100	ר _י דו	UU	1A40 -	مدسران مسساد درااند

Eurotec® | Paneltwistec

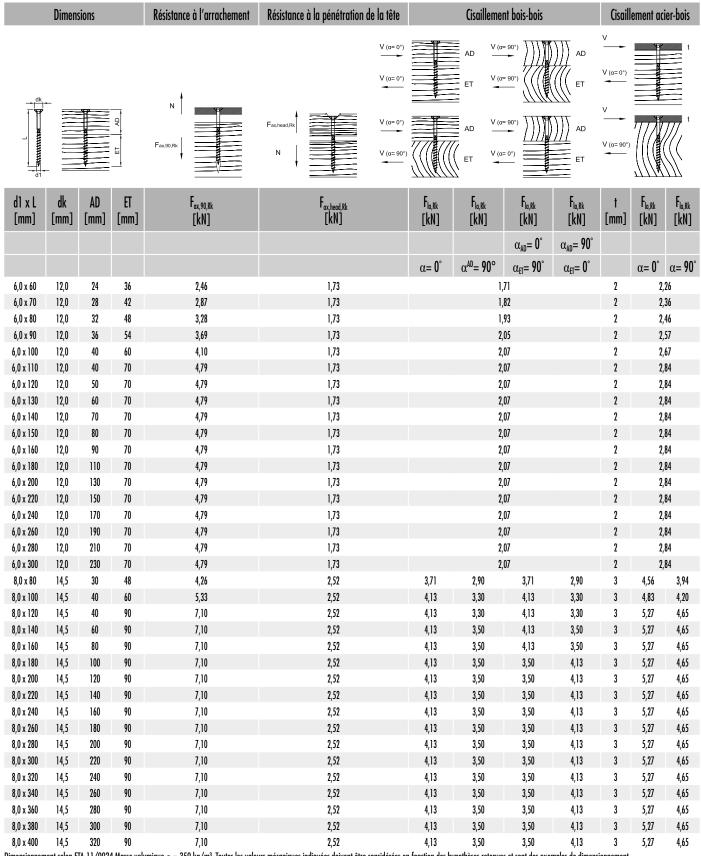
110 L 11	~ I	1	~ U	1		
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
902922	8,0	180	14,5	80	TX40 •	50
902923	8,0	200	14,5	80	TX40 •	50
902924	8,0	220	14,5	80	TX40 •	50
902925	8,0	240	14,5	80	TX40 •	50
902926	8,0	260	14,5	80	TX40 •	50
902928	8,0	300	14,5	80	TX40 •	50
902929	8,0	320	14,5	80	TX40 •	50
902930	8,0	340	14,5	80	TX40 •	50
902931	8,0	360	14,5	80	TX40 •	50
902932	8,0	380	14,5	80	TX40 •	50
903030	8,0	400	14,5	80	TX40 •	50
903513	10,0	100	17,4	60	TX50 ●	50
903491	10,0	120	17,4	90	TX50 ●	50
903492	10,0	140	17,4	90	TX50 ●	50
903493	10,0	160	17,4	90	TX50 ●	50
903494	10,0	180	17,4	90	TX50 ●	50
903495	10,0	200	17,4	90	TX50 ●	50
903496	10,0	220	17,4	90	TX50 ●	50
903497	10,0	240	17,4	90	TX50 ●	50
903498	10,0	260	17,4	90	TX50 ◆	50
903499	10,0	280	17,4	90	TX50 ●	50
903500	10,0	300	17,4	90	TX50 ●	50
903501	10,0	320	17,4	90	TX50 ●	50
903502	10,0	340	17,4	90	TX50 ●	50
903503	10,0	360	17,4	90	TX50 ●	50
903504	10,0	380	17,4	90	TX50 ●	50
903505	10,0	400	17,4	90	TX50 ●	50

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER GALVANISÉ JAUNE

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisailleme	nt bois-bois		Cisaill	ement a	ier-bois
dk di di			ET AD	N Fax.90,Rk	$V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$		AD V (a=	90.)	AD ET ET	V (a= 0°) V (a= 90°)		1
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	$\alpha_{\rm EI}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
2 5 20	7.0	10	10	0.04	0.00	α= υ			$\alpha_{\rm H} = 0$	1		
3,5 x 30 3,5 x 35	7,0 7,0	12 14	18 21	0,84 0,98	0,59 0,59		0,	62 47		1 1		,86 02
3,5 x 40	7,0	16	24	1,12	0,59			70		1		,92 ,95
3,5 x 45	7,0	18	27	1,26	0,59			74 74		1		,99
3,5 x 50	7,0	20	30	1,40	0,59		0,			1		,02
4,0 x 30	8,0	12	18	0,93	0,77		0,			2		,91
4,0 x 35	8,0	14	21	1,08	0,77			80		2		,07
4,0 x 40	8,0	16	24	1,24	0,77			84		2		,15
4,0 x 45	8,0	18	27	1,39	0,77			88		2		,19
4,0 x 50	8,0	20	30	1,55	0,77			92		2		,23
4,0 x 60	8,0	24	36	1,86	0,77			01		2		,31
4,0 x 70	8,0	28	42	2,17	0,77			03		2		,38
4,0 x 80	8,0	32	48	2,48	0,77			03		2		,46
4,5 x 35	9,0	14	21	1,18	0,97			90		2		,32
4,5 x 40	9,0	16	24	1,35	0,97			00		2		,34
4,5 x 45	9,0	18	27	1,52	0,97			03		2		,40
4,5 x 50	9,0	20	30	1,69	0,97		1,	08		2		,44
4,5 x 60	9,0	24	36	2,03	0,97		1,	17		2		,53
4,5 x 70	9,0	28	42	2,36	0,97		1,	26		2		,61
4,5 x 80	9,0	32	48	2,70	0,97		1,	26		2	1	,70
5,0 x 40*	10,0	16	24	1,45	1,20		1,	11		2	1	,44
5,0 x 50*	10,0	20	30	1,82	1,20		1,	24		2	1	,67
5,0 x 60*	10,0	24	36	2,18	1,20		1,	34		2	1	,76
5,0 x 70*	10,0	28	42	2,54	1,20			44		2		,85
5,0 x 80*	10,0	32	48	2,90	1,20			52		2		,94
5,0 x 90*	10,0	36	54	3,27	1,20			52		2		,03
5,0 x 100*	10,0	40	60	3,63	1,20			52		2		,12
5,0 x 120*	10,0	50	70	4,24	1,20		1,	52		2	2	,27

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs mécaniques indiquées, sous réserve d'erreurs d'impression et de composition. Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:


Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN</u>.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ri= Rd · γ_M / k_{mod} \rightarrow Ri= 7,20 kN · 1,3/0,9= $\frac{10,40 \text{ kN}}{1,3/0,9}$ \rightarrow Mise en cohérence avec les valeurs du tableau.

Eurotec Paneltwistec

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_{\rm k}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; / \; k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{2}$ \rightarrow Mise en cohérence avec les valeurs du tableau.

 $[\]rightarrow$ Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

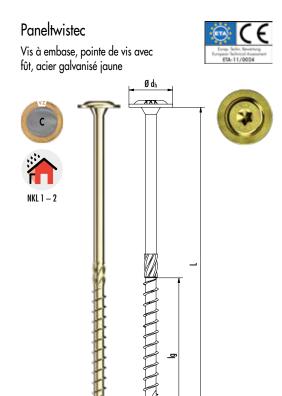
INFORMATIONS TECHNIQUES PANELTWISTEC , TÊTE FRAISÉE, ACIER GALVANISÉ JAUNE

	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration de la tête	te Cisaillement bois-bois				Cisaillement acier-bois			
dk	Fax,head,Rk V (a= 90°) AD V (a= 90°) AD V (a= 90°) ET ET										V (α=0°)		
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$				
						α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{EI}} = 0^{\circ}$		α= 0 °	α= 90 °	
10,0 x 100	17,4	40	60	6,48	3,63	5,73	4,37	5,73	4,37	3	6,78	5,81	
10,0 x 120	17,4	20	90	9,72	3,63	4,44	3,67	3,71	3,67	3	7,59	6,62	
10,0 x 140	17,4	40	90	9,72	3,63	5,73	4,37	5,73	4,37	3	7,59	6,62	
10,0 x 160	17,4	60	90	9,72	3,63	6,07	5,10	6,07	5,10	3	7,59	6,62	
10,0 x 180	17,4	80	90	9,72	3,63	6,07	5,10	6,07	5,10	3	7,59	6,62	
10,0 x 200	17,4	100	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 220	17,4	120	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 240	17,4	140	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 260	17,4	160	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 280	17,4	180	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 300	17,4	200	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 320	17,4	220	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 340	17,4	240	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 360	17,4	260	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 380	17,4	280	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	
10,0 x 400	17,4	300	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62	

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:


Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min R_k = $R_d \cdot \gamma_M$ / k_{mod}

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

Eurotec | Paneltwistec

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
G903204	8,0	80	22,0	48	TX40 •	50
G903205	8,0	100	22,0	60	TX40 •	50
G903466	8,0	120	22,0	80	TX40 •	50
G903467	8,0	140	22,0	80	TX40 •	50
G903468	8,0	160	22,0	80	TX40 •	50
G903469	8,0	180	22,0	80	TX40 •	50
G903470	8,0	200	22,0	80	TX40 •	50
G903471	8,0	220	22,0	80	TX40 •	50
G903472	8,0	240	22,0	80	TX40 •	50
G903473	8,0	260	22,0	80	TX40 •	50
G903474	8,0	280	22,0	80	TX40 •	50
G903475	8,0	300	22,0	80	TX40 •	50
G903476	8,0	320	22,0	80	TX40 •	50
G903477	8,0	340	22,0	80	TX40 •	50
G903478	8,0	360	22,0	80	TX40 •	50
G904625	8,0	380	22,0	80	TX40 •	50
G904626	8,0	400	22,0	80	TX40 •	50

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER GALVANISÉ JAUNE

	Dimensions			Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisailleme	nt bois-bois		Cisaille	ement ac	ier-bois
- d	dk QV		- ET AD	N	$\begin{array}{c c} V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=90^\circ) \\ \hline \end{array}$		AD V(α AD V(α ET V(α ET V(α	= 90°)	AD ET ET	V (\alpha = 0°) V (\alpha = 90°)		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	22,0	30	50	4,26	5,81	4,27	3,41	4,27	3,41	3	4,56	3,94
8,0 x 100	22,0	40	60	5,33	5,81	4,83	4,01	4,83	4,01	3	4,83	4,20
8,0 x 120	22,0	40	80	7,10	5,81	4,95	4,13	4,95	4,13	3	5,27	4,65
8,0 x 140	22,0	60	80	7,10	5,81	4,95	4,32	4,95	4,32	3	5,27	4,65
8,0 x 160	22,0	80	80	7,10	5,81	4,95	4,32	4,95	4,32	3	5,27	4,65
8,0 x 180	22,0	100	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 200	22,0	120	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 220	22,0	140	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 240	22,0	160	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 260	22,0	180	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 280	22,0	200	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 300	22,0	220	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 320	22,0	240	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 340	22,0	260	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 360	22,0	280	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 380	22,0	300	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 400	22,0	320	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

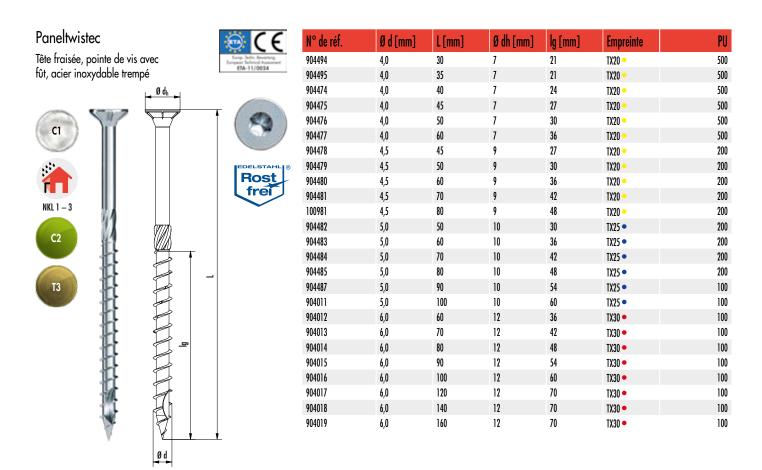
Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

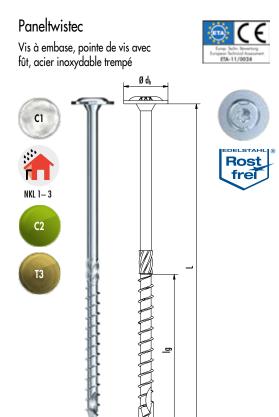
Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{N_k}$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_k ($R_k \ge E_k$).

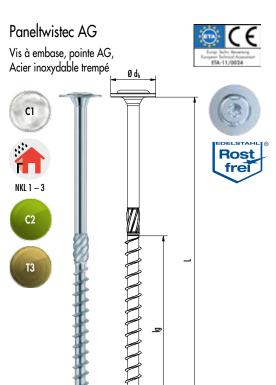
Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 \longrightarrow Valeur de dimensionnement de l'effet $E_{d}{=}$ 2,00 \cdot 1,35 + 3,00 \cdot 1,5= $\underline{7,20~kN}.$


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$


PANELTWISTEC, PANELTWISTEC AG

Acier inoxydable trempé

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945278	8,0	80	16	48	TX40 ●	50
945270	8,0	100	16	60	TX40 •	50
945271	8,0	120	16	80	TX40 •	50
945272	8,0	140	16	80	TX40 •	50
945364	8,0	160	16	80	TX40 •	50
945365	8,0	180	16	80	TX40 •	50
945366	8,0	200	16	80	TX40 •	50
945367	8,0	220	16	80	TX40 •	50
945368	8,0	240	16	80	TX40 •	50
945369	8,0	260	16	80	TX40 •	50
945370	8,0	280	16	80	TX40 •	50
945371	8,0	300	16	80	TX40 •	50
945372	8,0	320	16	80	TX40 •	50
945373	8,0	340	16	80	TX40 •	50
945374	8,0	360	16	80	TX40 •	50
945375	8,0	380	16	80	TX40 •	50
945376	8,0	400	16	80	TX40 •	50

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
975772	6,0	60	14,0	36	TX30 •	100
975773	6,0	80	14,0	48	TX30 •	100
975774	6,0	100	14,0	60	TX30 •	100
975775	6,0	120	14,0	70	TX30 •	100
975776	6,0	140	14,0	70	TX30 •	100
975777	6,0	160	14,0	70	TX30 •	100

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER INOXYDABLE TREMPÉ

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration d	e la tête		Cisailleme	nt bois-bois		Cisail	lement aci	ier-bois
di di			ET AD	Fax,90,Rk	Fax,head,Rk	V (α= 0°) V (α= 0°) V (α= 0°)		ET V	(a= 90°) (a= 90°) (a= 0°)	AD ET	V (α= 0°) V (α= 90)		t t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
£g				£2	22		L3	L3	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		L3	Limi
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
4,0 x 30	8,0	12	18	0,93	0,77		u- v		,71	α _{El} – U	2	α – υ 0,	
4,0 x 35	8,0	14	21	1,08	0,77				,80		2	1,	
4,0 x 40	8,0	16	24	1,24	0,77				,84		2	1,	
4,0 x 45	8,0	18	27	1,39	0,77				,88		2	1,	
4,0 x 50	8,0	20	30	1,55	0,77				,92		2	1,	
4,0 x 60	8,0	24	36	1,86	0,77				,01		2	1,	
4,5 x 45	9,0	18	27	1,52	0,97			1	,00		2	1,	37
4,5 x 50	9,0	20	30	1,69	0,97			1	,08		2	1,	44
4,5 x 60	9,0	24	36	2,03	0,97			1	,17		2	1,	
4,5 x 70	9,0	28	42	2,36	0,97			1	,23		2	1,	61
4,5 x 80	9,0	32	48	2,70	0,97				,23		2	1,	
5,0 x 50	10,0	20	30	1,82	1,20				,24		2	1,	
5,0 x 60	10,0	24	36	2,18	1,20				,34		2	1,	
5,0 x 70	10,0	28	42	2,54	1,20				,44		2	1,	
5,0 x 80	10,0	32	48	2,90	1,20				,52		2	1,	
5,0 x 90	10,0	36	54	3,27	1,20				,52		2	2,	
5,0 x 100	10,0	40	60	3,63	1,20				,52		2	2,	
6,0 x 60	12,0	24	36	2,46	1,73				,65		2	2,	
6,0 x 70	12,0	28	42	2,87	1,73				,75		2	2,	
6,0 x 80	12,0	32	48	3,28	1,73				,85		2	2,	
6,0 x 90	12,0	36	54	3,69	1,73				,96		2	2,	
6,0 x 100	12,0	40	60	4,10	1,73				,02		2	2,	
6,0 x 120	12,0	50	70 70	4,79	1,73				,60		2		35
6,0 x 140	12,0	70	70	4,79	1,73				,02		2	2,	
6,0 x 160	12,0	90	70	4,79	1,73			2	,02		2	2,	80

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER INOXYDABLE TREMPÉ

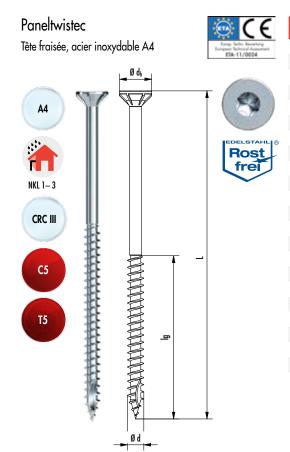
	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisailleme	nt bois-bois		Cisail	lement ac	ier-bois
dk dk dq dy			ET AD	N Fax,50,RK	$\begin{array}{c c} V \ (\alpha=0^{\circ}) \\ \hline \\ V \ (\alpha=0^{\circ}) \\ \hline \\ V \ (\alpha=0^{\circ}) \\ \hline \\ V \ (\alpha=90^{\circ}) \\ \hline \end{array}$		ET N	/ (a=90°) / (a=90°) / (a=90°) / (a=0°)	AD ET ET	V (α=		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	$F_{\alpha\chi,head,fk} \ [kN]$	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	$\alpha_{\rm EI}$ = 90°	$\alpha_{\rm H}$ = 0°		α= 0 °	α= 90 °
6,0 x 60	14,0	24	36	2,46	2,35			,81		2		.21
6,0 x 80	14,0	32	48	3,28	2,35			,01		2		41
6,0 x 100	14,0	40	60	4,10	2,35			,74		2		,18
6,0 x 100	14,0	40	60	4,10	2,35			,18		2		.62
6,0 x 120	14,0	50	70	4,80	2,35			,18		2		,80
6,0 x 160	14,0	90	70	4,80	2,35		2	,18		2	2	,80
8,0 x 80	22,0	30	50	4,26	5,81	3,94	3,21	3,72	3,36	3	4,41	3,83
8,0 x 100	22,0	40	60	4,80	5,81	4,55	3,71	4,21	3,87	3	4,55	3,96
8,0 x 120	22,0	60	60	5,33	5,81	4,68	4,10	4,34	4,34	3	4,68	4,10
8,0 x 140	22,0	60	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 160	22,0	80	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 180	22,0	100	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 200	22,0	120	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 220	22,0	140	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 240	22,0	160	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 260	22,0	180	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 280	22,0	200	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 300	22,0	220	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 320	22,0	240	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 340	22,0	260	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 360	22,0	280	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 380	22,0	300	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 400	22,0	320	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

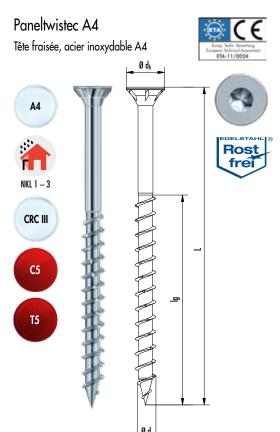
Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{ML}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

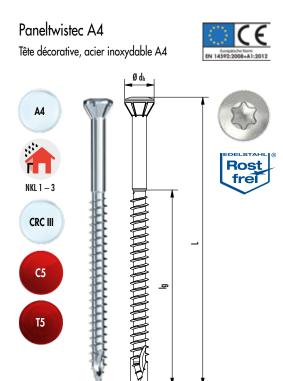

 \rightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=7,20$ kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

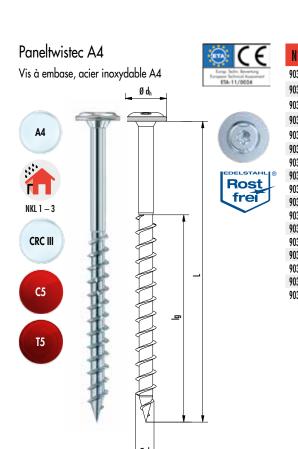

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

PANELTWISTEC A4

Acier inoxydable A4

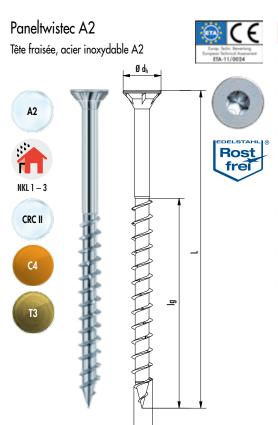


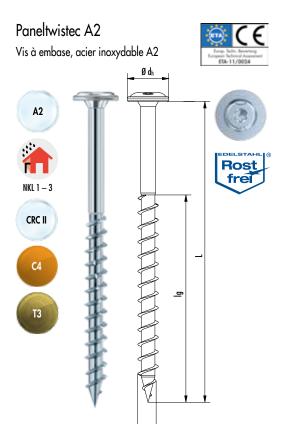
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
901476	4,0	25	7,75	15	TX20 •	500
111442	4,0	35	7,75	21	TX20 -	500
903202	4,0	40	7,75	24	TX20 •	500
111443	4,0	45	7,75	27	TX20 -	500
901109	4,0	55	7,75	33	TX20 •	500
111444	4,0	60	7,75	36	TX20 -	500
111445	4,0	70	7,75	42	TX20 •	200
111446	4,0	80	7,75	48	TX20 -	200
111447	4,5	45	8,75	27	TX25 •	200
111448	4,5	60	8,75	36	TX25 •	200
111449	4,5	70	8,75	42	TX25 •	200
111450	4,5	80	8,75	48	TX25 •	200
903990	5,0	40	9,75	24	TX25 •	200
111451	5,0	50	9,75	30	TX25 •	200
111452	5,0	60	9,75	36	TX25 •	200
111453	5,0	70	9,75	42	TX25 •	200
111454	5,0	80	9,75	48	TX25 •	200
903580	5,0	100	9,75	60	TX25 •	200
111459	6,0	60	11,75	36	TX30 •	100
944885	6,0	70	11,75	42	TX30 •	100
111460	6,0	80	11,75	48	TX30 •	100
111458	6,0	100	11,75	60	TX30 •	100
901478	6,0	120	11,75	60	TX30 •	100



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903280	8,0	80	14,50	48	TX40 •	50
903281	8,0	100	14,50	60	TX40 •	50
903282	8,0	120	14,50	80	TX40 •	50
903283	8,0	140	14,50	80	TX40 •	50
903284	8,0	160	14,50	80	TX40 •	50
903285	8,0	180	14,50	80	TX40 •	50
903286	8,0	200	14,50	80	TX40 •	50
903287	8,0	220	14,50	80	TX40 •	50
903288	8,0	240	14,50	80	TX40 •	50
903289	8,0	260	14,50	80	TX40 •	50
903290	8,0	280	14,50	80	TX40 •	50
903291	8,0	300	14,50	80	TX40 •	50
903292	8,0	320	14,50	80	TX40 •	50
903293	8,0	340	14,50	80	TX40 •	50
903294	8,0	360	14,50	80	TX40 •	50
903295	8,0	380	14,50	80	TX40 •	50
903296	8,0	400	14,50	80	TX40 •	50

Eurotec® | Paneltwistec


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
901479	3,2	25	5,10	17,5	TX10 O	1000
903038	3,2	30	5,10	21	TX10 O	1000
901480	3,2	35	5,10	19	TX10 O	1000
901481	3,2	40	5,10	24	TX10 O	1000
903104	3,2	50	5,10	34	TX10 O	1000


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903260	8,0	80	16	48	TX40 ●	50
903261	8,0	100	16	60	TX40 •	50
903262	8,0	120	16	80	TX40 •	50
903263	8,0	140	16	80	TX40 •	50
903264	8,0	160	16	80	TX40 •	50
903265	8,0	180	16	80	TX40 •	50
903266	8,0	200	16	80	TX40 •	50
903267	8,0	220	16	80	TX40 •	50
903268	8,0	240	16	80	TX40 •	50
903269	8,0	260	16	80	TX40 •	50
903270	8,0	280	16	80	TX40 •	50
903271	8,0	300	16	80	TX40 •	50
903272	8,0	320	16	80	TX40 •	50
903273	8,0	340	16	80	TX40 •	50
903274	8,0	360	16	80	TX40 •	50
903275	8,0	380	16	80	TX40 •	50
903276	8,0	400	16	80	TX40 •	50

PANELTWISTEC A2

Acier inoxydable A2

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903230	8,0	80	14,5	48	TX40 •	50
903231	8,0	100	14,5	60	TX40 •	50
903232	8,0	120	14,5	80	TX40 •	50
903233	8,0	140	14,5	80	TX40 •	50
903234	8,0	160	14,5	80	TX40 •	50
903235	8,0	180	14,5	80	TX40 •	50
903236	8,0	200	14,5	80	TX40 •	50
903237	8,0	220	14,5	80	TX40 •	50
903238	8,0	240	14,5	80	TX40 •	50
903239	8,0	260	14,5	80	TX40 •	50
903240	8,0	280	14,5	80	TX40 •	50
903241	8,0	300	14,5	80	TX40 •	50
903242	8,0	320	14,5	80	TX40 •	50
903243	8,0	340	14,5	80	TX40 •	50
903244	8,0	360	14,5	80	TX40 •	50
903245	8,0	380	14,5	80	TX40 •	50
903246	8,0	400	14,5	80	TX40 •	50

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903211	8,0	80	16	48	TX40 •	50
903212	8,0	100	16	60	TX40 •	50
903213	8,0	120	16	80	TX40 •	50
903214	8,0	140	16	80	TX40 •	50
903215	8,0	160	16	80	TX40 •	50
903216	8,0	180	16	80	TX40 •	50
903217	8,0	200	16	80	TX40 •	50
903218	8,0	220	16	80	TX40 •	50
903219	8,0	240	16	80	TX40 •	50
903220	8,0	260	16	80	TX40 •	50
903221	8,0	280	16	80	TX40 •	50
903222	8,0	300	16	80	TX40 •	50
903223	8,0	320	16	80	TX40 •	50
903224	8,0	340	16	80	TX40 •	50
903225	8,0	360	16	80	TX40 •	50
903226	8,0	380	16	80	TX40 •	50
903227	8,0	400	16	80	TX40 ●	50

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER INOXYDABLE A4

	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration	de la tête		Cisailleme	nt bois-bois		Cisail	lement ac	ier-bois
dk Table 1		ET , AD	Fax,90,Rk	Fax.head.Rx N	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 0°) V (a= 90°)		AD V (0= AD V (0=	90°)	AD ET	V (\alpha = 0^\circ) V (\alpha = 90^\circ)		t	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\rm H}$ = 0°		α= 0 °	α= 90 °
4,0 x 25	8,0	10	15	0,77	0,77				60	Li -	2		70
4,0 x 35	8,0	14	21	1,08	0,77				68		2		85
4,0 x 40	8,0	16	24	1,24	0,77				72		2		90
4,0 x 45	8,0	18	27	1,39	0,77				76		2		93
4,0 x 55	8,0	22	33	1,55	0,77				78		2		01
4,0 x 60	8,0	24	36	1,86	0,77			0,	78		2		05
4,0 x 70	8,0	28	42	2,17	0,77			0,	78		2	1,	.13
4,0 x 80	8,0	32	48	2,48	0,77			0,	78		2	1,	20
4,5 x 45	9,0	18	27	1,69	0,97			0,	90		2	1,	10
4,5 x 60	9,0	24	36	2,03	0,97			0,	97		2	1,	23
4,5 x 70	9,0	28	42	2,36	0,97				97		2		31
4,5 x 80	9,0	32	48	2,70	0,97				97		2		40
5,0 x 40	10,0	16	24	1,45	1,20				98		2		22
5,0 x 45	10,0	18	27	1,63	1,20				03		2		26
5,0 x 50	10,0	20	30	1,82	1,20				07		2		31
5,0 x 60	10,0	24	36	2,18	1,20				15		2		.40
5,0 x 70	10,0	28	42	2,54	1,20				15		2		50
5,0 x 80	10,0	32	48	2,90	1,20				15		2		.58
5,0 x 90	10,0	36	54	3,27	1,20				15		2		67
5,0 x 100	10,0	40	60	3,63	1,20				15		2		76
6,0 x 60	12,0	24	36	2,46	1,73				48		2		77
6,0 x 70	12,0	28	42	2,87	1,73				60		2		87
6,0 x 80	12,0	32	48	3,28	1,73				60 40		2		97
6,0 x 90	12,0	36 40	54	3,69	1,73				60 40		2		08
6,0 x 100	12,0	40 50	60 70	4,10 4,79	1,73 1,73				60 60		2		.18 .35
6,0 x 120	12,0	50	70	4,/ Y minue a. — 350 kn/m³ Tautes les valei									,JJ

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{kl}$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER INOXYDABLE A2 ET A4

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête	à la pénétration de la tête Cisaillement bois-bois					Cisaillement acier-bois				
dk annum an	+		ET AD	N Fax,90,Rk	$V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$		AD	= 90°) = 90°)	AD ET	V (a= 90)		t t			
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]			
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$						
						α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °			
8,0 x 80	14,5	30	50	4,26	2,52	3,08	2,50	2,83	2,62	3	3,51	3,08			
8,0 x 100	14,5	40	60	5,33	2,52	3,08	2,65	2,83	2,83	3	3,78	3,35			
8,0 x 120	14,5	40	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 140	14,5	60	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 160	14,5	80	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 180	14,5	100	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 200	14,5	120	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 220	14,5	140	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 240	14,5	160	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 260	14,5	180	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 280	14,5	200	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 300	14,5	220	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 320	14,5	240	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 340	14,5	260	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 360	14,5	280	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 380	14,5	300	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			
8,0 x 400	14,5	320	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80			

Dimensionnement selon ETA-11/0024 Masse volumique ρ_i = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_N = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq \overline{E_d. \longrightarrow \text{min }} R_k = R_d \cdot \gamma_\text{M} \: / \: k_\text{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VISE À EMBASE, ACIER INOXYDABLE A2 ET A4

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête	Cisaillement bois-bois				Cisaillement acier-bois			
d d d	×		ET AD	N Fax.90.Rk	$V\left(a=0^{\circ }\right) \\ V\left($		ET V	(a= 90°) (a= 90°) (a= 0°)	AD ET	V (a=	- - -	t	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$				
						α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °	
8,0 x 80	16,0	30	50	4,26	3,07	3,21	2,63	2,97	2,75	3	3,51	3,08	
8,0 x 100	16,0	40	60	5,33	3,07	3,21	2,78	2,97	2,97	3	3,78	3,35	
8,0 x 120	16,0	40	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 140	16,0	60	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 160	16,0	80	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 180	16,0	100	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 200	16,0	120	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 220	16,0	140	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 240	16,0	160	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 260	16,0	180	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 280	16,0	200	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 300	16,0	220	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 320	16,0	240	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 340	16,0	260	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 360	16,0	280	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 380	16,0	300	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	
8,0 x 400	16,0	320	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80	

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{Nc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{Nl} = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE DÉCORATIVE, ACIER INOXYDABLE A4

		Dimensio	ons	Résistance à la pénétration de la tête		bois-bois				
dk			AD AD	Fax,head,Rk	$V(a=0^{\circ})$ AD $V(a=90^{\circ})$ AD $V(a=90^{\circ})$ ET $V(a=90^{\circ})$ ET $V(a=90^{\circ})$ ET $V(a=90^{\circ})$ ET $V(a=90^{\circ})$ ET $V(a=90^{\circ})$ ET					
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{Ia,Rk} [kN]		
							$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		
					α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{ ext{El}} = 0^{\circ}$		
3,2 x 25	5,1	7	18	0,31			0,34			
3,2 x 30	5,1	9	21	0,31			0,37			
3,2 x 35	5,1	16	19	0,31			0,45			
3,2 x 40	5,1	16	24	0,31			0,45			
3,2 x 50	5,1	16	34	0,31			0,45			

En raison de la résistance plus élevée à la pénétration de la tête décorative de la vis Paneltwistec par rapport à la résistance à l'arrachement de la vis, cette valeur peut être négligée.

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Fxemnle

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN.</u>

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

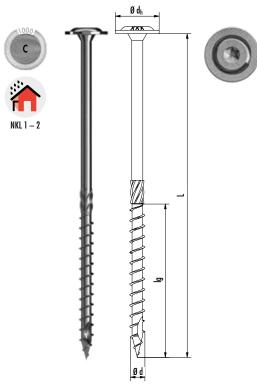
 $Attention: Il \ s'agit \ d'outils \ d'aide \ \grave{a} \ la \ planification. \ Les \ projets \ ne \ peuvent \ \grave{e}tre \ dimensionnés \ que \ par \ des \ personnes \ autorisées.$

PANELTWISTEC 1000

Acier avec revêtement spécial

La vis Paneltwistec 1000 en acier au carbone trempé avec revêtement spécial est un moyen de connexion utilisé pour les constructions en bois porteuses entre des éléments en bois massif (résineux), bois stratifié, bois de placage stratifié ou matériaux similaires à base de bois collés. La vis dispose d'un fût à la pointe de la vis et de nervures fraisantes au-dessus du filet. La vis est disponible dans les versions « tête fraisée » et « vis à embase ». La géométrie spéciale de la vis garantit une réduction de l'effet de fendillement lors du vissage. Par ailleurs, le revêtement spécial réduit la résistance au vissage, ce qui revient à dire que la friction entre le corps de vis et le bois est nettement plus faible.

Paneltwistec 1000 Tête fraisée, pointe de vis avec fût, acier avec revêtement spécial Seulement des vis avec un Ø de 3,0 mm NKL 1 – 2


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	la [mm]	Emprointo	PU
				lg [mm]	Empreinte	
R945034 R945035	3,0	12 16	5,6	Filetage complet	TX10 °	1000 1000
R903038	3,0	20	5,6	Filetage complet		1000
R903039	3,0 3,0	25	5,6 5,6	Filetage complet Filetage complet	TX10 O	1000
R903040	3,0	30	5,6 5,6	18		1000
R903041		35	5,6	21	TX10°	1000
R903042	3,0 3,0	40	5,6 5,6	24		1000
R945036		12			TX10 0	1000
R945037	3,5	16	7,0	Filetage complet	TX20 •	1000
R903043	3,5	20	7,0	Filetage complet	TX20 • TX20 •	1000
R903044	3,5 3,5		7,0	Filetage complet		1000
R903045	3,5	25 30	7,0 7,0	Filetage complet	TX20 • TX20 •	1000
R903046 R903047	3,5 3,5	35 40	7,0 7,0	21 24	TX20 • TX20 •	1000 1000
R903048	3,5	50	7,0	27	TX20 •	500
R945038	4,0	16	8,0	Filetage complet		1000
					TX20 •	
R903001	4,0	20	8,0	Filetage complet	TX20 •	1000
R903002 R903003	4,0	25 30	8,0	Filetage complet	TX20 •	1000 1000
R903049	4,0	35	8,0 8,0	21	TX20 •	1000
	4,0				TX20 ·	
R903004	4,0	40	8,0	24	TX20 •	1000
R902089 R903005	4,0	45 50	8,0	27 30	TX20 •	500
R903006	4,0 4,0	60	8,0	36	TX20 • TX20 •	500 200
R903007		70	8,0	30 42		200
R903008	4,0	80	8,0		TX20 •	
	4,0		8,0	48	TX20 •	200
R945039	4,5	16 25	9,0	Filetage complet	TX20 •	1000
R903050 R903051	4,5	30	9,0	Filetage complet 18	TX20 •	500
	4,5		9,0	21	TX20 •	500
R903052	4,5	35	9,0		TX20 •	500
R903009	4,5	40 50	9,0	24	TX20 •	500 500
R903010	4,5		9,0	30	TX20 •	
R903011 R903012	4,5	60 70	9,0	36	TX20 •	200
	4,5		9,0	42	TX20 •	200
R903013 R903468	4,5	80 90	9,0	48 54	TX20 •	200 200
R903063	4,5	100	9,0	60	TX20 •	200
	4,5		9,0		TX20 •	500
R903053	5,0	25	10,0	Filetage complet	TX20 •	
R903054 R903055	5,0	30 35	10,0	20 21	TX20 •	500 500
R903014	5,0	40	10,0	24	TX20 •	
R903579	5,0	45	10,0		TX20 •	200
R903015	5,0	50	10,0 10,0	27	TX20 ·	200 200
R903016	5,0	60		30 36	TX20 •	200
	5,0		10,0		TX20 ·	
R903017	5,0	70	10,0	42	TX20 •	200
R903018	5,0	80	10,0	48	TX20 •	200
R903578	5,0	90	10,0	54	TX20 •	200
R903019	5,0	100	10,0	60	TX20 ·	200
R903020	5,0	120	10,0	70	TX20 •	200

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
R903581	6,0	40	12,0	24	TX30 •	200
R903582	6,0	50	12,0	30	TX30 •	200
R903021	6,0	60	12,0	36	TX30 •	200
R903022	6,0	70	12,0	42	TX30 •	200
R903023	6,0	80	12,0	48	TX30 •	200
R903163	6,0	90	12,0	54	TX30 •	100
R903024	6,0	100	12,0	60	TX30 •	100
R903025	6,0	120	12,0	70	TX30 •	100
R903026	6,0	130	12,0	70	TX30 •	100
R903027	6,0	140	12,0	70	TX30 •	100
R903029	6,0	160	12,0	70	TX30 •	100
R903031	6,0	180	12,0	70	TX30 •	100
R903032	6,0	200	12,0	70	TX30 •	100
R903033	6,0	220	12,0	70	TX30 •	100
R903034	6,0	240	12,0	70	TX30 •	100
R903035	6,0	260	12,0	70	TX30 •	100
R903036	6,0	280	12,0	70	TX30 •	100
R903037	6,0	300	12,0	70	TX30 •	100

Paneltwistec 1000

Vis à embase, acier avec revêtement spécial

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
R901357	6,0	100	14,0	60	TX30 •	100
R901359	6,0	120	14,0	70	TX30 •	100
R901361	6,0	140	14,0	70	TX30 •	100
R901364	6,0	180	14,0	70	TX30 •	100
R901365	6,0	200	14,0	70	TX30 •	100
R903060	8,0	80	22,0	48	TX40 •	50
R903062	8,0	100	22,0	54	TX40 •	50
R903064	8,0	120	22,0	60	TX40 •	50
R903066	8,0	140	22,0	80	TX40 •	50
R903067	8,0	160	22,0	80	TX40 •	50
R903470	8,0	180	22,0	80	TX40 •	50
R903069	8,0	200	22,0	80	TX40 •	50
R903472	8,0	220	22,0	80	TX40 •	50
R903071	8,0	240	22,0	80	TX40 •	50
R903072	8,0	260	22,0	80	TX40 •	50
R903073	8,0	280	22,0	80	TX40 •	50
R903074	8,0	300	22,0	80	TX40 •	50
R903475	8,0	360	22,0	80	TX40 •	50
R904625	8,0	380	22,0	80	TX40 •	50
R903476	8,0	400	22,0	80	TX40 •	50
R903077	10,0	60	25,0	36	TX40 •	50
R903079	10,0	80	25,0	50	TX40 •	50
R903081	10,0	100	25,0	60	TX40 •	50
R903083	10,0	120	25,0	70	TX40 •	50
R903085	10,0	160	25,0	90	TX40 •	50
R903086	10,0	180	25,0	100	TX40 •	50
R903087	10,0	200	25,0	100	TX40 •	50
R903088	10,0	220	25,0	100	TX40 •	50
R903089	10,0	240	25,0	100	TX40 •	50

INFORMATIONS TECHNIQUES PANELTWISTEC , TÊTE FRAISÉE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la tê	te	Cisaillement bois-bois				Cisaillement acier-bois			
dk summing di	-		ET , AD .	N Fox.90,Rk	V (a=	= 0°)		ET V(c	= 90°) = 90°)	AD ET	V (α= 0° V (α= 90		t	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,heod,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$				
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm H} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °	
3,0 x 12	5,6	6	6	0,21	0,38		u- v	0,		wei – V	1	0,		
3,0 x 16	5,6	8	8	0,28	0,38			0,			1		37	
3,0 x 20	5,6	10	10	0,35	0,38			0,			1	0,		
3,0 x 25	5,6	10	15	0,53	0,38				42		1		60	
3,0 x 30	5,6	12	18	0,64	0,38				45		1		60	
3,0 x 35	5,6	14	21	0,74	0,38			0,			1		63	
3,0 x 40	5,6	16	24	0,85	0,38			0,	52		1	0,	66	
3,5 x 12	7	6	6	0,28	0,59			0,	24		1	0,	30	
3,5 x 16	7	8	8	0,37	0,59				32		1	0,	41	
3,5 x 20	7	10	10	0,47	0,59				40		1		52	
3,5 x 25	7	10	15	0,70	0,59				52		1		66	
3,5 x 30	7	12	18	0,84	0,59				62		1		86	
3,5 x 35	7	14	21	0,98	0,59				67		1		92	
3,5 x 40	7	16	24	1,12	0,59			0,			1		95	
3,5 x 50	7	20	30	1,40	0,59			0,			1		02	
4,0 x 16	8	8	8	0,41	0,77				35		2		42	
4,0 x 20	8	10	10	0,52	0,77			0,			2		55	
4,0 x 25	8	10	15	0,77	0,77				60		2		70	
4,0 x 30	8	12	18	0,93	0,77			0,			2	0,		
4,0 x 35	8	14	21	1,08	0,77				80		2	1,		
4,0 x 40	8	16	24	1,24	0,77			0,			2		15	
4,0 x 45	8	18	27	1,39	0,77			0,			2	1,		
4,0 x 50 4,0 x 60	8	20 24	30 36	1,55 1,86	0,77 0,77			0, 1,			2	l, l,		
4,0 x 60 4,0 x 70	8	28	30 42	2,17	0,77				03		2	1,		
4,0 x 70	8	32	48	2,17	0,77				03		2		30 46	
					urs mécaniques indiquées doivent être considér.					بسنام عامسون			10	

Dimensionnement selon ETA-11/0024 Masse volumique pk= 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge sont, en ce qui concerne la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmod / γ M. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd \geq Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k= 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k= 3,00 kN. k_{mod}= 0,9. γ_M= 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M \, / \, k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la	ı tête		Cisaillemen	t bois-bois		Cisaillement acier-bois		
dk Day L3				N Fax,90,Rk	Fax.hoad.Rk	/ (a= 0°) / (a= 0°) / (a= 0°) / (a= 90°)		AD V (02	= 90°)	AD ET	V (a= 90		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
4,5 x 16	9	8	8	0,45	0,97		u. •	0,4		o-Li	2		,46
4,5 x 25	9	10	15	0,84	0,97			0,6			2		,76
4,5 x 30	9	12	18	1,01	0,97			0,7			2		,92
4,5 x 35	9	14	21	1,18	0,97			0,8			2		,09
4,5 x 40	9	16	24	1,35	0,97			1,0			2		,34
4,5 x 50	9	20	30	1,69	0,97			1,0			2		,44
4,5 x 60	9	24	36	2,03	0,97			1,1			2		,53
4,5 x 70	9	28	42	2,36	0,97			1,2			2		,61
4,5 x 80	9	32	48	2,70	0,97			1,2			2		,75
4,5 x 90	9	36	54	3,04	0,97			1,2			2		,75
4,5 x 100	9	40	60	3,38	0,97			1,2	13		2	1,	,75
5,0 x 25	10,0	10	15	0,91	1,20			0,7	0		2	0,	,81
5,0 x 30	10,0	10	20	1,21	1,20			0,9	0		2	1,	,00
5,0 x 35	10,0	14	21	1,27	1,20			0,9	16		2	1,	,17
5,0 x 40	10,0	16	24	1,45	1,20			1,1			2 2		,44
5,0 x 45	10,0	18	27	1,63	1,20		1,20					1,	,62
5,0 x 50	10,0	20	30	1,82	1,20		1,24					1,	,67
5,0 x 60	10,0	24	36	2,18	1,20		1,34					1,	,76
5,0 x 70	10,0	28	42	2,54	1,20		1,44				2 2		,85
5,0 x 80	10,0	32	48	2,90	1,20		1,52						,94
5,0 x 90	10,0	36	54	3,27	1,20			1,5			2		
5,0 x 100	10,0	40	60	3,63	1,20			1,5	2		2		
5,0 x 120	10,0	50	70	4,24	1,20			1,5	52		2	2	,27

Dimensionnement selon ETA-11/0024 Masse volumique pk= 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmod / γ M. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd \geq Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \ / \ k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ri= Ri · YiM / Kimed → Ri= 7,20 kN · 1,3/0,9= 10,40 kN → Mise en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC , TÊTE FRAISÉE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000

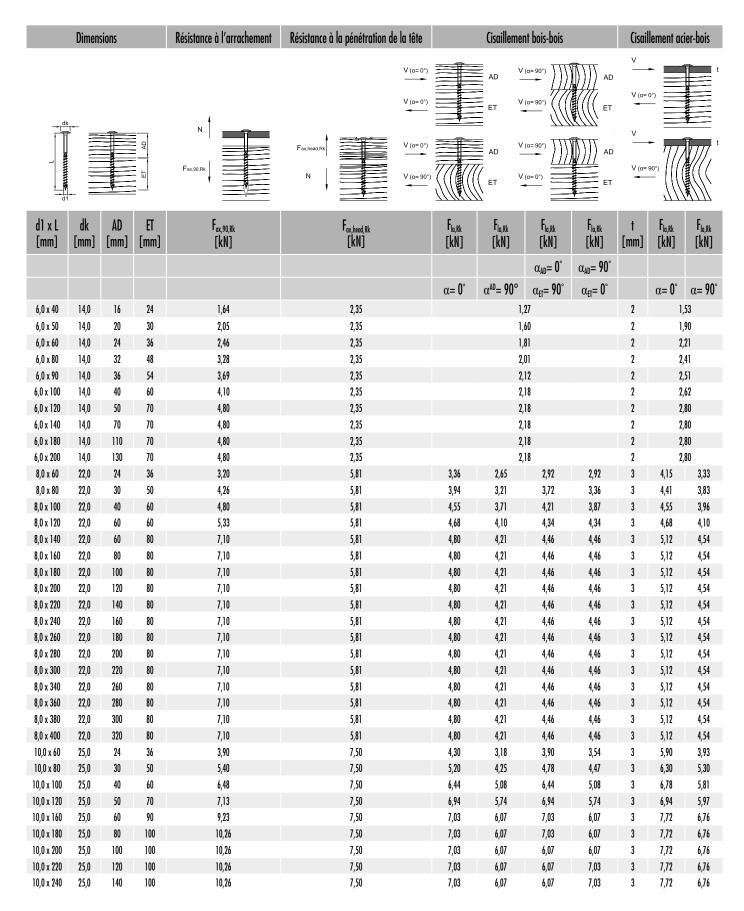
	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la	tête	Cisaillement bois-bois					Cisaillement acier-bois		
dk QV L3				N Fax,90,Rik	V Fax,head,Rk V	(α= 0°) (α= 0°) (α= 0°)		ET V((i= 90°) i= 90°) i= 90°)	AD ET	V (α=0°		t t	
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$				
							$\alpha = 0^{\circ}$	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\rm H}$ = 0°		$\alpha = 0^{\circ}$	α= 90 °	
6,0 x 40	12,0	16	24	1,64	1,73			1,	27		2	1,	53	
6,0 x 50	12,0	20	30	2,05	1,73			1,			2		90	
6,0 x 60	12,0	24	36	2,46	1,73			1,	65		2	2,	21	
6,0 x 70	12,0	28	42	2,87	1,73			1,	75		2	2,		
6,0 x 80	12,0	32	48	3,28	1,73			1,	85		2	2,	41	
6,0 x 90	12,0	36	54	3,69	1,73			1,			2	2,		
6,0 x 100	12,0	40	60	4,10	1,73			2,			2	2,	62	
6,0 x 120	12,0	50	70	4,79	1,73			2,			2		80	
6,0 x 130	12,0	60	70	4,79	1,73			2,			2		.80	
6,0 x 140	12,0	70	70	4,79	1,73			2,			2		80	
6,0 x 160	12,0	90	70	4,79	1,73			2,			2		.80	
6,0 x 180	12,0	110	70	4,79	1,73		2,02				2		80	
6,0 x 200	12,0	130	70	4,79	1,73			2,			2		.80	
6,0 x 220	12,0	150	70	4,79	1,73			2,			2		.80	
6,0 x 240	12,0	170	70	4,79	1,73		2,02				2			
6,0 x 260	12,0	190	70	4,79	1,73		2,02				2			
6,0 x 280	12,0	210	70	4,79	1,73			2,	02		2	,		
6,0 x 300	12,0	230	70	4,79	1,73			2,	02		2	2,	.80	

Dimensionnement selon ETA-11/0024 Masse volumique k= 350 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge sont, en ce qui concerne la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmod / M. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd \geq Ed).

Exemple

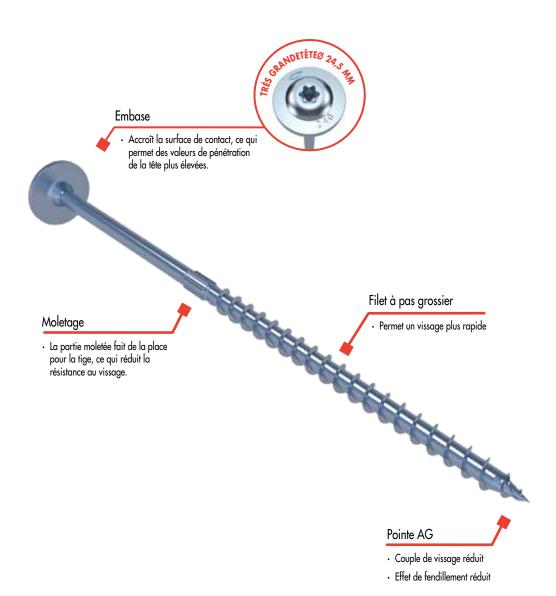
 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{ik}=1,3.$

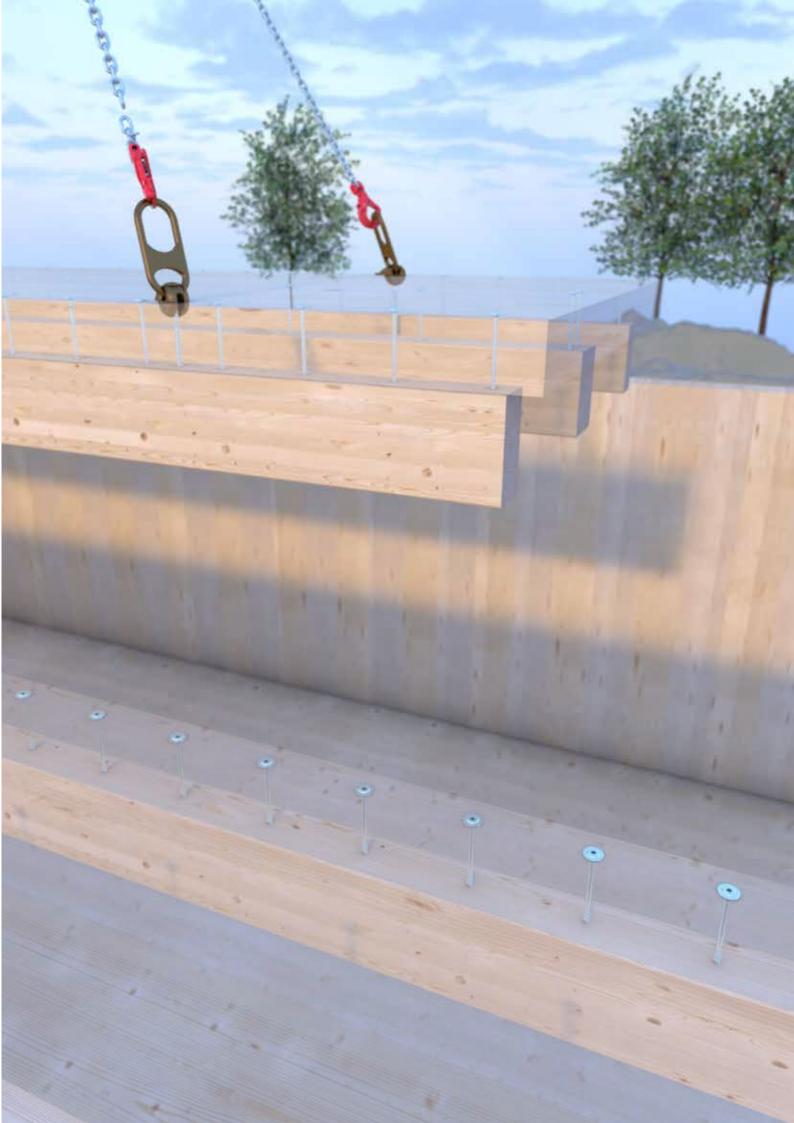

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}} \: / \: k_{\text{m$

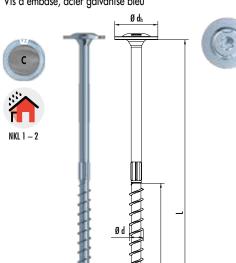
C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000


PANELTWISTEC TK AG STRONGHEAD


Pour l'utilisation d'éléments en bois collés par compression

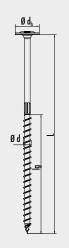
Les vis à bois Paneltwistec peuvent être insérées sans pré-perçage dans CLT ou dans du bois stratifié. La vis Paneltwistec a une pointe AG spéciale et des nervures fraisantes au-dessus du filet. Elles sont garantes d'un amorçage rapide de la vis dans le bois et d'un fendillement moindre lors du vissage. Par ailleurs, le filet n'accélère pas seulement le processus de montage, mais réduit également le couple de serrage. La vis à embase est garante d'une résistance à la pénétration de la tête et d'une pression suffisante entre deux surfaces à assembler, ce qui est très efficace pour un collage. Si le collage par compression est réalisé dans les règles de l'art pendant le durcissement des colles, il est possible de fabriquer des éléments en bois stratifié. Il est en outre possible de réaliser des plaques/panneaux nervurés.

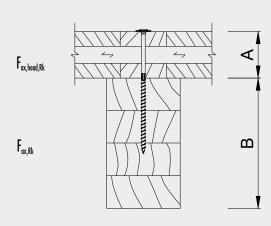


Eurotec | Paneltwistec

PANELTWISTEC TK AG STRONGHEAD

Evry, India, Investigal European Valorical Assessment ESA-11/0024


Vis à embase, acier galvanisé bleu



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903170	8,0	200	24,5	120	TX40 •	50
903171	8,0	220	24,5	120	TX40 •	50
903172	8,0	240	24,5	120	TX40 •	50
903173	8,0	260	24,5	120	TX40 •	50
903174	8,0	280	24,5	120	TX40 •	50
903175	8,0	300	24,5	120	TX40 •	50
903176	8,0	320	24,5	120	TX40 •	50
903177	8,0	340	24,5	120	TX40 •	50
903178	8,0	360	24,5	120	TX40 •	50
903179	8,0	380	24,5	120	TX40 •	50
903180	8,0	400	24,5	120	TX40 •	50

COLLAGE PAR COMPRESSION DE VIS AVEC LONGUEURS MINIMALES REQUISES

Ø 8 mm							
		Résistance à l'arrachement	Résistance à la pénétration de la tête				
A [mm]	L [mm]	F _{ox, Rk} [kN]	$F_{\alpha x, head, Rk}$				
80	200						
100	220						
120	240						
140	260						
160	280						
180	300	10,6	7,2				
200	320						
220	340						
240	360						
260	380						
280	400						

Les calculs se font selon ETA-11/0024 et EN 1995-1-1 avec des trous non pré-percés et une densité du bois ρ k = 350 kg/m³. Les valeurs de dimensionnement de Fax, Rd doivent être calculées compte tenu de kmod = 1 et γ M = M = 1,3. Fax, d'est limité par la résistance à la pénétration de la tête, étant entendu que « L » est la longueur minimale de la vis pour atteindre la performance respective. Le composant A indique l'épaisseur maximale du panneau qui peut être comprimée à l'aide de vis sur une poutre nervurée. Le composant B correspond à la hauteur de la poutre nervurée : B \geq [L - A].

EXIGENCES GÉNÉRALES AUXQUELLES DOIT SATISFAIRE LE LAMELLÉ-COLÉ (NORME DIN 1052:2004 ; EN 1995-1-1)

- · Matériaux : bois massif, contreplaqué, OSB, lamellé-collé, lamellé-croisé
- · Adhésifs: EN 301 et DIN 68141 pour les structures porteuses et épaisseur du joint de collage selon la norme DIN EN 302
- Application: La partie filetée devrait être entièrement vissée dans l'élément à fixer. Avant l'application, la surface devrait être lisse, propre et exempte
 de poussière et de saletés. Plusieurs couches devraient être collées individuellement. L'épaisseur maximale autorisée pour le bois massif et les produits
 dérivés du bois est de 30 mm et/ou 55 mm. (Si les épaisseurs sont plus importantes, veuillez vous adresser aux personnes compétentes.)
- Température ambiante ≥ 20 °C
- Température du matériau ≥ 20 °C
- Taux d'humidité ≤ 15 m % (différence maximale 4 m %)
- Distance entre les fixations ≤ 150 mm
- Surface par élément de fixation $\leq 15~000~\text{mm}^2$
- Presse à vide, 0,1 MPa ~ 1,5 kN (force requise par élément de fixation sur la base de la surface)
- Presse hydraulique, 0,6 MPa ~ 9 kN (force requise par élément de fixation sur la base de la surface)

TIGE FILETÉE BRUTUS

Tige à filetage complet pour renfort transversal de bois collés

Les tiges filetées BRUTUS sont utilisées autant dans les nouvelles constructions (lors de la fabrication des poutres maîtresses) que dans les travaux de rénovation. Alors que dans les nouvelles constructions, elles permettent des envergures plus importantes et/ou des sections de bois plus minces, elles contribuent dans la rénovation à sécuriser ce qui existe déjà. Ainsi, il n'est pas nécessaire de remplacer de nombreuses poutres maîtresses ou de les redoubler, bien qu'elles soient manifestement traversées de fissures. Il est en tous les cas indispensable de réaliser une expertise. Les tiges filetées BRUTUS peuvent être raccourcies à la longueur souhaitée, quelle qu'elle soit, et sont pré-percées à 13 mm. Lors du perçage des trous, il faut veiller à ce qu'ils ne se décentrent pas. La tige filetée BRUTUS sert de renfort transversal au droit d'encoches et de traversées, de fixations transversales et de fermes de halls.

TIGE FILETÉE BRUTUS

Acier 8.8, galvanisé

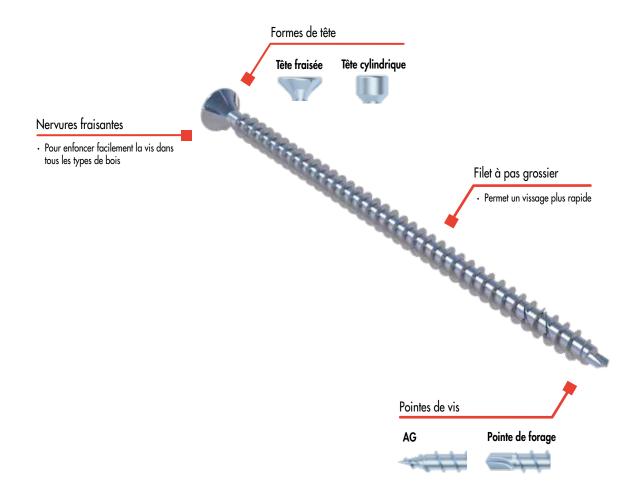
N° de réf.	Ø d [mm]	L[mm]	PU
903170	16	3000	1

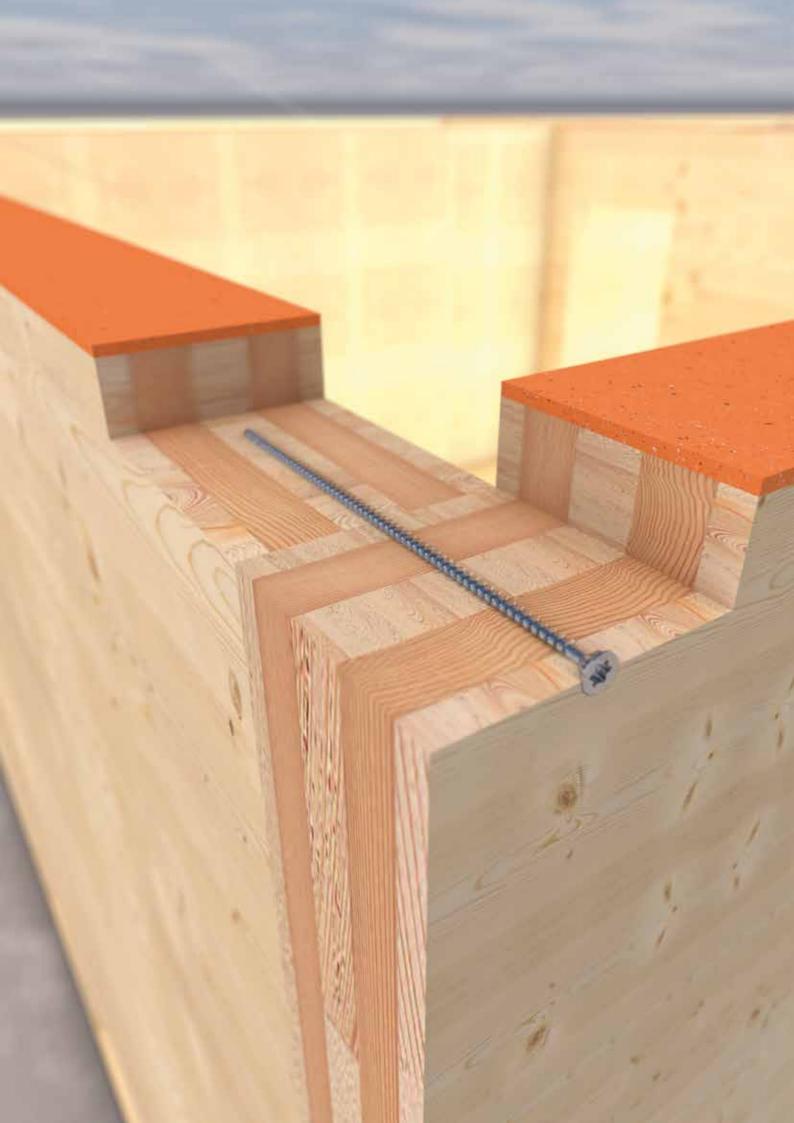
CE DONT VOUS DEVEZ TENIR COMPTE

- · Pré-perçage au Ø 13 mm
- · Si les trous de forage sont longs, le foret peut se décentrer.

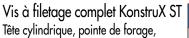
OUTIL DE VISSAGE

EXEMPLES D'APPLICATION

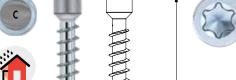


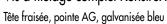

VIS À FILETAGE COMPLET KONSTRUX

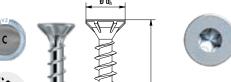
La solution performante pour les nouvelles constructions et les travaux de rénovation


Les vis à filetage complet KonstruX maximisent la capacité de charge d'un assemblage du fait de la résistance élevée à l'arrachement du filet dans les deux éléments de construction. Si l'on utilise des vis à filetage partiel, la résistance à la pénétration de la tête, nettement plus faible, dans la pièce rapportée limite la capacité de charge de l'assemblage. Les vis à filetage complet KonstruX constituent une alternative financièrement avantageuse aux fixations traditionnelles ou aux connecteurs bois comme les sabots de solive et les poutrelles.

VIS À FILETAGE COMPLET KONSTRUX

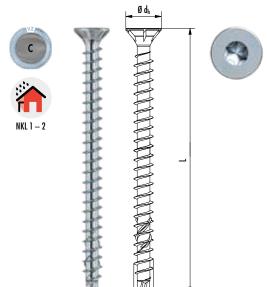

Acier au carbone, galvanisé bleu





N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
904808	6,5	80	8,0	TX30 •	100
904809	6,5	100	8,0	TX30 •	100
904810	6,5	120	8,0	TX30 •	100
904811	6,5	140	8,0	TX30 •	100
904812	6,5	160	8,0	TX30 •	100
904813	6,5	195	8,0	TX30 •	100
904825	8,0	155	10,0	TX40 •	50
904826	8,0	195	10,0	TX40 •	50
904827	8,0	220	10,0	TX40 •	50
904828	8,0	245	10,0	TX40 •	50
904834	8,0	270	10,0	TX40 •	50
904829	8,0	295	10,0	TX40 •	50
904830	8,0	330	10,0	TX40 •	50
904831	8,0	375	10,0	TX40 •	50
904832	8,0	400	10,0	TX40 •	50
944804	8,0	430	10,0	TX40 •	50
944805	8,0	480	10,0	TX40 •	50
944806	8,0	530	10,0	TX40 •	50
944807	8,0	580	10,0	TX40 •	50
904815	10,0	300	13,0	TX50 ●	25
904816	10,0	330	13,0	TX50 ●	25
904817	10,0	360	13,0	TX50 ●	25
904818	10,0	400	13,0	TX50 ●	25
904819	10,0	450	13,0	TX50 ●	25
904820	10,0	500	13,0	TX50 ●	25
904821	10,0	550	13,0	TX50 ●	25
904822	10,0	600	13,0	TX50 ●	25

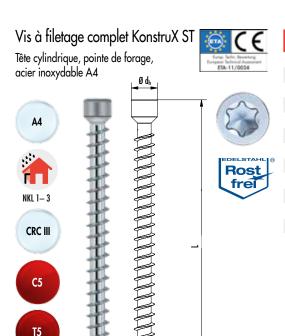
Vis à filetage complet KonstruX ST


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
905737	11,3	300	18,0	TX50 ●	20
905738	11,3	340	18,0	TX50 ●	20
905739	11,3	380	18,0	TX50 ●	20
905740	11,3	420	18,0	TX50 ●	20
905741	11,3	460	18,0	TX50 ●	20
905742	11,3	500	18,0	TX50 ●	20
905743	11,3	540	18,0	TX50 ●	20
905744	11,3	580	18,0	TX50 ●	20
905745	11,3	620	18,0	TX50 ●	20
905746	11,3	660	18,0	TX50 ●	20
905747	11,3	700	18,0	TX50 ●	20
905748	11,3	750	18,0	TX50 ●	20
905749	11,3	800	18,0	TX50 ●	20
904750	11,3	900	18,0	TX50 ●	20
904751	11.3	1000	18 0	TX50 ●	20

NKL 1 - 2

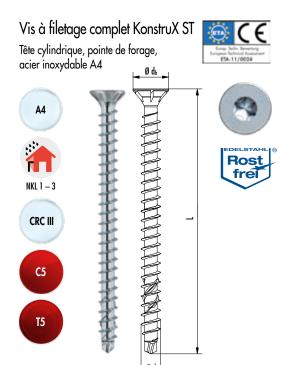
Vis à filetage complet KonstruX ST

Tête fraisée, pointe de forage, galvanisée bleu

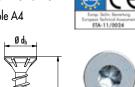

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
904857	6,5	80	11,5	TX30 •	100
904858	6,5	100	11,5	TX30 •	100
904859	6,5	120	11,5	TX30 •	100
904860	6,5	140	11,5	TX30 •	100
904790	8,0	95	14,5	TX40 •	50
904791	8,0	125	14,5	TX40 •	50
904792	8,0	155	14,5	TX40 •	50
904793	8,0	195	14,5	TX40 •	50
904794	8,0	220	14,5	TX40 •	50
904795	8,0	245	14,5	TX40 •	50
904796	8,0	270	14,5	TX40 •	50
904797	8,0	295	14,5	TX40 •	50
904798	8,0	330	14,5	TX40 •	50
904799	8,0	375	14,5	TX40 •	50
904800	8,0	400	14,5	TX40 •	50
904801	8,0	430	14,5	TX40 •	50
904802	8,0	480	14,5	TX40 •	50
904803	8,0	545	14,5	TX40 •	50
904770	10,0	125	17,8	TX50 ●	25
904771	10,0	155	17,8	TX50 ●	25
904772	10,0	195	17,8	TX50 ●	25
904773	10,0	220	17,8	TX50 ●	25
904774	10,0	245	17,8	TX50 ●	25
904775	10,0	270	17,8	TX50 ●	25
904776	10,0	300	17,8	TX50 ●	25
904777	10,0	330	17,8	TX50 ●	25
904778	10,0	360	17,8	TX50 ●	25
904779	10,0	400	17,8	TX50 ●	25
904780	10,0	450	17,8	TX50 ●	25
904781	10,0	500	17,8	TX50 ●	25
904782	10,0	550	17,8	TX50 ●	25
904783	10,0	600	17,8	TX50 ◆	25

VIS À FILETAGE COMPLET KONSTRTUX


Acier inoxydable A4


Les vis à filetage complet KonstruX ST A4 maximisent la capacité de charge d'un assemblage du fait de la résistance élevée à l'arrachement du filet dans les deux éléments de construction. En revanche, si l'on utilise des vis à filetage partiel, la résistance à la pénétration de la tête, nettement plus faible, dans la pièce rapportée limite la capacité de charge de l'assemblage.

Convient aux assemblages bois-bois à l'intérieur comme à l'extérieur. Les domaines d'application de la vis KonstruX ST A4 se trouvent à l'extérieur sur les aires de jeu, les balcons, dans la protection solaire sous forme de pergola, à proximité de la côte et dans le génie hydraulique, p. ex. sur les passerelles et les jetées.

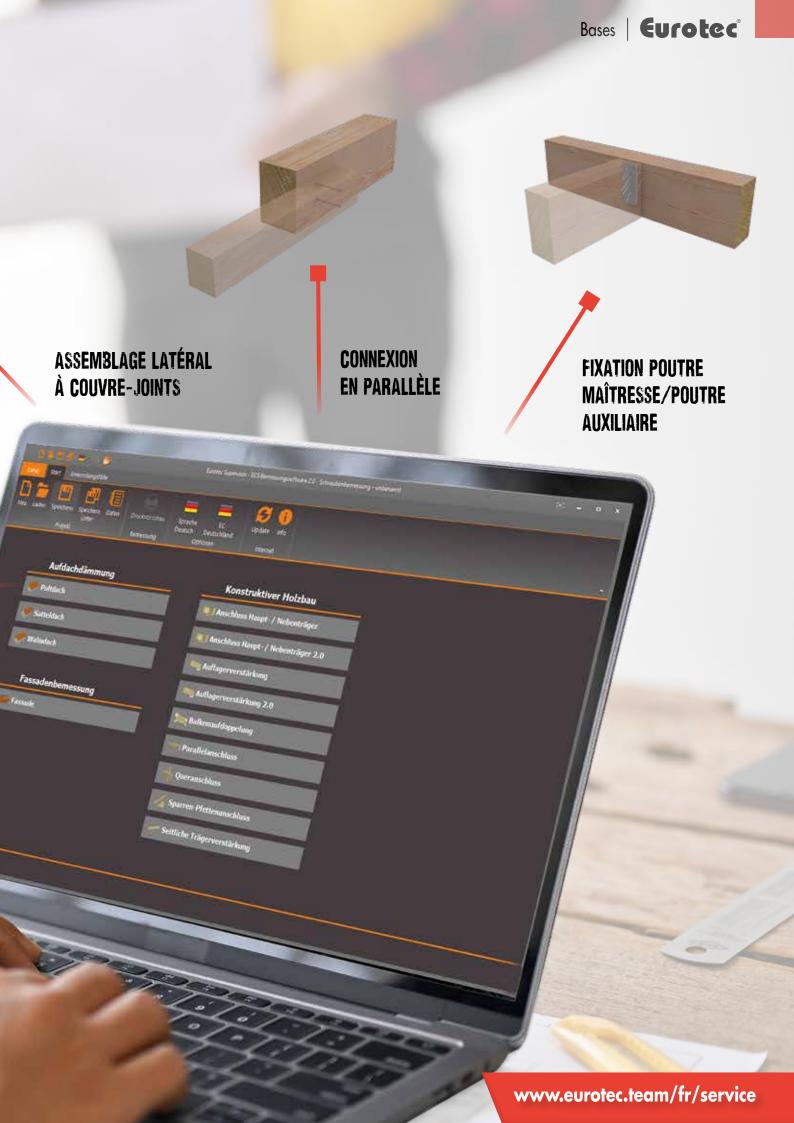

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
944780	6,5	140	8,0	TX40 •	100
944781	6,5	160	8,0	TX40 •	100
944782	6,5	195	8,0	TX40 •	100
944783	8,0	155	8,0	TX40 •	50
944784	8,0	195	8,0	TX40 •	50
944785	8,0	220	8,0	TX40 •	50
944786	8,0	245	8,0	TX40 •	50
944787	8,0	270	8,0	TX40 •	50
944788	8,0	295	8,0	TX40 •	50
944789	8,0	330	8,0	TX40 •	50
944790	8,0	375	8,0	TX40 •	50
944791	8,0	400	8,0	TX40 •	50

N° de réf.	Ød[mm]	L[mm]	Ø dh [mm]	Empreinte	PU
944795	8,0	95	14,5	TX40 •	50
944792	8,0	125	14,5	TX40 •	50
944793	8,0	155	14,5	TX40 •	50
944794	8,0	195	14,5	TX40 •	50

Vis à filetage complet KonstrtuX Tête fraisée, acier inoxydable A4

A4 NKL 1–3			
CRC III			
C5		_	
75	H		

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
905750	10,0	160	17,8	TX50 ◆	25
905751	10,0	200	17,8	TX50 ●	25
905752	10,0	220	17,8	TX50 ●	25
905753	10,0	240	17,8	TX50 ●	25
905754	10,0	260	17,8	TX50 ●	25
905755	10,0	280	17,8	TX50 ●	25
905756	10,0	300	17,8	TX50 ◆	25
905757	10,0	350	17,8	TX50 ●	25
905758	10,0	400	17,8	TX50 ◆	25


Pour obtenir d'autres informations sur le logiciel ECS, scannez tout simplement le code QR.

REDOUBLEMENT DE POUTRES

RENFORCEMENT DE SUPPORTS

FIXATION TRANSVERSALE

EXEMPLE D'APPLICATION: RENFORCEMENT DE SUPPORTS

ARMATURE DE POUTRES (PRESSION PERPENDICULAIRE À LA FIBRE)

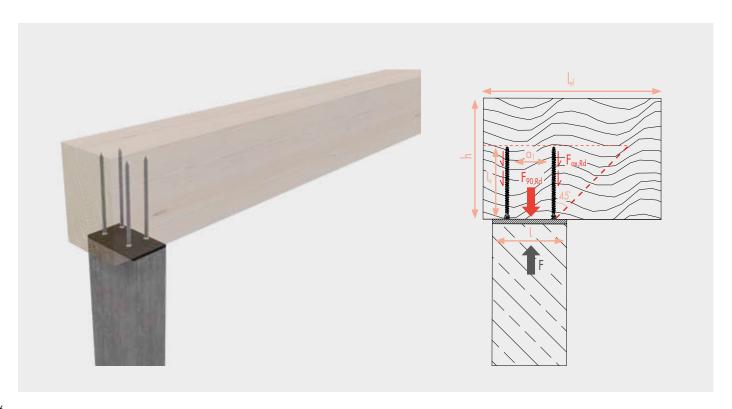
Contrairement au béton et à l'acier, le bois est un matériau naturel et son comportement mécanique est fortement anisotrope. Le rapport entre les résistances caractéristiques à la traction et à la pression, perpendiculairement et parallèlement à la fibre, est d'environ 1/30 et 1/8. Il convient donc de détailler minutieusement les structures en bois pour minimiser autant que possible ces sollicitations. Par ailleurs, il y a lieu d'utiliser des méthodes de renforcement pour compenser ces faiblesses en cas de besoin.

Un exemple est le support de poutres. Dans ce cas, on a fréquemment utilisé des tiges filetées collées et des panneaux de contreplaqué collés comme méthodes de renforcement, mais ces dernières prennent beaucoup de temps et sont onéreuses du fait de l'utilisation de colles époxy. Les vis à filetage complet sont une alternative plus moderne et plus avantageuse et peuvent accroître dans un cadre expérimental la capacité de charge du support de 300 % maximum. Elles sont placées devant la plaque porteuse en acier et absorbent une partie de la charge de compression locale par retrait (limité par la capacité de flexion), ce qui améliore la répartition de la tension dans le bois.

VALEUR DE DIMENSIONNEMENT DE LA CAPACITÉ DE CHARGE PERPENDICULAIREMENT À LA FIBRE, AVEC ARMATURE DE VIS :

$$\begin{aligned} F_{90,Rd} = min & \begin{cases} F_{c,90,Rd} + n_s \cdot F_{\alpha x,Rd} \\ b \cdot l_{ef} \cdot f_{c,90,d} \end{cases} \end{aligned}$$

$$F_{c,90,Rd} = k_{c,90} \cdot b \cdot l \cdot f_{c,90,d}$$


$$F_{\alpha x,Rd} = min$$
 Capacité de flexion de la vis Résistance à l'arrachement de la vis

Ns_s: Nombre de vis:

b : largeur de la surface de contact

 $k_{c,90}$: Facteur de répartition de la tension compte tenu de la configuration de la charge, de la possibilité de scission et du niveau de déformation à la compression $f_{c,90,d}$: Résistance à la compression de dimensionnement, perpendiculairement au sens de la fibre

Pour le dimensionnement de la résistance à l'arrachement et à la flexion de vis, voir ETA-11/0024.

EXEMPLE D'APPLICATION: FIXATION POUTRE MAÎTRESSE/POUTRE AUXILIAIRE

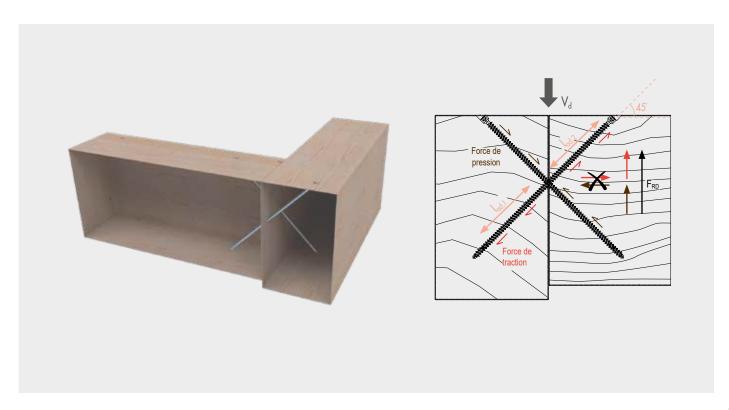
Pour la fixation de poutres maîtresses et de poutres auxiliaires, il existe différentes options d'assemblage, p. ex. des équerres métalliques à l'extérieur et des profilés en T en aluminium à l'intérieur. Des tôles supplémentaires peuvent toutefois être onéreuses et prendre beaucoup de temps dans la phase de montage. Elles peuvent simplement être remplacées par des vis autotaraudeuses pour fixer ce type d'assemblage.

Les vis à filetage complet constituent une solution économe et plus rapide. Les vis KonstruX sont placées en croix et par paires dans un angle de 45° par rapport au veinage du bois, de manière à préserver l'aspect architectural du bois. Il est encore plus important de noter que le comportement au feu s'en voit amélioré. Dans la construction en bois, il convient d'examiner trois types de défaillance lors du dimensionnement de vis cruciformes : (a) la capacité d'arrachement en utilisant la longueur effective du filet et le facteur kmod, (b) la résistance de la vis à la traction et (c) la résistance de la vis à la pression. Veuillez tenir compte du fait que seules les capacités nominales devraient être comparées (et non les valeurs caractéristiques), car les types de défaillance ont des facteurs de sécurité partiels différents.

DIMENSIONNEMENT DE LA CAPACITÉ DE CHARGE DE VIS CRUCIFORMES :

 $F_{Rd} = 2 \cdot \sin 45^{\circ} \cdot n_{page}^{0,9} \cdot F_{ax,Rd}$

 $F_{\text{ax,Rd}} = \text{min} \left\{ \begin{array}{l} \text{Reprise} : I_{\text{ef}}, \, k_{\text{mod}}, \, \gamma_{\text{M}} = 1,3 \\ \text{Résistance à la traction} : \gamma_{\text{M2}} = 1,25 \\ \text{Capacité de flexion} : \gamma_{\text{M1}} = 1,00 \end{array} \right.$


 $l_{ef} = min (l_{ad,1}; l_{ad,2})$

yMi : Facteur de sécurité partiel

n_{pair}: Nombre de vis:

k_{mod}: Facteur de modification qui tient compte de l'influence de la durée de sollicitation et du taux d'humidité de l'élément en bois.

Pour le dimensionnement de la résistance à l'arrachement et à la flexion de vis, voir ETA-11/0024.

EXEMPLE D'APPLICATION: ASSEMBLAGE LATÉRAL À COUVRE-JOINTS

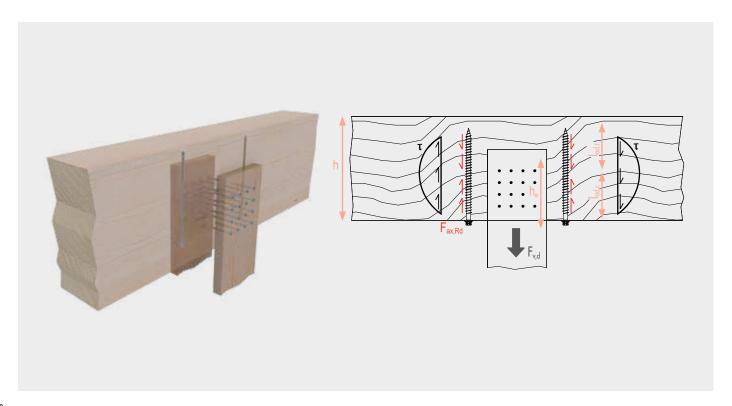
ARMATURE DE CONNEXION VISSÉE (NON DISPONIBLE DANS LE LOGICIEL ECS)

Dans le cadre du dimensionnement de constructions en bois, il est reconnu qu'il convient d'éviter si possible les tensions perpendiculaires au fil. La résistance du bois dans ce sens étant faible, des fissures peuvent apparaître rapidement dans les éléments de construction en bois et les affaiblir au fil du temps. Dans certains cas cependant, il n'est pas possible de faire autrement et il s'impose alors de prendre des mesures visant à renforcer la construction. Pour ce faire, il est possible d'utiliser soit des vis autotaraudeuses soit des tiges filetées collées. Les vis sont en général plus économiques et plus rapides à installer.

Les assemblages vissés qui sont soumis à une charge perpendiculaire au fil sont à cet égard très fréquents. L'armature est prouvée contre la force de traction nominale perpendiculairement au fil au plan qui est défini par la distance entre le bord sollicité et le centre de la vis la plus éloignée. La partie de l'armature dotée de filets devrait recouvrir au moins 75 % de la hauteur des poutres.

FORCE DE TRACTION DE DIMENSIONNEMENT PERPENDICULAIRE AU FIL QUI DOIT ÊTRE ABSORBÉE PAR L'ARMATURE :

compte tenu des contraintes de cisaillement


$$\begin{aligned} F_{t,90,d} &= F_{v,Ed} \cdot \widehat{\left[1 - 3 \cdot \widehat{k} + 2 \cdot \widehat{k^3}\right]} \\ k &= \underbrace{h_e}_h \end{aligned}$$

 $I_{ef} = min(I_{ad,t}); I_{ad,c}$

$$F_{t,90,Rd} = n_s \cdot min \begin{cases} f_{\alpha x,d} \cdot d \cdot I_{ef} \\ f_{tens,d} \end{cases}$$

$$\frac{F_{t,90,d}}{F_{t,90,Rd}} \ \leq 1,0$$

F_{v,d}: Valeur de dimensionnement de la composante de la force transversale perpendiculaire au fil

EXEMPLE D'APPLICATION: REDOUBLEMENT DE POUTRES

REDOUBLEMENT DE POUTRES (DISPONIBLE DANS ECS)

Le redoublement de poutres en bois est souvent utilisé pour renforcer la structure dans les travaux de transformation/rénovation, lorsque les charges provenant de l'étage supérieur augmentent suite à un changement d'affectation. La capacité de charge est améliorée par l'extension de la hauteur de la poutre à l'aide d'une poutre en bois supplémentaire apposée au-dessus ou au-dessous de la poutre existante. Le couple de flexion engendre des contraintes de cisaillement (mouvement de glissement) à l'interface des deux éléments de construction. Ces contraintes évoluent de plus en plus du centre de l'envergure vers les appuis d'extrémité. Pour transférer ces tensions, on utilise des vis qui permettent aux deux éléments de construction d'interagir comme une seule grande poutre. Les vis à filetage complet qui sont insérées en biais par rapport à la veine du bois tirent parti pour ce faire de leur résistance axiale et fournissent ainsi un résultat bien plus rigide que les vis décalées de 90° en position de cisaillement

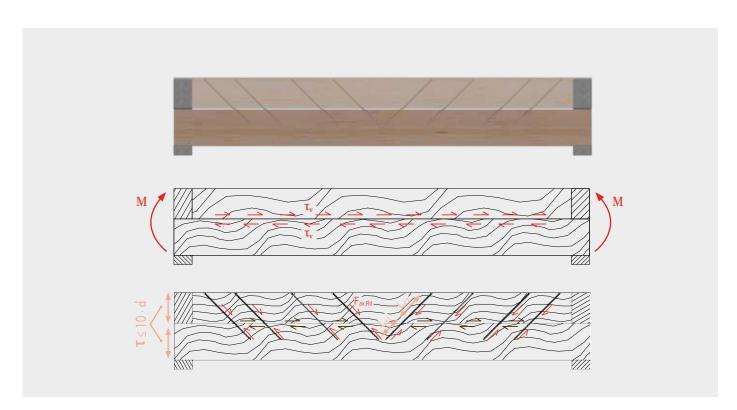
CONTRAINTE DE CISAILLEMENT DUE AUX VIS (INCLINÉES DE 45° PAR RAPPORT À LA VEINE DU BOIS) :

$$\tau_v = \frac{3}{2} \cdot \frac{F_{v,d}}{b \cdot 2h}$$

$$V_d = \tau_v \cdot b$$

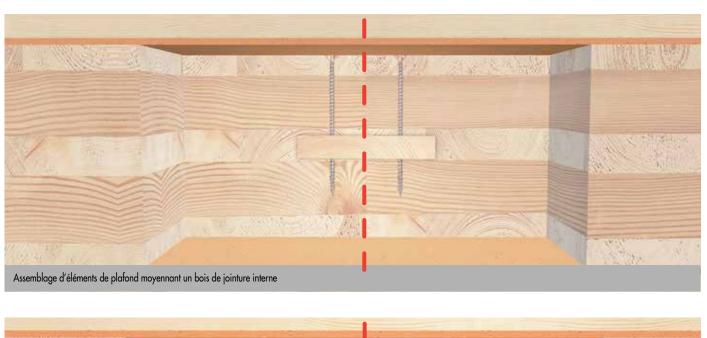
$$F_{\text{ax,Rd}} = \min \begin{cases} f_{\text{ax,d}} \cdot d \cdot I_{\text{ef}} \\ f_{\text{tens,d}} \end{cases}$$

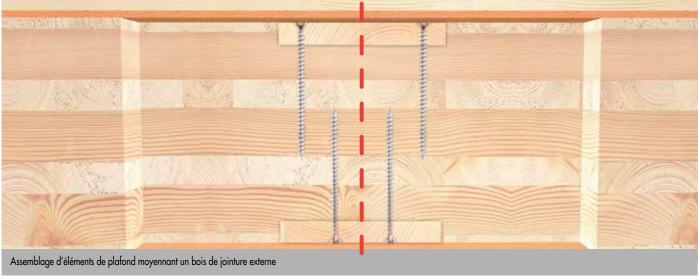
$$I_{ef} = \min \left(I_{ad,1} ; I_{ad,2} \right)$$

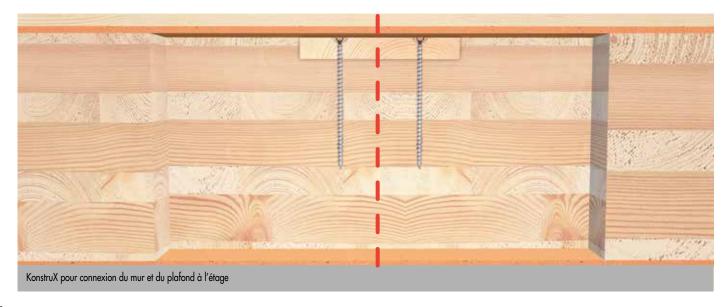

$$F_{v,Rd} = F_{\alpha x,Rd} \cdot \underline{n_s}$$

$$\frac{V_d}{F_{v,Rd}} \leq 1.0$$

F_{v,d} est maximal au niveau des supports et minimale dans l'envergure moyenne. Pour optimiser la construction, les vis peuvent être réparties en conséquence.

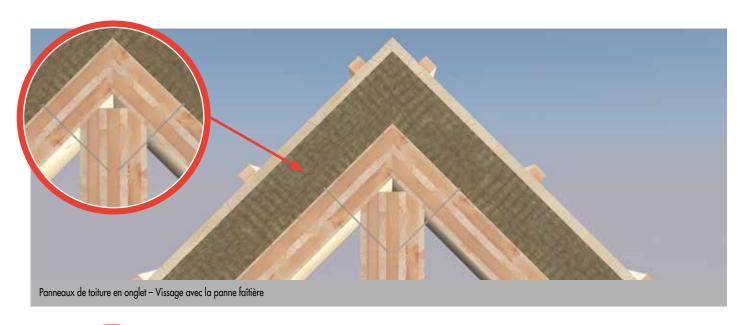

 V_{d} : Force transversale par mètre

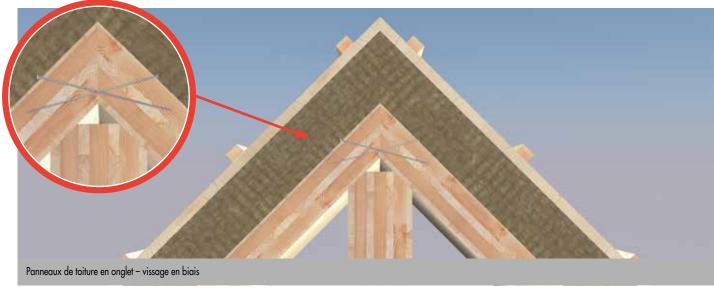

a : distance entre les vis

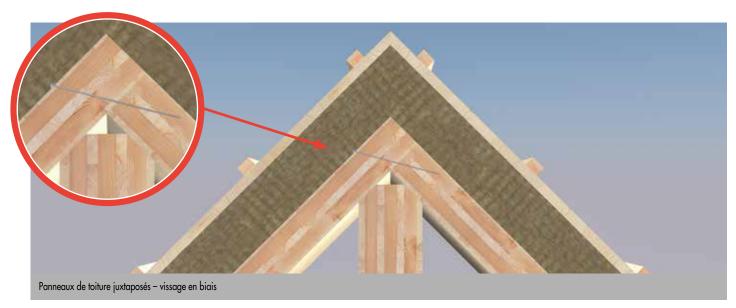



EXEMPLES D'APPLICATION : ÉLÉMENTS DE PLAFOND

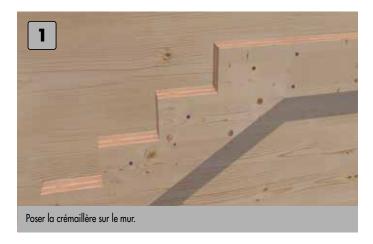
EXEMPLES D'APPLICATION : ÉLÉMENTS MURAUX

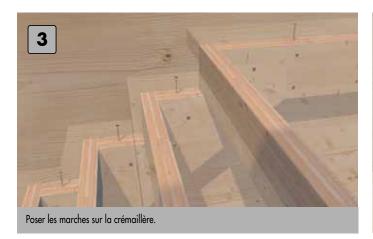






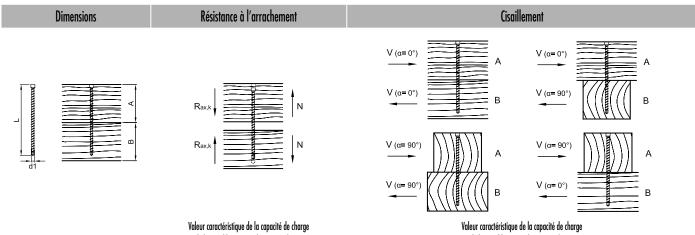
Eurotec° | KonstruX


EXEMPLES D'APPLICATION : ÉLÉMENTS DE TOIT



EXEMPLES D'APPLICATION: CONSTRUCTION DES ESCALIERS AVEC CLT

LE SYSTÈME D'ASSEMBLAGE RAPIDE ET SÛR KONSTRUX VIS À TÊTE CYLINDRE / À TÊTE FRAISÉE


Exemples d'application			Tête cylindrique		Tête fraisée			
		Ø 6,5 [mm]	Ø 8,0 [mm]	Ø 10,0 [mm]	Ø 6,5 [mm]	Ø 8,0 [mm]	Ø 10,0 [mm]	Ø 11,3 [mm]
Effort de traction bois-bois	Cisaillement bois-bois	6	6	6	6	6	6	6
Bois-bois en traction 45°	Bois-bois en traction 45°	6	6	6	6	6	6	6
Effort de traction acier-bois	Cisaillement acier-bois	-	-	_	6	6	6	6
Acier-bois en traction 45°	Acier-bois en traction 45°	_	_	_	6	6	6	6
Fixation poutre maîtresse/poutre auxiliaire	Assemblage poteau-traverse	6	6	6	6	6	6	_
Renforcement de supports	Renforcement de supports	6	6	6	6	6	6	6
Renfort transversal au niveau de l'encoche	Renfort transversal au niveau de la traversée	6	6	6	6	6	6	6
Redoublemen	-	_	6	6	_	6	6	6
Renfort transversal	de fermes de halls	_	_	6	_	_	6	6

VIS À FILETAGE COMPLET KONSTRUX

Informations techniques

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 À 10,0 MM FIXATION BOIS-BOIS

de l'assemblage $R_{\alpha\varsigma,k}$ selon ETA-11/0024

de l'assemblage R_K selon ETA-11/0024

dl x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}{}^{\alpha j}$ - [kN]	R_k^{a} - [kN]	R_k^{a} - [kN]	R _k a) - [kN]	R _k a) - [kN]
				α= 0 °	α= 90 °	$\alpha_{A}=0^{\circ}$ $\alpha_{B}=90^{\circ}$	$ \alpha_{A} = 90^{\circ} $ $ \alpha_{B} = 0^{\circ} $
6,5 x 120	60	80	4,75	3,93	3,47	3,93	3,47
6,5 x 140	80	80	4,75	3,93	3,47	3,47	3,93
6,5 x 160	80	100	6,33	4,32	3,86	4,32	3,86
6,5 x 195	100	100	7,52	4,62	4,16	4,16	4,62
8,0 x 155	80	80	7,11	5,67	4,99	4,99	5,67
8,0 x 195	100	100	9,01	6,15	5,46	5,46	6,15
8,0 x 220	120	120	9,48	6,27	5,58	5,58	6,27
8,0 x 245	120	140	11,38	6,74	6,06	6,74	6,06
8,0 x 295	140	160	13,28	7,21	6,42	7,21	6,42
8,0 x 330	160	180	15,17	7,69	6,42	7,69	6,42
8,0 x 375	180	200	17,07	7,79	6,42	7,79	6,42
8,0 x 400	200	220	18,97	7,79	6,42	7,79	6,42
8,0 x 430	220	220	19,92	7,79	6,42	6,42	7,79
8,0 x 480	240	260	22,76	7,79	6,42	7,79	6,42
10,0 x 300	160	160	16,15	9,48	8,48	8,48	9,48
10,0 x 330	160	180	18,46	10,06	8,90	10,06	8,90
10,0 x 360	180	200	20,76	10,64	8,90	10,64	8,90
10,0 x 400	200	220	23,07	10,89	8,90	10,89	8,90
10,0 x 450	220	240	25,38	10,89	8,90	10,89	8,90
10,0 x 500	240	280	27,68	10,89	8,90	10,89	8,90
10,0 x 550	260	300	29,99	10,89	8,90	10,89	8,90
10,0 x 600	300	320	33,00	10,89	8,90	10,89	8,90

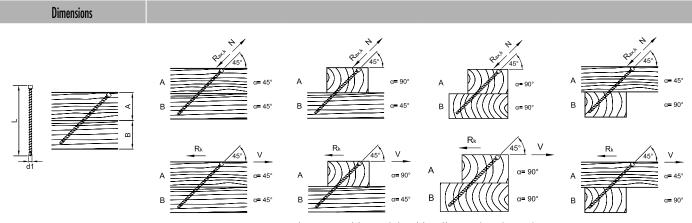
Dimensionnement selon ETA-11/0024 Masse volumique ρ_i = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k= 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k= 3,00 kN. k_{mod}= 0,9. γ_M = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= $\frac{7,20 \text{ kN}}{2}$


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{1,3/0,9} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 À 10,0 MM FIXATION BOIS-BOIS

		Valeur caractéristic	ve de la co	ipacité de char	ge de l'asseml	blage R _{m.k}	et/ou R _k selon	ı ETE-11	/0024
--	--	----------------------	-------------	-----------------	----------------	------------------------	----------------------------	----------	-------

dl x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha \lambda}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a} - [kN]$
			α=	45°	$\alpha_A = \alpha_B = \alpha_B$	$\alpha_A = 90^{\circ}$ $\alpha_B = 45^{\circ}$		α_{A} = 90° α_{B} = 90°		45° 90°
6,5 x 160	60	80	5,95	4,21	5,95	4,21	5,95	4,21	5,95	4,21
6,5 x 195	80	80	6,48	4,58	6,48	4,58	6,48	4,58	6,48	4,58
8,0 x 155	60	60	6,65	4,70	6,65	4,70	6,65	4,70	6,65	4,70
8,0 x 195	80	80	7,76	5,49	7,76	5,49	7,76	5,49	7,76	5,49
8,0 x 220	80	100	10,13	7,17	10,13	7,17	10,13	7,17	10,13	7,17
8,0 x 245	100	100	9,82	6,95	9,82	6,95	9,82	6,95	9,82	6,95
8,0 x 295	120	100	11,88	8,40	11,88	8,40	11,88	8,40	11,88	8,40
8,0 x 330	120	140	15,20	10,75	15,20	10,75	15,20	10,75	15,20	10,75
8,0 x 375	140	140	16,79	11,87	16,79	11,87	16,79	11,87	16,79	11,87
8,0 x 400	160	140	16,48	11,65	16,48	11,65	16,48	11,65	16,48	11,65
8,0 x 430	160	160	19,32	13,66	19,32	13,66	19,32	13,66	19,32	13,66
8,0 x 480	180	180	21,38	15,12	21,38	15,12	21,38	15,12	21,38	15,12
10,0 x 300	120	120	15,03	10,63	15,03	10,63	15,03	10,63	15,03	10,63
10,0 x 330	120	140	18,49	13,07	18,49	13,07	18,49	13,07	18,49	13,07
10,0 x 360	140	140	18,69	13,21	18,69	13,21	18,69	13,21	18,69	13,21
10,0 x 400	160	140	20,04	14,17	20,04	14,17	20,04	14,17	20,04	14,17
10,0 x 450	160	180	25,81	18,25	25,81	18,25	25,81	18,25	25,81	18,25
10,0 x 500	180	200	28,31	20,02	28,31	20,02	28,31	20,02	28,31	20,02
10,0 x 550	200	200	30,82	21,79	30,82	21,79	30,82	21,79	30,82	21,79
10,0 x 600	220	220	33,00	23,33	33,00	23,33	33,00	23,33	33,00	23,33

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

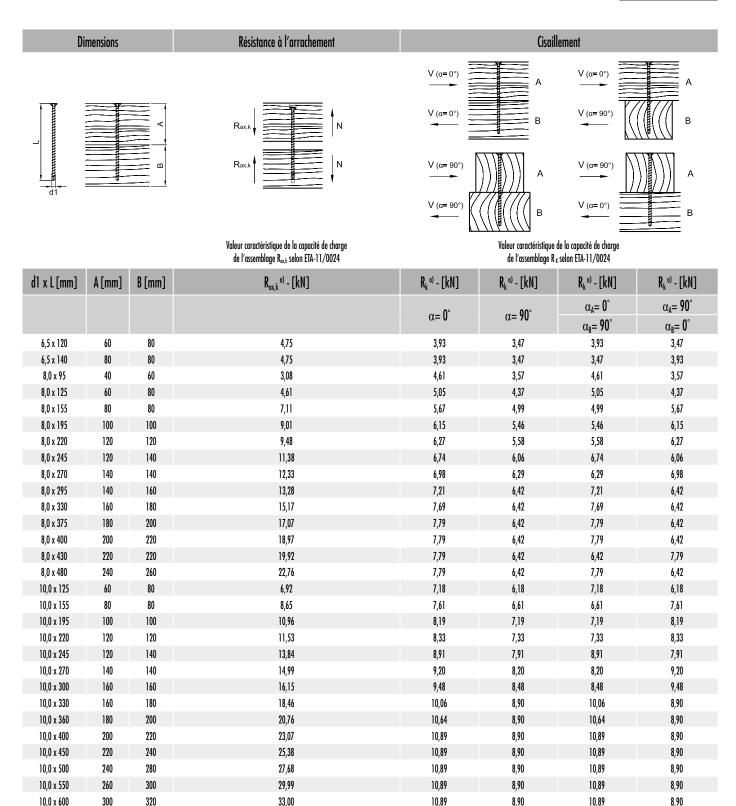
Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) Gk= 2,00 kN et l'effet variable (p. ex. la charge de neige) Qk= 3,00 kN. kmod= 0,9. YM= 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

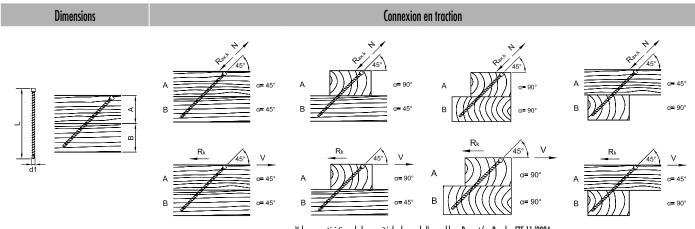

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}} \: / \: k_{\text{m$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ra= Ra · γ_M / k_{med} — Ra= 7,20 kN · 1,3/0,9= 10,40 kN — Mise en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 6,5 À 10,0 MM FIXATION BOIS-BOIS

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.


a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \longrightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod} \longrightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \longrightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 À 10,0 MM FIXATION BOIS-BOIS

Valeur caractéristique	de la capacité de ch	arae de l'assemblaae R	mx k et/ou Rk selon ETE-11/0024

dl x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha \lambda}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a} - [kN]$
			α=	45°	$\alpha_A = \alpha_B = \alpha_B$	$\alpha_A = 90^{\circ}$ $\alpha_B = 45^{\circ}$		α_{A} = 90° α_{B} = 90°		45° 90°
6,5 x 160	60	80	5,95	4,21	5,95	4,21	5,95	4,21	5,95	4,21
6,5 x 195	80	80	6,48	4,58	6,48	4,58	6,48	4,58	6,48	4,58
8,0 x 155	60	60	6,65	4,70	6,65	4,70	6,65	4,70	6,65	4,70
8,0 x 195	80	80	7,76	5,49	7,76	5,49	7,76	5,49	7,76	5,49
8,0 x 220	80	100	10,13	7,17	10,13	7,17	10,13	7,17	10,13	7,17
8,0 x 245	100	100	9,82	6,95	9,82	6,95	9,82	6,95	9,82	6,95
8,0 x 295	120	100	11,88	8,40	11,88	8,40	11,88	8,40	11,88	8,40
8,0 x 330	120	140	15,20	10,75	15,20	10,75	15,20	10,75	15,20	10,75
8,0 x 375	140	140	16,79	11,87	16,79	11,87	16,79	11,87	16,79	11,87
8,0 x 400	160	140	16,48	11,65	16,48	11,65	16,48	11,65	16,48	11,65
8,0 x 430	160	160	19,32	13,66	19,32	13,66	19,32	13,66	19,32	13,66
8,0 x 480	180	180	21,38	15,12	21,38	15,12	21,38	15,12	21,38	15,12
10,0 x 300	120	120	15,03	10,63	15,03	10,63	15,03	10,63	15,03	10,63
10,0 x 330	120	140	18,49	13,07	18,49	13,07	18,49	13,07	18,49	13,07
10,0 x 360	140	140	18,69	13,21	18,69	13,21	18,69	13,21	18,69	13,21
10,0 x 400	160	140	20,04	14,17	20,04	14,17	20,04	14,17	20,04	14,17
10,0 x 450	160	180	25,81	18,25	25,81	18,25	25,81	18,25	25,81	18,25
10,0 x 500	180	200	28,31	20,02	28,31	20,02	28,31	20,02	28,31	20,02
10,0 x 550	200	200	30,82	21,79	30,82	21,79	30,82	21,79	30,82	21,79
10,0 x 600	220	220	33,00	23,33	33,00	23,33	33,00	23,33	33,00	23,33

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

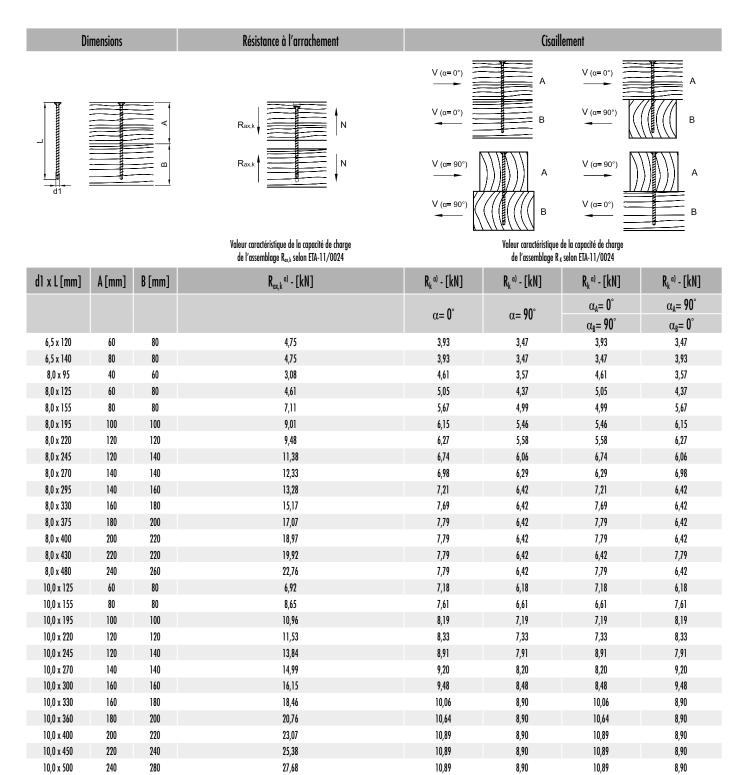
Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rk: Rk= Rk · kmd / γk. Les valeurs de dimensionnement de la capacité de charge Rk sont à comparer aux valeurs de dimensionnement des effets Ek (Rk ≥ Ek).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mol} = 0,9$. $\gamma_{N} = 1,3$.

→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN.</u>


 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 6,5 À 10,0 MM FIXATION BOIS-BOIS

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

29,99

33,00

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

10,89

10,89

8,90

8,90

10,89

10,89

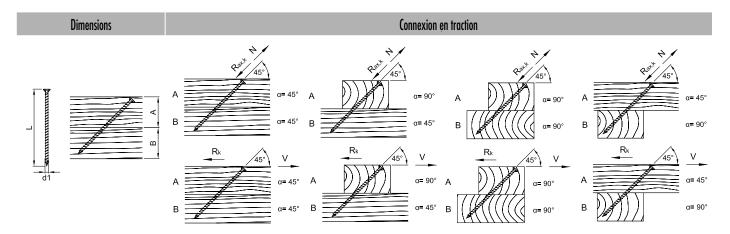
8,90

8,90

Exemple:

10,0 x 550

10,0 x 600


260

300

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \longrightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod} \longrightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \longrightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE AG 11,3 MM : FIXATION BOIS-BOIS

 $Valeur\ caractéristique\ de\ la\ capacité\ de\ charge\ de\ l'assemblage\ R_{\alpha x,k}\ et/ou\ R_k\ selon\ ETA-11/0024$

dl x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{a}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R _k a) - [kN]
			α=	45°	α_{A} = 90° α_{R} = 45°		$ \alpha_{A} = 90^{\circ} $ $ \alpha_{B} = 90^{\circ} $		α_{A} = 45° α_{B} = 90°	
11,3 x 300	120	120	16,98	12,01	16,98	12,01	16,98	12,01	16,98	12,01
11,3 x 340	140	120	18,51	13,09	18,51	13,09	18,51	13,09	18,51	13,09
11,3 x 380	140	140	23,72	16,77	23,72	16,77	23,72	16,77	23,72	16,77
11,3 x 420	160	160	25,25	17,85	25,25	17,85	25,25	17,85	25,25	17,85
11,3 x 460	180	160	26,78	18,93	26,78	18,93	26,78	18,93	26,78	18,93
11,3 x 500	180	200	31,99	22,62	31,99	22,62	31,99	22,62	31,99	22,62
11,3 x 540	200	200	33,52	23,70	33,52	23,70	33,52	23,70	33,52	23,70
11,3 x 580	220	220	35,04	24,78	35,04	24,78	35,04	24,78	35,04	24,78
11,3 x 620	220	240	40,26	28,47	40,26	28,47	40,26	28,47	40,26	28,47
11,3 x 660	240	240	41,79	29,55	41,79	29,55	41,79	29,55	41,79	29,55
11,3 x 700	260	260	43,31	30,63	43,31	30,63	43,31	30,63	43,31	30,63
11,3 x 750	280	280	46,14	32,63	46,14	32,63	46,14	32,63	46,14	32,63
11,3 x 800	300	280	48,97	34,63	48,97	34,63	48,97	34,63	48,97	34,63
11,3 x 900	320	340	50,00	35,36	50,00	35,36	50,00	35,36	50,00	35,36
11,3 x 1000	360	360	50,00	35,36	50,00	35,36	50,00	35,36	50,00	35,36

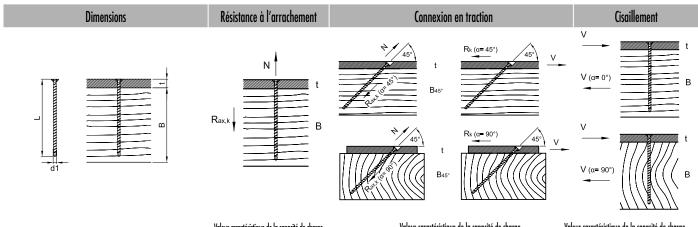
Dimensionnement selon ETA-11/0024 Masse volumique $\rho_{\rm k}$ = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des ffets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ (aractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{in}=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

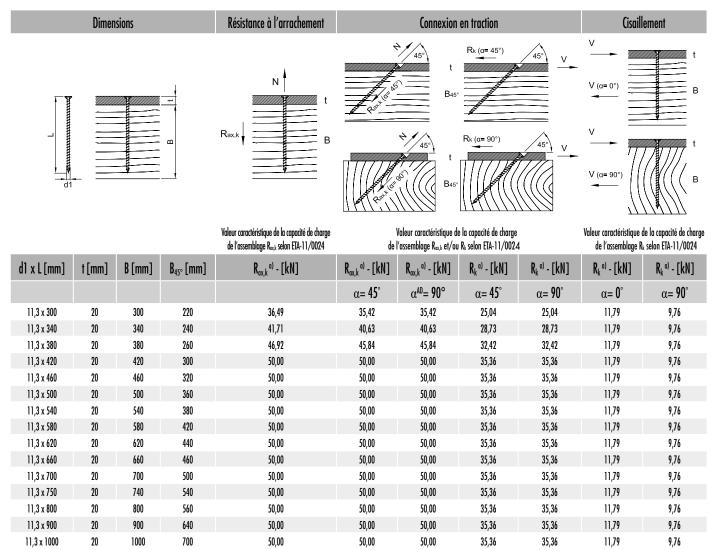
KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 6,5 À 10,0 MM FIXATION ACIER-BOIS

Valeur caractéristique de la capacité de charge de l'assemblage R_{rek} selon FTA-11/0024

Valeur caractéristique de la capacité de charge de l'assemblage R_{ex k} et/ou R_k selon ETA-11/0024 Valeur caractéristique de la capacité de charge de l'assemblage R_b selon ETA-11/0024

				de l'assemblage R _{ax,k} selon ETA-11/0024		de l'assemblage R _{ax,k} et/ou R _k selon ETA-11/0024		de l'assemblage R _k selon ETA-11/0024		
dl x L [mm]	t[mm]	B [mm]	B _{45°} [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_{\alpha x,k}^{\alpha)}$ - [kN]	R_k^{a} - [kN]	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]	R_k^{a} - [kN]
					α= 45°	α^{AD} = 90°	α = 45°	α= 90 °	α= 0 °	α= 90 °
6,5 x 80	15	80	60	5,14	4,65	4,65	3,29	3,29	4,17	3,52
6,5 x 100	15	100	80	6,73	6,24	6,24	4,41	4,41	4,17	3,52
6,5 x 120	15	120	80	8,31	7,82	7,82	5,53	5,53	4,17	3,52
6,5 x 140	15	140	100	9,89	9,40	9,40	6,65	6,65	4,17	3,52
8,0 x 95	15	100	80	7,59	7,00	7,00	4,95	4,95	6,18	5,22
8,0 x 125	15	120	100	10,43	9,84	9,84	6,96	6,96	6,18	5,22
8,0 x 155	15	160	120	13,28	12,69	12,69	8,97	8,97	6,18	5,22
8,0 x 195	15	200	140	17,07	16,48	16,48	11,65	11,65	6,18	5,22
8,0 x 220	15	220	160	19,44	18,85	18,85	13,33	13,33	6,18	5,22
8,0 x 245	15	240	180	21,81	21,22	21,22	15,01	15,01	6,18	5,22
8,0 x 270	15	280	200	24,18	23,59	23,59	16,68	16,68	6,18	5,22
8,0 x 295	15	300	220	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0 x 330	15	340	240	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0 x 375	15	380	280	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0 x 400	15	400	280	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0 x 430	15	440	300	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0 x 480	15	480	340	25,00	25,00	25,00	17,68	17,68	6,18	5,22
10,0 x 125	15	120	100	12,69	11,97	11,97	8,46	8,46	8,72	7,30
10,0 x 155	15	160	120	16,15	15,43	15,43	10,91	10,91	8,72	7,30
10,0 x 195	15	200	140	20,76	20,05	20,05	14,17	14,17	8,72	7,30
10,0 x 220	15	220	160	23,65	22,93	22,93	16,21	16,21	8,72	7,30
10,0 x 245	15	240	180	26,53	25,81	25,81	18,25	18,25	8,72	7,30
10,0 x 270	15	280	200	29,41	28,70	28,70	20,29	20,29	8,72	7,30
10,0 x 300	15	300	220	32,87	32,16	32,16	22,74	22,74	8,72	7,30
10,0 x 330	15	340	240	33,00	33,00	33,00	23,33	23,33	8,72	7,30
10,0 x 360	15	360	260	33,00	33,00	33,00	23,33	23,33	8,72	7,30
10,0 x 400	15	400	280	33,00	33,00	33,00	23,33	23,33	8,72	7,30
10,0 x 450	15	460	320	33,00	33,00	33,00	23,33	23,33	8,72	7,30
10,0 x 500	15	500	360	33,00	33,00	33,00	23,33	23,33	8,72	7,30
10,0 x 550	15	560	400	33,00	33,00	33,00	23,33	23,33	8,72	7,30
10,0 x 600	15	600	420	33,00	33,00	33,00	23,33	23,33	8,72	7,30

Dimensionnement selon ETA-11/0024 Masse volumique ρ_i = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.


a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$ C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod}$ \rightarrow $R_k = 7,20$ kN $\cdot 1,3/0,9 = 10,40$ kN \rightarrow Mise en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE AG 11,3 MM : FIXATION ACIER-BOIS

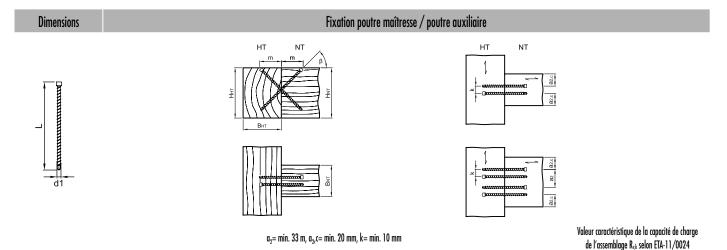
Dimensionnement selon ETA-11/0024 Masse volumique ρ_{λ} = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd: Rd= Rk · kmd / γM. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd ≥ Ed).

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

 $[\]rightarrow$ Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN$.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM : FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

dl x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	R _{v,k} ^{a) b)} - [kN]	Paire (n)
	60						10,91	1
/ E v 10E	100	160	80	160	69	45	20,36	2
6,5 x 195	120						29,33	3
	160						38,00	4

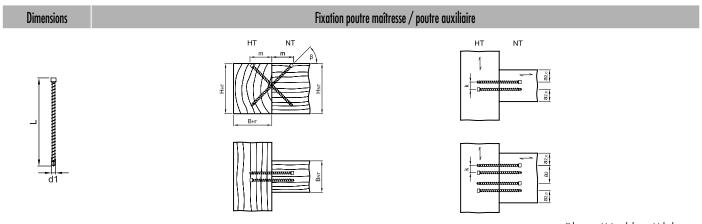
Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_M=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 \cdot 1,35 + 3,00 \cdot 1,5= 7,20 kN.


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau. b) déterminé à partir du nombre effectif de paires de vis à : 0.9.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 8,0 MM : FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

 a_2 = min. 40 mm, a_2 c= min. 24 mm, k= min. 12 mm

Valeur caractéristique de la capacité de charge de l'assemblage R_{v.k} selon ETA-11/0024

dl x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Paire (n)
	80						16,43	1
0.0045	100	200	100	200	07	AF	30,66	2
8,0 x 245	140	200	100	200	87	45	44,16	3
	180						57,21	4
	80						17,44	1
0.0000	100	990	100	990	104	AF	32,55	2
8,0 x 295	140	220	120	220	104	45	46,88	3
	180						60,74	4
	80						17,44	1
0.0220	100	0/0	140	260	117	45	32,55	2
8,0 x 330	140	260	140		117	43	46,88	3
	180						60,74	4
	80						17,44	1
0.0275	100	000	1/0	900	100	AF	32,55	2
8,0 x 375	140	280	160	280	133	45	46,88	3
	180						60,74	4
	80	300	160	300	141		17,44	1
0.0 400	100					45	32,55	2
8,0 x 400	140						46,88	3
	180						60,74	4
	80						17,44	1
0.0420	100	220	100	220	100	AF	32,55	2
8,0 x 430	140	320	180	320	152	45	46,88	3
	180						60,74	4
	80						17,44	1
0.0400	100	2/0	100	2/0	170	AF	32,55	2
8,0 x 480	140	360	180	360	170	45	46,88	3
	180						60,74	4

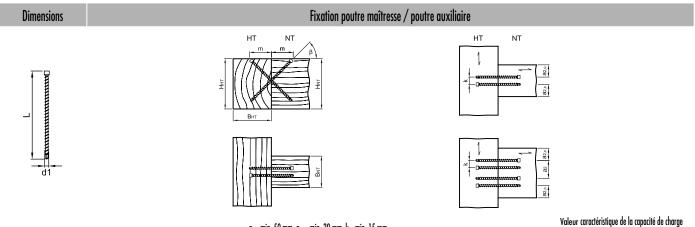
Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \longrightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = \underline{7,20 \text{ kN}}.$


 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{1,3/0,9} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$ b) déterminé à partir du nombre effectif de paires de vis à : 0.9.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 10,0 MM: FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

 $\alpha_2 =$ min. 50 mm, $\alpha_{2,c} =$ min. 30 mm, k = min. 15 mm

de l'assemblage R_{v.k} selon ETA-11/0024

d1 x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Paire (n)
	80	240	120	240		45	23,67	1
10,0 x 300	140				106		44,18	2
10,0 X 300	180		120	240	100	43	63,63	3
	240						82,44	4
	80	260					23,67	1
10,0 x 330	140		140	260	117	45	44,18	2
10,0 X 330	180		110	200	117	7,5	63,63	3
	240						82,44	4
10,0 x 360	80						23,67	1
	140	280	140	280	127	45	44,18	2
	180	200	110		121	43	63,63	3
	240						82,44	4
	80 140	300	160				23,67	1
10,0 x 400				300	141	45	44,18	2
	180 240						63,63 82,44	3
							02, 44 23,67	4 1
	80	340						
10,0 x 450	140		180	340	159	45	44,18	2
	180		200	380			63,63	3
	240						82,44	4
	80				177	45	23,67	1
10,0 x 500	140	380					44,18	2
•	180						63,63	3
	240						82,44	4
	80						23,67	1
10,0 x 550	140	400	220	400	194	45	44,18	2
10,0 K 330	180	100	220	100	.,,	.5	63,63	3
	240						82,44	4
	80						23,67	1
10,0 x 600	140	440	240	440	212	45	44,18	2
10,0 X 000	180	440	240	440		43	63,63	3
	240						82,44	4

Dimensionnement selon ETA-11/0024 Masse volumique ρ_{k} = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rt ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rt sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Raː Ra= Raː k.mad / ya. Les valeurs de dimensionnement de la capacité de charge Ra sont à comparer aux valeurs de dimensionnement des effets Ea (Ra \geq Ea).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) Gi= 2,00 kN et l'effet variable (p. ex. la charge de neige) Qi= 3,00 kN. kmd= 0,9. Yu= 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_k \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau. b) déterminé à partir du nombre effectif de paires de vis à : 0,9.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

CONSTRUCTION À OSSATURE BOIS AVEC KONSTRUX ST

Assemblages avec vis à filetage complet

La vis KonstruX ST est une vis universelle à filetage complet pour **les assemblages d'éléments d'ossature bois comme les poteaux et les traverses**. La vis KonstruX ST ZK de Ø 6 notamment convient à l'assemblage d'éléments d'ossature bois dans les **classes d'utilisation 1 et 2**.

La géométrie spéciale de la pointe de forage permet d'utiliser les distances au bord et les entraxes réduits. C'est la condition sine qua non à l'utilisation dans de petites sections. La pointe de forage réduite n'a pas d'impact négatif sur la résistance à l'arrachement du filet de la vis. Le filet double fin derrière la pointe de forage réduit le couple de vissage.

Les vis à filetage complet sont utilisées de manière optimale lorsqu'elles sont sollicitées de manière axiale, c'est-à-dire en traction (ou pression).

S'il n'y a qu'un effort de cisaillement, les vis à filetage complet ne peuvent pas exploiter tout leur potentiel. On essaie pour cette raison de placer les vis si possible dans le sens de la force appliquée. Si l'angle force-axe (à ne pas confondre avec l'angle axe-fibre) se situe entre 0° et 45°,, on considère que les vis sont sollicitées exclusivement en traction. Il n'est alors pas nécessaire de prouver un cisaillement. L'assemblage est donc nettement plus solide dans un vissage en biais que dans un vissage de 90° par rapport à la force.

Les vis KonstruX ST peuvent être placées **indépendamment du fil**, c'est-à-dire également en parallèle au fil. Du point de vue arithmétique, la résistance à l'arrachement reste constante entre 45° et 90°.

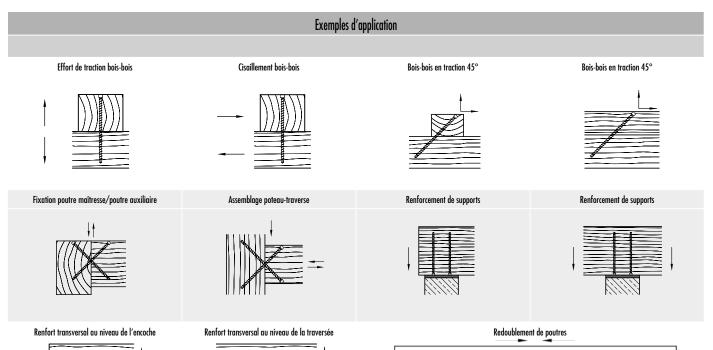
VIS ASSORTIE

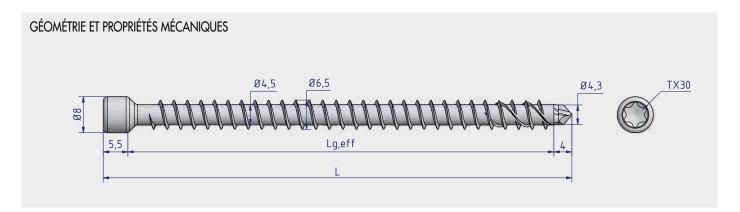
KonstruX ST : tête cylindrique, Ø 6,5 mm Longueurs de la vis : 80 – 195 mm Tête cylindrique enfonçable Matériau : acier trempé Revêtement superficiel galvanisé

EXEMPLES D'APPLICATION

Il existe de multiples applications pour les vis à filetage complet. Les vis à tête cylindrique sont conçues pour l'assemblage d'éléments boisbois. Les têtes cylindriques peuvent être enfoncées profondément dans le bois à l'aide d'un embout long.

En cas de poutres apparentes, les **éléments de connexion ne sont pratiquement pas visibles.** Contrairement aux vis à filetage partiel, il n'est pas important que la tête soit dans un élément donné dans le cas des vis à filetage complet, exception faite bien sûr des connexions acier/bois. Dans ce cas, les **les distances minimales au bord et les entraxes requis sont à respecter.**

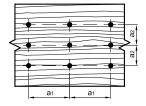




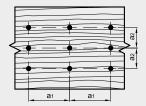
Fixation de supports sur des constructions à ossature bois et des connexions poutre maîtresse / poutre auxiliaire

Eurotec° | KonstruX

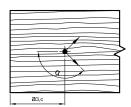
KONSTRUX ST AVEC TÊTE CYLINDRIQUE 6,5 MM

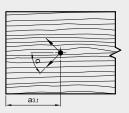


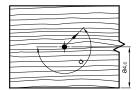
	KonstruX ST ZK Ø 6,5xL -TX30													
N° de réf.	L [mm]	L _{g,eff} [mm]	Unité/ PU	Diamètre de pré-perçage Ød _v [mm]	Valeur caractéristique de la résistance à l'arran- chement f _{ax,k} [N/mm²]	Valeur caractéristique de la résistance d'une fixation soumise à la traction f _{tens,k} [kN]	Couple d'écoulement caractéristique M _{y,k} [Nmm]	Limite d'élasticité caractéristique f _{y,k} [N/mm²]						
904808	80	71	100	4,5	11,4	17,0	15000	1000						
904809	100	91	100	4,5	11,4	17,0	15000	1000						
904810	120	111	100	4,5	11,4	17,0	15000	1000						
904811	140	131	100	4,5	11,4	17,0	15000	1000						
904812	160	151	100	4,5	11,4	17,0	15000	1000						
904813	195	186	100	4,5	11,4	17,0	15000	1000						

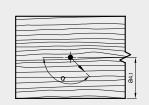

Entraxes et distances au bord Les distances minimales pour les vis KonstruX sollicitées exclusivement dans le sens axial dans des trous pré-percés et des trous non pré-percés dans des éléments de construction d'une épaisseur minimale t = 65 et d'une largeur minimale de 60 mm sont à choisir comme suit : Entraxe parallèle au fil [mm] 5- d Entraxe perpendiculaire au fil 33 5- d [mm] Distance entre le centre de gravité de la vis insérée dans le bois et la surface du bois de bout A3_{1 c} 5∙ d 33 [mm] Distance entre le centre de gravité de la vis insérée dans le bois et la surface de bois de bordure 3- d 20 A3_{2 c} [mm] Entraxe entre la paire de vis qui se croise 1,5∙ d 10 [mm] Entraxe réduit α_2 à angle droit par rapport au fil lorsque $\alpha_1\cdot\alpha_2\geq 25\cdot d^2$ 2,5∙ d 16 [mm]

Les entraxes et distances au bord sont des distances minimales selon la norme DIN EN 1995:2014 (ECS) et s'appliquent en général aux moyens de connexion sollicités dans le sens transversal.

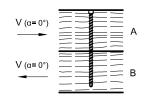

a₁ Distance entre les moyens de connexion dans une rangée dans le sens de la fibre

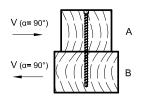

 σ_2 Distance entre les moyens de connexion perpendiculairement au sens de la fibre


A3_{3 c} Distance entre le moyen de connexion et le bois de bout non sollicité $90^{\circ} \le \alpha \le 270^{\circ}$


A3₃₁ Distance entre le moyen de connexion et le bois de bout sollicité -90° $\leq \alpha \leq 90^{\circ}$

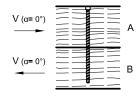
A3_{4 c} Distance entre le moyen de connexion et le bord non sollicité $180^{\circ} \le \alpha \le 360^{\circ}$

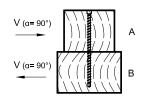

 $a_{i,t}$ Distance entre le moyen de connexion et le bord sollicité $0^{\circ} \le \alpha \le 180^{\circ}$



Après évaluation, les distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous pré-percés se présentent comme suit en fonction du sens de la fibre

Distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous pré-percés avec un angle force-fibre de 0° et de 90°

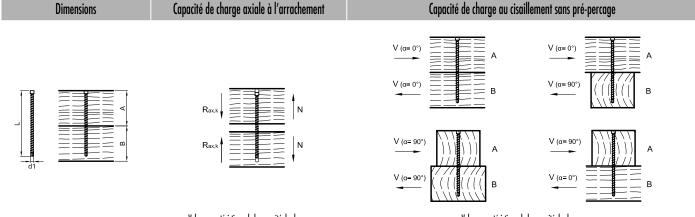




			Angle force-fibre $\alpha = 0^{\circ}$		Angle force-f	ibre α = 90°
Entraxe parallèle au fil	\mathfrak{a}_1	[mm]	5- d	33	4- d	33
Entraxe perpendiculaire au fil	O2	[mm]	3- d	20	4- d	33
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout non sollicité	a 3,c	[mm]	7. d	46	7. d	46
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout sollicité	a _{3,t}	[mm]	12· d	78	7- d	46
Entraxe à angle droit par rapport au bord non sollicité	Q 4,c	[mm]	3. d	20	3∙ d	20
Entraxe par rapport au bord sollicité	a _{4,1}	[mm]	3- d	20	7. d	46

Après évaluation, les distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous non pré-percés se présentent comme suit en fonction du sens de la fibre

Distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous non pré-percés avec un angle force-fibre de 0° et de 90°

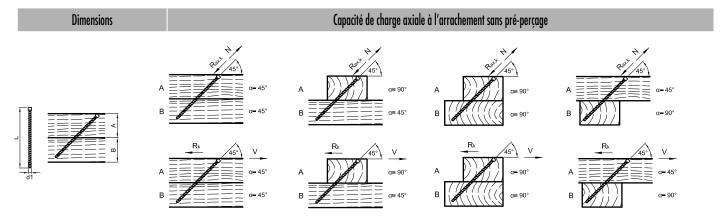


			Angle force-f	fibre α = 0°	Angle force-fibre $\alpha = 90^{\circ}$	
Entraxe parallèle au fil	\mathfrak{a}_1	[mm]	12∙ d	78	5∙ d	33
Entraxe perpendiculaire au fil	a ₂	[mm]	5∙ d	33	5∙ d	33
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout non sollicité	A33,	[mm]	10· d	65	10· d	65
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout sollicité	A3 ₃₁	[mm]	15· d	98	10· d	65
Entraxe à angle droit par rapport au bord non sollicité	А34 с	[mm]	5. d	33	5∙ d	33
Entraxe par rapport au bord sollicité	Q4+	[mm]	5. d	33	10∙ d	65

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM : CAPACITÉ DE CHARGE AU CISAILLEMENT SANS PRÉ-PERÇAGE

Valeur caractéristique de la capacité de charge de l'assemblage R_{ack} selon ETA-11/0024

Valeur caractéristique de la capacité de charge de l'assemblage R_K selon ETA-11/0024

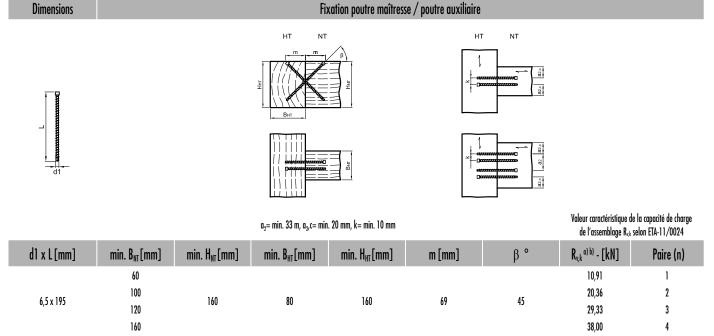

ØdlxL[mm]	A [mm]	B [mm]	$R_{\alpha x,k}{}^{a)}$ - [kN]	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]	R_k^{a} - [kN]	R_k^{a} - [kN]
				α= 0 °	α= 90 °	$\alpha_{\mathtt{A}} = 0^{\circ}$	α_{A} = 90°
				α= υ	α= 70	α_{B} = 90°	$\alpha_{\mathtt{B}} = 0^{\circ}$
6,5 x 120	60	80	4,35	3,83	3,37	3,83	3,37
6,5 x 140	80	80	4,43	3,85	3,39	3,39	3,85
6,5 x 160	80	100	5,94	4,22	3,76	4,22	3,76
6,5 x 195	100	100	7,20	4,54	4,08	4,08	4,54

Dimensionnement selon ETA-11/0024 Masse volumique ρ_{N} = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement $R_d = R_d \cdot k_{mod} / \gamma_M$. Les valeurs

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM : CAPACITÉ DE CHARGE AXIALE À L'ARRACHEMENT SANS PRÉ-PERÇAGE

Valeur caractéristique de la capacité de charge de l'assemblage R_k selon ETA-11/0024


Ød1 x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a} - [kN]$	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{a} - [kN]
			α=	45°	$\alpha_{A}=$ $\alpha_{B}=$		$\alpha_{A}=$ $\alpha_{B}=$		$\alpha_A = \alpha_B = \alpha_B$	
6,5 x 160	60	80	5,51	3,90	5,51	3,90	5,51	3,90	5,51	3,90
6,5 x 195	80	80	6,04	4,27	6,04	4,27	6,04	4,27	6,04	4,27

Dimensionnement selon ETA-11/0024 Masse volumique ρ_{λ} = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

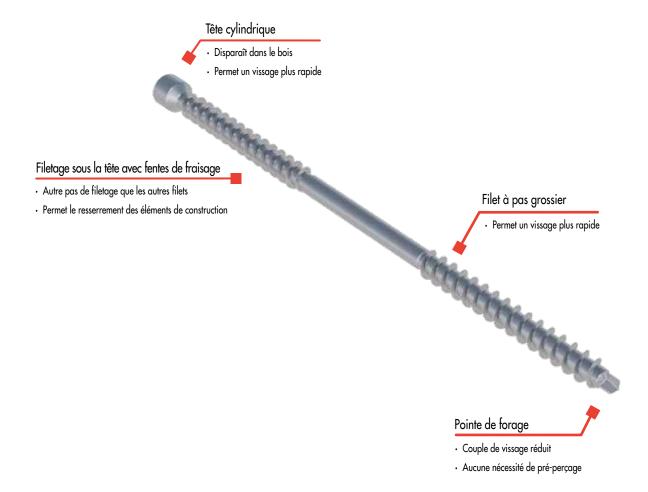
a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{dk}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

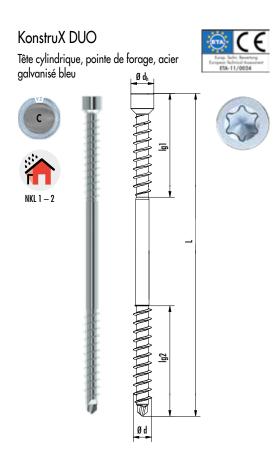
KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM : FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

Dimensionnement selon ETA-11/0024 Masse volumique ρ_i = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{med} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

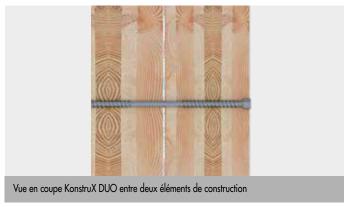
KONSTRUX DUO

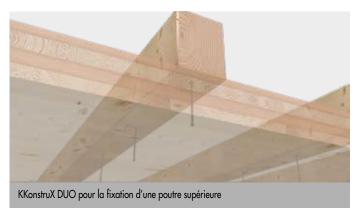

Vis à filetage complet avec effet de resserrement

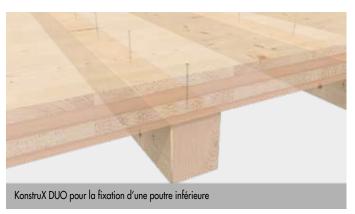


La vis KonstruX DUO est une vis à filetage complet innovante qui combine les points forts des vis à filetage complet et des vis à filetage partiel:

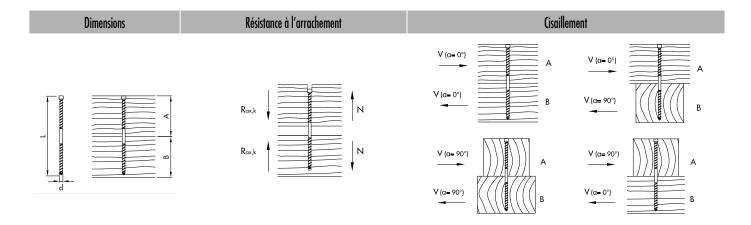
Maximisation de la capacité de charge de l'assemblage grâce à une résistance à l'arrachement identique dans les deux éléments de construction. La vis KonstruX DUO résiste à la corrosion sous certaines réserves et est utilisable dans les classes d'utilisation 1 et 2 selon la norme DIN EN 1995 (eurocode 5). Les domaines d'application se trouvent dans les nouvelles constructions et dans la rénovation de bâtiments.






N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/ lg2 [mm]	Empreinte	PU
100606	6,5	90	8,0	40/40	TX30 •	100
100607	6,5	130	8,0	43/43	TX30 •	100
100608	6,5	160	8,0	67/67	TX30 •	100
100609	6,5	190	8,0	82/82	TX30 •	100
100610	6,5	220	8,0	97/97	TX30 •	100
100611	8,0	160	10,0	67/67	TX40 •	100
100612	8,0	190	10,0	92/92	TX40 •	100
100613	8,0	220	10,0	92/92	TX40 •	100
100614	8,0	245	10,0	107/107	TX40 •	100
100615	8,0	280	10,0	107/107	TX40 •	100
100616	8,0	300	10,0	137/137	TX40 •	100
100617	8,0	330	10,0	137/137	TX40 •	100
100618	8.0	400	10.0	137/137	TX40 •	100

EXEMPLES D'APPLICATION



INFORMATIONS TECHNIQUES KONSTRUX DUO, ACIER GALVANISÉ BLEU

d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{0}$ - [kN]	R _k a) - [kN]	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]	R_k^{α} - [kN]
				0 °	00°	$\alpha_{A} = 0^{\circ}$	$\alpha_{A}=90^{\circ}$
				α= 0 °	α= 90 °	α_{B} = 90°	$\alpha_{\mathtt{B}} = 0^{\circ}$
6,5 x 90	40	40	0,96	3,00	2,51	2,75	2,64
6,5 x 130	60	60	1,04	3,02	2,57	2,77	2,77
6,5 x 160	80	80	1,71	3,19	2,74	2,94	2,94
6,5 x 190	100	100	2,12	3,29	2,85	3,04	3,04
6,5 x 220	120	120	2,54	3,40	2,95	3,14	3,14
8,0 x 160	80	80	5,74	5,37	4,72	5,00	5,00
8,0 x 190	100	100	8,11	5,97	5,31	5,60	5,60
8,0 x 220	120	120	8,11	5,97	5,31	5,60	5,60
8,0 x 245	120	120	9,53	6,32	5,67	5,95	5,95
8,0 x 280	140	140	9,53	6,32	5,67	5,95	5,95
8,0 x 300	160	160	12,38	7,03	6,38	6,66	6,66
8,0 x 330	180	180	12,38	7,03	6,38	6,66	6,66
8,0 x 400	200	200	12,38	7,03	6,38	6,66	6,66

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) G_k = 3,00 kN. f_k = 0,00 kN. f_k = 0,00 kN et l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) G_k = 3,00 kN. f_k = 0,00 kN. f_k = 0,00 kN et l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) G_k = 3,00 kN. f_k = 0,00 kN et l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) G_k = 3,00 kN. f_k = 0,00 kN et l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) G_k = 3,00 kN. f_k = 0,00 kN et l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) G_k = 3,00 kN. f_k = 0,00 kN et l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) G_k = 3,00 kN. G_k = 4,00 kN. G_k = 3,00 kN. G_k = 3,00 kN. G_k = 4,00 kN. G_k = 3,00 kN. G_k = 4,00 kN

INFORMATIONS TECHNIQUES KONSTRUX DUO, ACIER GALVANISÉ BLEU

Dimensions		Connexion en	traction	
	A A 45° V C= 45° B C= 45°	A B Q 45°	A A 45° V C C S O C C S O C C S O C C C C C C C C	A A 45° V 0= 45° B 0= 90°
9	A	A	A	A Quantity 45° Que 45° Response of the second secon

valeur caracteristique (ue la capacile de cilarge d	e i assembiage K _{ax,k} ei/o	U K _k seioii eia-i i/ uu24

d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha)}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	$R_k^{\alpha)}$ - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{a} - [kN]	
			α= 45 °		$\alpha_A = \alpha_B = \alpha_B$	$lpha_{A}$ = 90° $lpha_{B}$ = 45°		α _A = 90° α _B = 90°		$lpha_{A}=45^{\circ}$ $lpha_{B}=90^{\circ}$	
6,5 x 90	40	40	0,68	0,48	0,68	0,48	0,68	0,48	0,68	0,48	
6,5 x 130	40	40	0,74	0,52	0,74	0,52	0,74	0,52	0,74	0,52	
6,5 x 160	60	60	1,21	0,86	1,21	0,86	1,21	0,86	1,21	0,86	
6,5 x 190	60	60	1,50	1,06	1,50	1,06	1,50	1,06	1,50	1,06	
6,5 x 220	80	80	1,80	1,27	1,80	1,27	1,80	1,27	1,80	1,27	
8,0 x 160	60	60	4,06	2,87	4,06	2,87	4,06	2,87	4,06	2,87	
8,0 x 190	60	60	5,73	4,05	5,73	4,05	5,73	4,05	5,73	4,05	
8,0 x 220	80	80	5,73	4,05	5,73	4,05	5,73	4,05	5,73	4,05	
8,0 x 245	100	100	6,74	4,77	6,74	4,77	6,74	4,77	6,74	4,77	
8,0 x 280	100	100	6,74	4,77	6,74	4,77	6,74	4,77	6,74	4,77	
8,0 x 300	120	120	8,75	6,19	8,75	6,19	8,75	6,19	8,75	6,19	
8,0 x 330	120	120	8,75	6,19	8,75	6,19	8,75	6,19	8,75	6,19	
8 0 x 400	140	140	8.75	6 19	8.75	6.19	8.75	6 19	8.75	619	

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{N} = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5= $\overline{7,20~kN}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \ / \ k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$

KONSTRUX DUO, ACIER GALVANISÉ BLEU FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

Dimensions Fixation poutre maîtresse / poutre auxiliaire

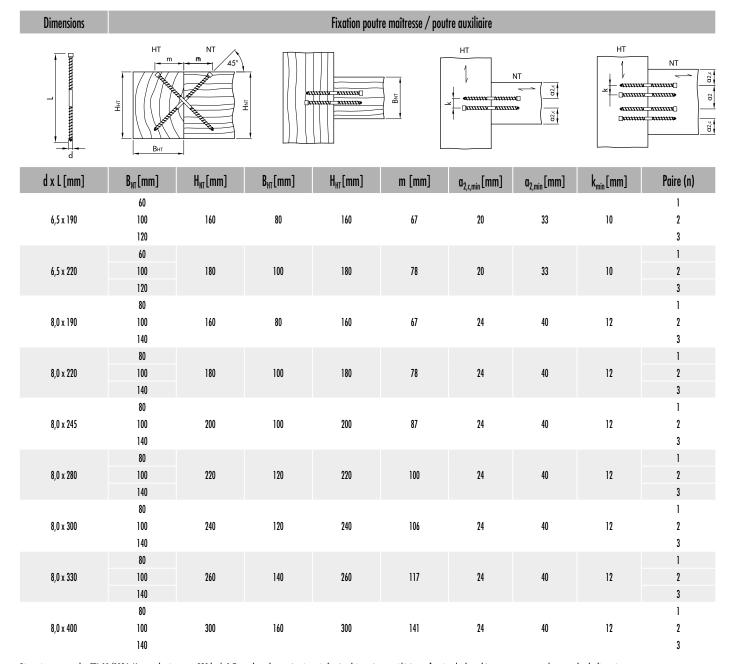
d x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	F _{v,Rd}	[kN]	Paire (n)
					$k_{mod} = 0.8$	$k_{mod} = 0.9$	
	60				1,84	2,08	1
6,5 x 190	100	160	80	160	3,43	3,88	2
	120				4,95	5,59	3
	60				2,21	2,49	1
6,5 x 220	100	180	100	180	4,13	4,64	2
	120				5,94	6,69	3
	80				7,06	7,94	1
8,0 x 190	100	160	80	160	13,17	14,81	2
	140				18,97	21,34	3
	80		100		7,06	7,94	1
8,0 x 220	100	180		180	13,17	14,81	2
	140				18,97	21,34	3
	80				8,30	9,33	1
8,0 x 245	100	200	100	200	15,48	17,41	2
	140				22,30	25,08	3
	80				8,30	9,33	1
8,0 x 280	100	220	120	220	15,48	17,41	2
	140				22,30	25,08	3
	80				10,77	12,12	1
8,0 x 300	100	240	120	240	20,10	22,61	2
	140				28,95	32,57	3
	80				10,77	12,12	1
8,0 x 330	100	260	140	260	20,10	22,61	2
	140				28,95	32,57	3
	80				10,77	12,12	1
8,0 x 400	100	300	160	300	20,10	22,61	2
	140				28,95	32,57	3

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple :

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.


 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}C'$ est-à-dire que la valeur minimale caractéristique de la capacité de charge est dimensionnée comme min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

b) déterminé à partir du nombre effectif de paires de vis à : $^{0.9}$.

KONSTRUX DUO, ACIER GALVANISÉ BLEU FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R₄ : R₄= Rk · k₂ √ γμ. Les valeurs de dimensionnement de la capacité de charge R₄ sont à comparer aux valeurs de dimensionnement des effets E₄ (R₄ ≥ E₄).

Fxemnle

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

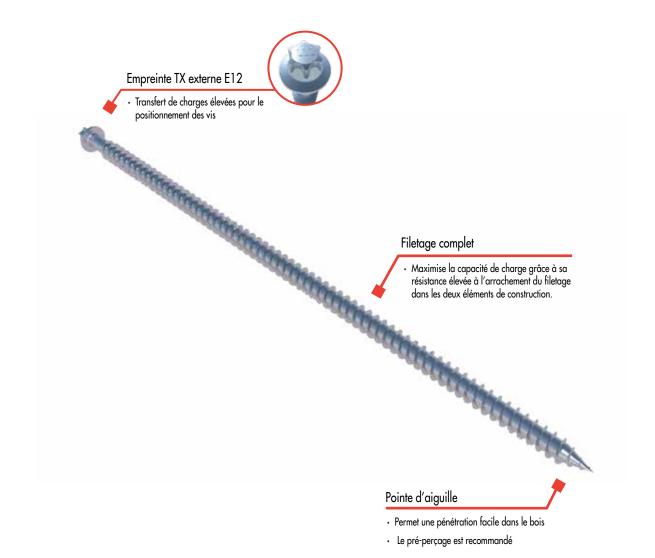
→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN.</u>

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}C'$ est-à-dire que la valeur minimale caractéristique de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{2} \rightarrow Mise en cohérence avec les valeurs du tableau.$

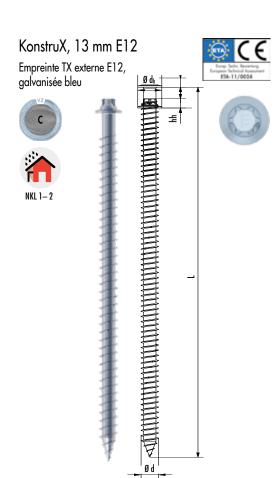
b) déterminé à partir du nombre effectif de paires de vis à : $^{\rm 0.9}.$

KONSTRUX, 13 MM E12

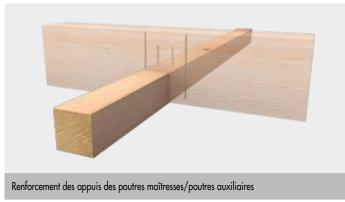
Pour de grandes envergures dans la construction en bois

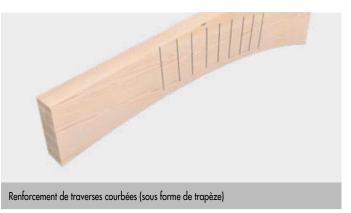


La vis KonstruX avec empreinte E12 est utilisée dans de nombreuses applications dans l'ingénierie et la construction en bois, la charpenterie, les constructions à ossature bois, la construction de halles et les éléments de construction en bois ainsi que dans la rénovation de plafonds et dans bien d'autres secteurs. Les vis à filetage complet KonstruX maximisent la capacité de charge d'un assemblage du fait de leur résistance élevée à l'arrachement du filet dans les deux éléments de construction.

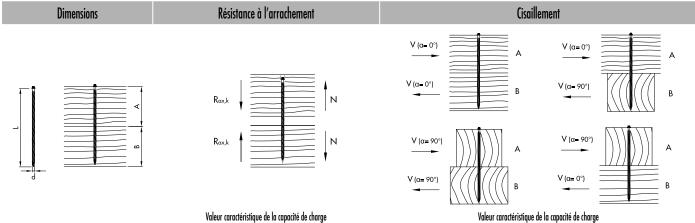

Avec un filet à pas grossier sur toute la longueur et un diamètre extérieur de 13 mm, cette vis est conçue pour une **excellente résistance axiale à l'arrache**ment dans des éléments de construction en bois. Avec sa **remarquable résistance à la traction de 75 kN**, la vis peut tirer parti de sa longueur maximale de 1400 mm et convient notamment aux grands projets de renforcement.

Les applications typiques sont les éléments de lamellé-collé et les fermes de halles de grande envergure, les renforcements de poutres et de raccordements, les renforts transversaux, les renforcements au niveau des encoches, les renforcements au niveau de traversées ainsi que les renforcements de supports pour accroître, préserver ou restaurer la capacité de charge et réduire les déformations dans le long terme.


Eurotec | KonstruX


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	hh [mm]	Empreinte	PU
904835	13,0	200	18	10	TX50 ◆	20
904836	13,0	220	18	10	TX50 ●	20
904837	13,0	240	18	10	TX50 ●	20
904838	13,0	260	18	10	TX50 ●	20
904839	13,0	280	18	10	TX50 ●	20
904840	13,0	300	18	10	TX50 ●	20
904841	13,0	320	18	10	TX50 ●	20
904842	13,0	340	18	10	TX50 ●	20
904843	13,0	360	18	10	TX50 ◆	20
904844	13,0	380	18	10	TX50 ●	20
904845	13,0	420	18	10	TX50 ●	20
904846	13,0	460	18	10	TX50 ●	20
904847	13,0	500	18	10	TX50 ●	20
904848	13,0	540	18	10	TX50 ●	20
904849	13,0	580	18	10	TX50 ●	20
904850	13,0	620	18	10	TX50 ●	20
904851	13,0	660	18	10	TX50 ●	20
904852	13,0	700	18	10	TX50 ●	20
904853	13,0	750	18	10	TX50 ●	20
904854	13,0	800	18	10	TX50 ●	20
904855	13,0	900	18	10	TX50 ●	20
904856	13,0	1000	18	10	TX50 ●	20
904861	13,0	1200	18	10	TX50 ●	20
904862	13.0	1400	18	10	TX50 ●	20

EXEMPLES D'APPLICATION



INFORMATIONS TECHNIQUES KONSTRUX, 13 MM E12, ACIER GALVANISÉ BLEU

Valeur caractéristique de la capacité de charg de l'assemblage R_{ax,k} selon ETA-11/0024 de l'assemblage R_K selon ETA-11/0024

			ue i usseilibiuge Kox,k seloli LIA-1 1/ 0024	ue i usseinbluge kg seion Lia-11/ 0024						
d x L [mm]	A [mm]	B [mm]	$R_{\alpha\chi,k}{}^{\alpha J}$ - [kN]	$R_k^{a} - [kN]$	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]	R_k^{σ} - [kN]			
				α= 0 °	α= 90 °	$\alpha_{A}=0^{\circ}$ $\alpha_{B}=90^{\circ}$	$\alpha_{A}=90^{\circ}$ $\alpha_{B}=0^{\circ}$			
13,0 x 300	150	150	22,49	16,20	14,13	15,00	15,00			
13,0 x 340	170	170	25,49	16,95	14,88	15,75	15,75			
13,0 x 380	190	190	28,49	17,70	15,63	16,50	16,50			
13,0 x 420	210	210	31,49	18,45	16,38	17,25	17,25			
13,0 x 460	230	230	34,49	19,20	17,02	18,00	18,00			
13,0 x 500	250	250	37,49	19,25	17,02	18,75	18,75			
13,0 x 540	270	270	40,49	20,70	17,02	18,75	18,75			
13,0 x 580	290	290	43,48	21,15	17,02	18,75	18,75			
13,0 x 620	310	310	46,48	21,15	17,02	18,75	18,75			
13,0 x 660	330	330	49,48	21,15	17,02	18,75	18,75			
13,0 x 700	350	350	52,48	21,15	17,02	18,75	18,75			
13,0 x 750	375	375	56,23	21,15	17,02	18,75	18,75			
13,0 x 800	400	400	59,98	21,15	17,02	18,75	18,75			
13,0 x 900	450	450	67,48	21,15	17,02	18,75	18,75			
13,0 x 1000	500	500	74,97	21,15	17,02	18,75	18,75			
13,0 x 1200	600	600	75,00	21,15	17,02	18,75	18,75			
13.0 x 1400	700	700	75 00	21.15	17.02	18.75	18.75			

Dimensionnement selon ETA-11/0024. Masse volumique $\rho_{\rm k}$ = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

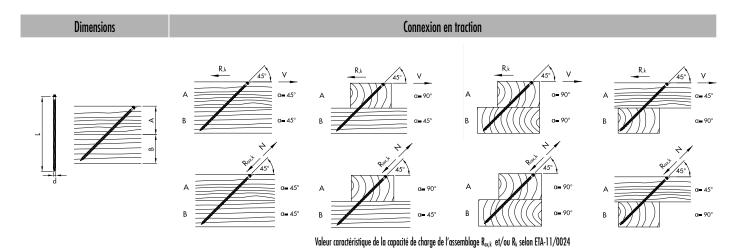
a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd: Rd = Rk · kmd / γM. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd ≥ Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_m = 1,3$. \rightarrow Valeur de dimensionnement de l'effet $E_i = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$ C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod}$ $\rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN}$ \rightarrow Mise en cohérence avec les valeurs du tableau.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

DOUILLE TX EXTERNE 1/2"



N° de réf.	Empreinte	PU
800420	F12	1

INFORMATIONS TECHNIQUES KONSTRUX, 13 MM E12, ACIER GALVANISÉ BLEU

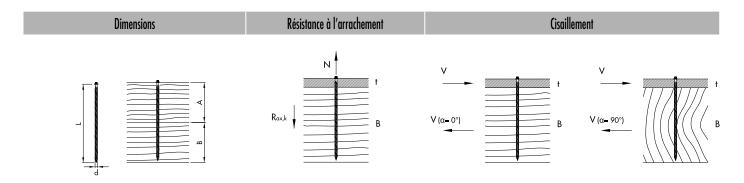
d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	$R_k^{a} - [kN]$
			α= 45 °		α _A = 90° α _B = 45°		α_{A} = 90° α_{B} = 90°		$ \alpha_{A}=45^{\circ} $ $ \alpha_{B}=90^{\circ} $	
13,0 x 300	105	105	15,75	11,14	15,75	11,14	15,75	11,14	15,75	11,14
13,0 x 340	120	120	17,99	12,72	17,99	12,72	17,99	12,72	17,99	12,72
13,0 x 380	135	135	20,05	14,18	20,05	14,18	20,05	14,18	20,05	14,18
13,0 x 420	150	150	22,05	15,59	22,05	15,59	22,05	15,59	22,05	15,59
13,0 x 460	160	160	23,99	16,96	23,99	16,96	23,99	16,96	23,99	16,96
13,0 x 500	180	180	26,02	18,40	26,02	18,40	26,02	18,40	26,02	18,40
13,0 x 540	190	190	28,49	20,15	28,49	20,15	28,49	20,15	28,49	20,15
13,0 x 580	205	205	30,74	21,74	30,74	21,74	30,74	21,74	30,74	21,74
13,0 x 620	220	220	32,76	23,16	32,76	23,16	32,76	23,16	32,76	23,16
13,0 x 660	235	235	34,75	24,57	34,75	24,57	34,75	24,57	34,75	24,57
13,0 x 700	250	250	36,73	25,97	36,73	25,97	36,73	25,97	36,73	25,97
13,0 x 750	265	265	39,74	28,10	39,74	28,10	39,74	28,10	39,74	28,10
13,0 x 800	285	285	42,09	29,76	42,09	29,76	42,09	29,76	42,09	29,76
13,0 x 900	320	320	47,45	33,55	47,45	33,55	47,45	33,55	47,45	33,55
13,0 x 1000	355	355	52,80	37,34	52,80	37,34	52,80	37,34	52,80	37,34
13,0 x 1200	425	425	53,03	37,50	53,03	37,50	53,03	37,50	53,03	37,50
13,0 x 1400	500	500	53,03	37,50	53,03	37,50	53,03	37,50	53,03	37,50

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{N}=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_{d} \geq E_{d}. \longrightarrow min~R_{k} = R_{d} \cdot \gamma_{M} \: / \: k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES KONSTRUX, 13 MM E12, ACIER GALVANISÉ BLEU

d x L [mm]	t [mm]	B [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	R _k a) - [kN]	R _k ^{a)} - [kN]
				α= 0 °	α= 90 °
13,0 x 300	20	300	41,99	25,45	22,53
13,0 x 340	20	340	47,98	26,95	24,03
13,0 x 380	20	380	53,98	28,45	24,07
13,0 x 420	20	420	59,98	29,91	24,07
13,0 x 460	20	460	65,98	29,91	24,07
13,0 x 500	20	500	71,97	29,91	24,07
13,0 x 540	20	540	75,00	29,91	24,07
13,0 x 580	20	580	75,00	29,91	24,07
13,0 x 620	20	620	75,00	29,91	24,07
13,0 x 660	20	660	75,00	29,91	24,07
13,0 x 700	20	700	75,00	29,91	24,07
13,0 x 750	20	750	75,00	29,91	24,07
13,0 x 800	20	800	75,00	29,91	24,07
13,0 x 900	20	900	75,00	29,91	24,07
13,0 x 1000	20	1000	75,00	29,91	24,07
13,0 x 1200	20	1200	75,00	29,91	24,07
13,0 x 1400	20	1400	75,00	29,91	24,07

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

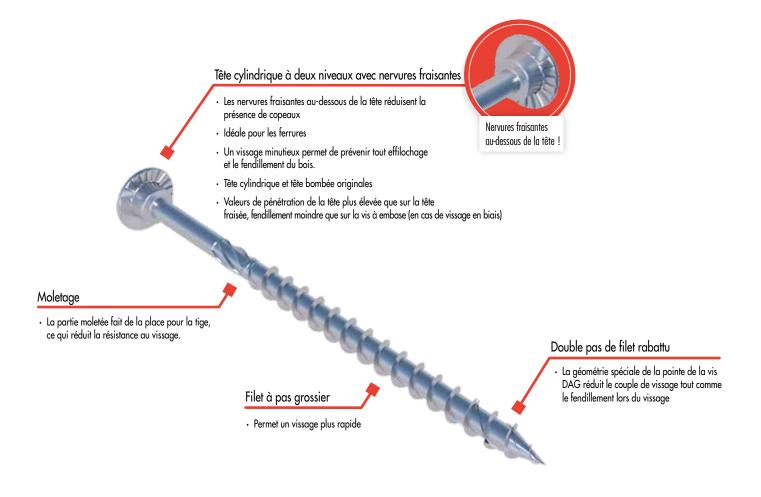
a) Les valeurs caractéristiques de la capacité de charge Ri ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Ri sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Ri : Ri= Ri · Kimal / yii. Les valeurs de dimensionnement de la capacité de charge Ri sont à comparer aux valeurs de dimensionnement des effets Ei (Ri ≥ Ei).

Exemple :

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

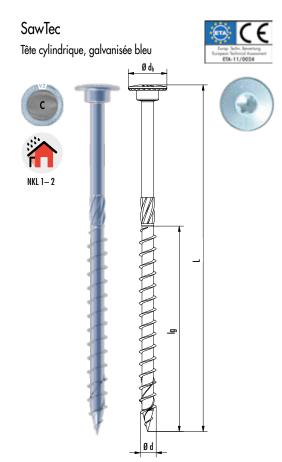
 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

SAWTEC

Vis à bois en acier au carbone trempé



La vis SawTec est une vis à bois **avec pointe spéciale et nervures fraisantes** au-dessous de la tête. La vis a une **tête cylindrique à deux niveaux.** La géométrie spéciale de la pointe de la vis **réduit le couple de vissage** et garantit par ailleurs un **fendillement moindre** lors du vissage.

Eurotec° | SawTec

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
954115	5,0	40	10,5	24	TX25 •	200
954117	5,0	50	10,5	30	TX25 •	200
954118	5,0	60	10,5	36	TX25 •	200
954119	5,0	70	10,5	42	TX25 •	200
954120	5,0	80	10,5	48	TX25 •	200
954121	5,0	90	10,5	54	TX25 •	200
954122	5,0	100	10,5	60	TX25 •	200
954124	5,0	120	10,5	60	TX25 •	200
954128	6,0	60	13,0	36	TX30 •	100
954129	6,0	70	13,0	42	TX30 •	100
954130	6,0	80	13,0	48	TX30 •	100
954131	6,0	100	13,0	60	TX30 •	100
954133	6,0	120	13,0	60	TX30 •	100
954135	6,0	140	13,0	70	TX30 •	100
954137	6,0	160	13,0	70	TX30 •	100
954138	6,0	180	13,0	70	TX30 •	100
954145	8,0	80	18,0	48	TX40 •	50
954146	8,0	100	18,0	60	TX40 •	50
954147	8,0	120	18,0	60	TX40 •	50
954148	8,0	140	18,0	95	TX40 •	50
954149	8,0	160	18,0	95	TX40 •	50
954150	8,0	180	18,0	95	TX40 •	50
954151	8,0	200	18,0	95	TX40 •	50
954152	8,0	220	18,0	95	TX40 •	50
954153	8,0	240	18,0	95	TX40 •	50
954154	8,0	260	18,0	95	TX40 •	50
954155	8,0	280	18,0	95	TX40 •	50
954156	8,0	300	18,0	95	TX40 •	50
954157	8,0	320	18,0	95	TX40 •	50
954158	8,0	340	18,0	95	TX40 •	50
954159	8,0	360	18,0	95	TX40 •	50
954160	8,0	380	18,0	95	TX40 •	50
954161	8,0	400	18,0	95	TX40 ●	50
954181	8,0	420	18,0	95	TX40 •	50
954182	8,0	440	18,0	95	TX40 •	50
954183	8,0	460	18,0	95	TX40 •	50
954184	8,0	480	18,0	95	TX40 ●	50
954185	8,0	500	18,0	95	TX40 •	50
954186	8,0	550	18,0	95	TX40 •	50
954187	8,0	600	18,0	95	TX40 •	50
954162	10,0	100	22,0	60	TX50 ●	50
954163	10,0	120	22,0	60	TX50 ●	50
954164	10,0	140	22,0	95	TX50 ●	50
954165	10,0	160	22,0	95	TX50 ●	50
954166	10,0	180	22,0	95	TX50 ●	50
954167	10,0	200	22,0	95	TX50 ●	50
954168	10,0	220	22,0	95	TX50 ●	50
954169	10,0	240	22,0	95	TX50 ●	50
954170	10,0	260	22,0	95	TX50 ●	50
954171	10,0	280	22,0	95	TX50 ●	50
954171	10,0	300	22,0	95	TX50 ●	50
954173	10,0	320	22,0	95	TX50 ●	50
954174	10,0	340	22,0	95 95	TX50 ●	50
954174		360	22,0	95		25
954176	10,0 10,0	380	22,0	95 95	TX50 ● TX50 ●	25
954176 954177			22,0	95		25
7341//	10,0	400	LL,U	73	TX50 ●	20

INFORMATIONS TECHNIQUES SAWTEC, TÊTE CYLINDRIQUE, ACIER GALVANISÉ BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétrati	on de la tête		Cisaillemer	t bois-bois		Cisai	llement ac	ier-bois
anninining of the state of the				Fax.Pead.Rk V (a= 0") AD V (a= 90") AD					V (a= 0°) V (a= 90°)				
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
							٥٠	AD 000	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		۸۰	000
		.,					α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
5,0 x 40	10,5	16	24	1,45	1,10			1,1			2		1,44
5,0 x 50	10,5	20	30	1,82	1,10			1,			2		1,67
5,0 x 60 5,0 x 70	10,5 10,5	24	36 42	2,18 2,54	1,10			1,5			2		1,76 1,85
	10,5	28 32		2,90	1,10			1,			2		
5,0 x 80			48 54		1,10			1,			2		1,94
5,0 x 90	10,5	36 40		3,27 3,63	1,10			1,			2		2,03
5,0 x 100 5,0 x 120	10,5 10,5	60	60 60	3,63	1,10 1,10			1,			2		2,12 2,12
		24		2,46	1,69						2		2,26
6,0 x 60	13,0		36 42	2,87	1,69			1,7			2		2,20 2,36
6,0 x 70	13,0	28 32	42	3,28				1,					
6,0 x 80 6,0 x 90	13,0 13,0	36	40 54	3,69	1,69 1,69			2,1			2		2,46 2,57
6,0 x 100	13,0	40	60	4,10	1,69			2,1			2		2,67
6,0 x 110	13,0	50	60	4,10	1,69			2,1			2		2,67 2,67
6,0 x 110	13,0	60	60	4,10	1,69			2,1			2		2,67
6,0 x 130	13,0	60	70	4,79	1,69			2,			2		2,84
6,0 x 140	13,0	70	70	4,79	1,69			2,			2		2,84
6,0 x 150	13,0	80	70	4,79	1,69			2,			2		2,84
6,0 x 160	13,0	90	70	4,79	1,69			2,			2		2,84
6,0 x 180	13,0	110	70	4,79	1,69			2,			2		2,84
8,0 x 80	18,0	30	50	4,26	3,24		3,89	3,08	3,89	3,08	3	4,61	3,94
8,0 x 100	18,0	40	60	5,33	3,24		4,31	3,48	4,31	3,48	3	4,83	4,20
8,0 x 120	18,0	60	60	5,33	3,24		4,31	3,68	4,31	3,68	3	4,83	4,20
8,0 x 140	18,0	40	100	8,44	3,24		4,31	3,48	4,31	3,48	3	5,60	4,98
8,0 x 160	18,0	60	100	8,44	3,24		4,31	3,68	4,31	3,68	3	5,60	4,98
8,0 x 180	18,0	80	100	8,44	3,24		4,31	3,68	4,31	3,68	3	5,60	4,98
8,0 x 200	18,0	100	100	8,44	3,24		4,31	3,68	3,68	4,31	3	5,60	4,98
-, 200			•	-1	-/-·		.,	-,	-,	-1		۵,00 اا:سد ۵ ک	

Autres tailles 8 à la nage suivante

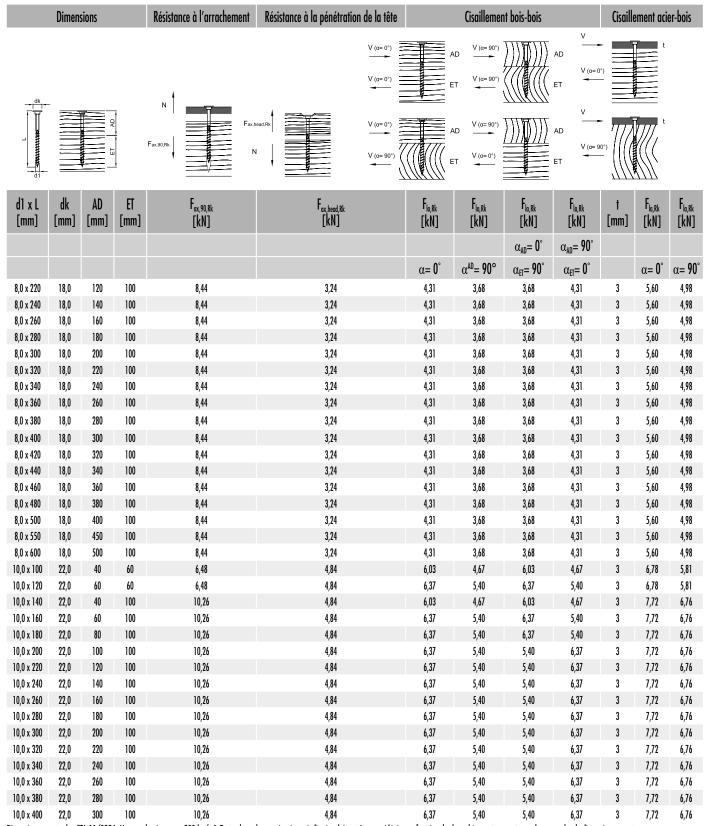
Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN</u>.


 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10.40 \text{ kM}}{1.0000 \text{ kM}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

Attention : vérifiez les hypothèses retenues. Les valeurs indiquées, le type et le nombre de moyens de fixation sont pré-dimensionnés. Les projets ne peuvent être dimensionnés que par des personnes autorisées selon le code de la construction du Land. Pour obtenir une attestation de stabilité (payante), veuillez vous adresser à un spécialiste de structures porteuses selon le code de construction du Land. N'hésitez pas à nous contacter si vous souhaitez obtenir un contact.

Eurotec® | SawTec

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmd / γM. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd ≥ Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

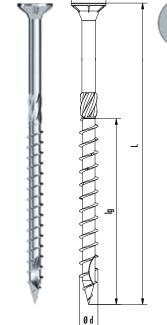
C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

 $[\]rightarrow$ Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

VIS EN BANDE

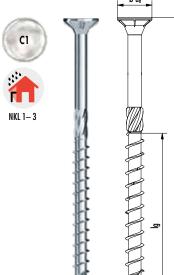
Système Holzher

Paneltwistec


NKL 1 - 2

En bande, acier galvanisé bleu, tête fraisée

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	Unité/sangle	Coil/carton
905613	4,0	40	8,0	24	TX20 -	167	12
905614	4,0	50	8,0	30	TX20 -	167	12
905615	4,0	60	8,0	36	TX20 -	167	12
905616	4,5	50	9,0	30	TX25 •	125	12
905617	4,5	60	9,0	36	TX25 •	125	12
905622	4,5	70	9,0	42	TX25 •	125	5
905635	5,0	50	10,0	30	TX25 •	125	10
905636	5,0	60	10,0	36	TX25 •	125	10
905637	5,0	70	10,0	42	TX25 •	125	5


Paneltwistec

En bande, acier inoxydable trempé, tête fraisée

Rost frei

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	Unité/sangle	Coil/carton
905650	4,5	50	9,0	30	TX20 -	125	12
905651	4,5	60	9,0	36	TX20 -	125	12
903605*	4,5	50	9,0	30	TX25 •	125	12
903606*	4,5	60	9,0	36	TX25 •	125	12
903612	5,0	60	10,0	36	TX25 •	125	5
903609	5,0	70	10,0	42	TX25 •	125	5
903608	5,0	80	10,0	48	TX25 •	125	10

INFORMATIONS TECHNIQUES PANELTWISTEC EN BANDE, ACIER GALVANISÉ BLEU

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisaillem	ent bois-bois		Cisail	lement ac	ier-bois
							V	V V (α=0°)				
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	α _{El} = 90°	α_{EI} = 0°		α= 0 °	α= 90 °
4,0 x 40	8,0	16	24	1,24	0,77			0,84		2	1,	,15
4,0 x 50	8,0	20	30	1,55	0,77		1	0,92		2	1,	,23
4,0 x 60	8,0	24	36	1,86	0,77			1,01		2	1,	,31
4,0 x 70	8,0	28	42	2,17	0,77			1,03		2		,38
4,5 x 50	9,0	20	30	1,69	0,97			1,08		2		,44
4,5 x 60	9,0	24	36	2,03	0,97				2		,53	
5,0 x 50	10,0	20	30	1,82	1,20			1,24		2		,67
5,0 x 60	10,0	24	36	2,18	1,20			1,34		2		,76
5,0 x 70	10,0	28	42	2,54	1,20			1,44		2		,85
5,0 x 80	10,0	32	48	2,90	1,20			1,52		2	1,	,94

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{N}=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d - min \ R_k = R_d \cdot \gamma_M \ / \ k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC EN BANDE, ACIER INOXYDABLE TREMPÉ

	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration de la	tête		Cisailleme	nt bois-bois		Cisail	lement aci	er-bois
dk			ET AD	N Fax,90,Rk	Fax.head.fik	V (a= 0°) V (a= 0°) V (a= 0°)		ET V	(a=90°) (a=90°) (a=0°)	1777	V (a= 0°) V (a= 90		
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{Ia,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	α_{ET} = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
4,5 x 50	9,0	20	30	1,69	0,97			1,	.08		2	1,	44
4,5 x 60	9,0	24	36	2,03	0,97			1,	.17		2	1,	53
5,0 x 60	10,0	24	36	2,18	1,20				34		2	1,	
5,0 x 70	10,0	28	42	2,54	1,20				,44		2	1,	
5,0 x 80	10,0	32	48	2,90	1,20			1,	.52		2	1,	94

Dimensionnement selon ETA-11/0024. Masse volumique $\rho_{\rm K}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{jk}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

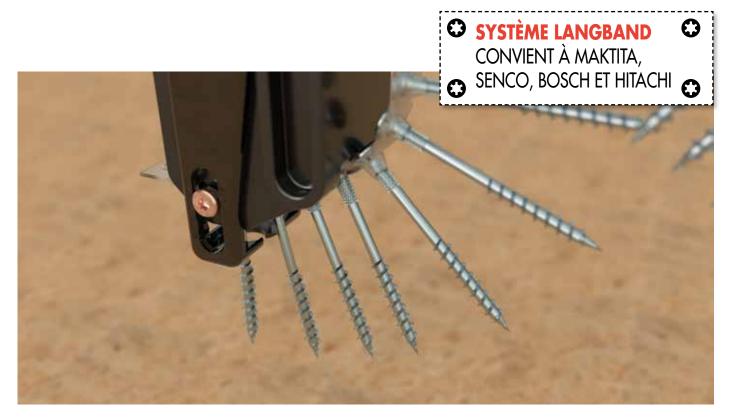
 $[\]rightarrow$ Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

VIS À BOIS UNIVERSELLE

Vis en bande pour la construction à ossature bois et la construction en bois massif.

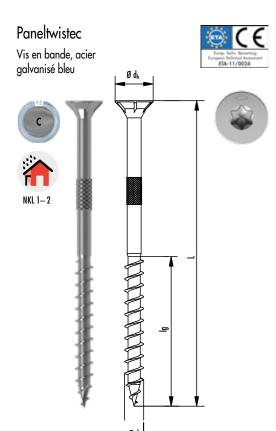
HBS

En bande, acier galvanisé bleu


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945080	4,2	41	7,5	30	PH 2	1000
945081	4,2	55	7,5	30	PH 2	1000

AVANTAGES

- · Utilisation universelle
- · Traitement rapide avec la bande
- · La partie moletée sous la tête garantit une tenue optimale dans le champ d'application
- Les nervures fraisantes au niveau de la tête fraisée empêchent le fendillement du bois lors du vissage


UTILISATION UNIVERSELLE, P. EX.

- · Pour fixation de panneaux en matériaux dérivés du bois sur des ossatures bois
- · Pour fixation dans la construction à ossature bois et construction en bois massif

VIS EN BANDE

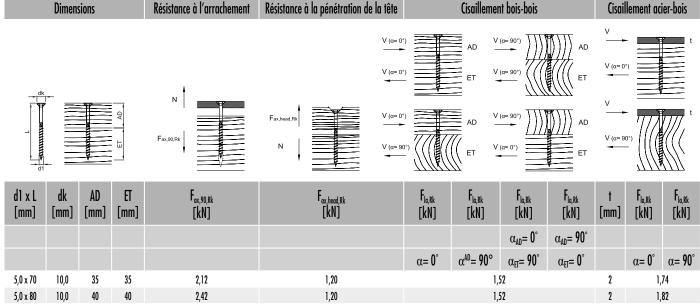
Système Holzher

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	Unité/sangle	Coil/carton
905638	5,0	70	10,0	35	TX20 -	125	5
905642	5,0	80	10,0	40	TX20 -	125	5

AVANTAGES

- · La longueur raccourcie du filetage permet de compresser des pièces rapportées plus fortes
- · Résistance aux sollicitations mécaniques
- · Le fût permet un vissage rapide et simple

APPLICATION


 Pour des structures en bois porteuses entre des éléments en bois de construction, lamellé-collé, panneaux OSB et bois de placage stratifié

INFORMATIONS TECHNIQUES PANELTWISTEC EN BANDE, ACIER GALVANISÉ BLEU

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

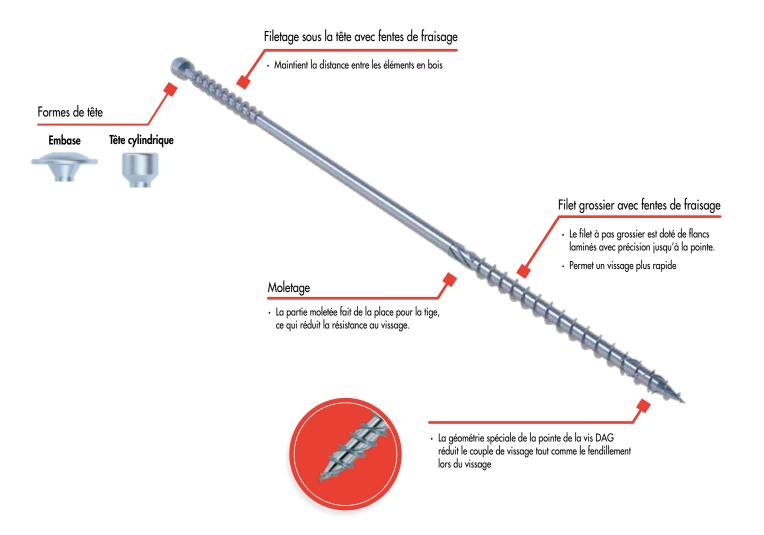
a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_N = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

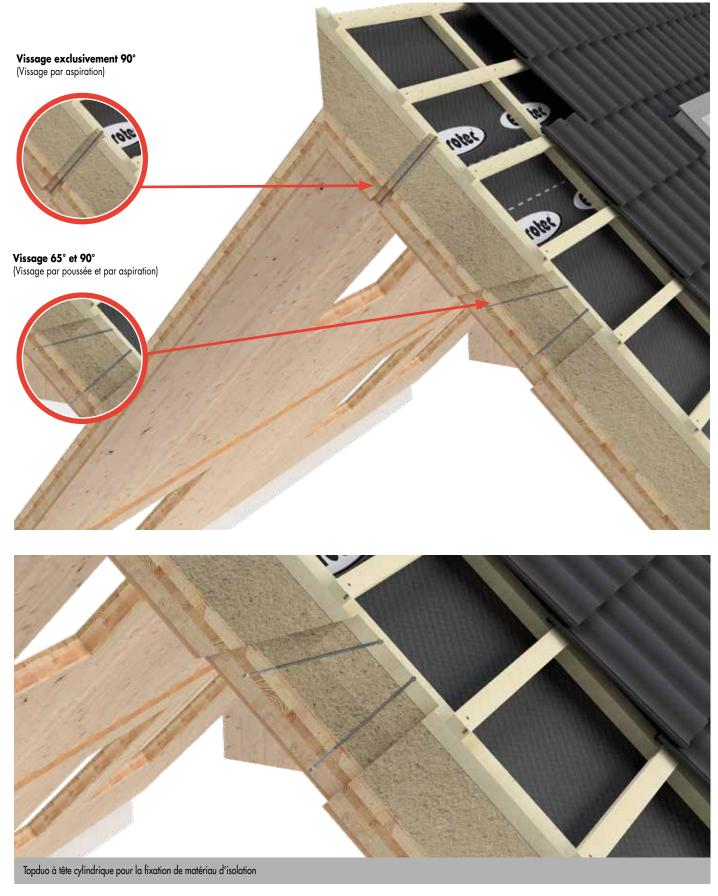
 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \, / \, k_{\text{mod}}$

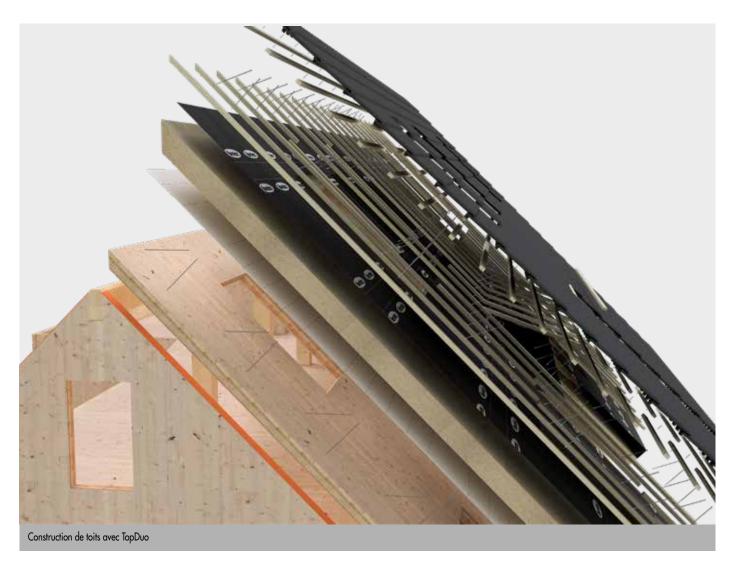

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

VIS POUR CONSTRUCTION DE TOITS TOPDUO

La vis à bois pour tous les systèmes d'isolation sur chevrons

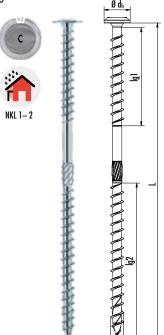
Grâce à la vis pour construction de toits TopDuo, il est possible de fixer des isolations sur chevrons, qu'elles soient résistantes ou non à la pression. La résistance élevée à l'arrachement dans les deux bois d'assemblage rendent la vis Topduo intéressante pour de nombreuses autres applications dans la construction en bois. La vis dispose d'un double filetage et est disponible avec embase et tête cylindrique.




POSSIBILITÉS DE VISSAGE

La vis Topduo convient aux isolations résistantes à la pression (≥ 50 kPa) et à celles qui ne résistent pas à la pression.

La résistance à la pression $O_{10\%}$ figure dans la fiche de données sur les produits du fabricant des isolations.

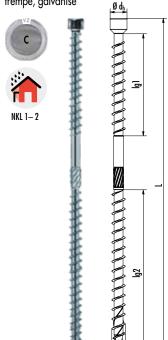

141

VIS POUR CONSTRUCTION DE TOITS TOPDUO

La vis à bois pour tous les systèmes d'isolation sur chevrons

Vis pour construction de toits TopDuo

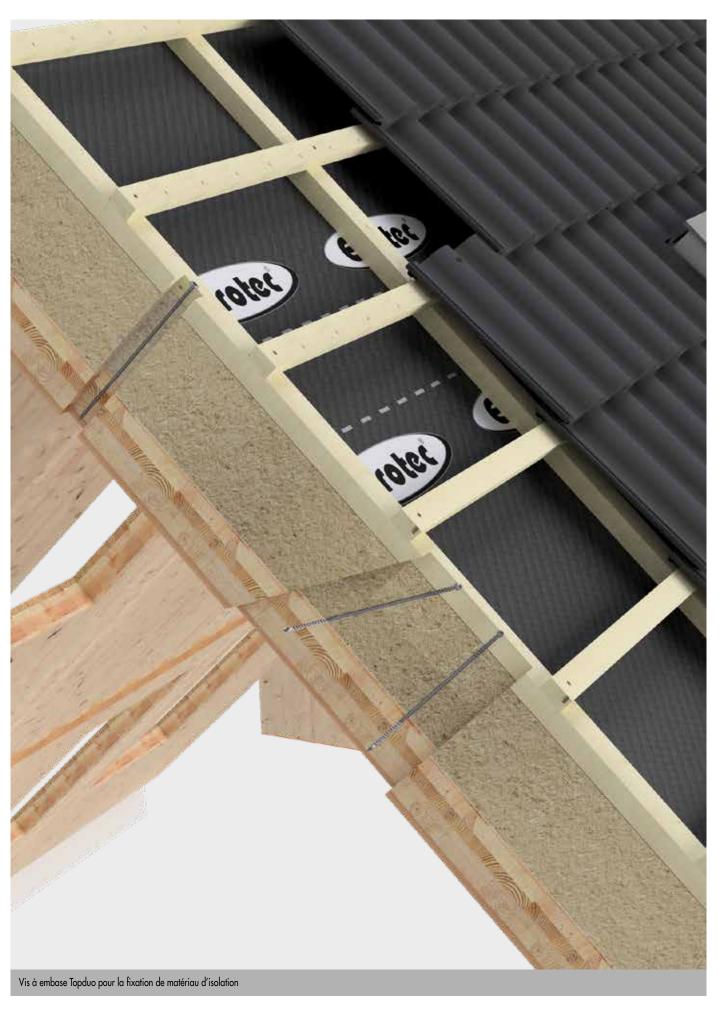
Vis à embase, acier au carbone trempé, galvanisé



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/lg2 [mm]	Empreinte	PU
945870	8,0	165	16,0	60/66	TX40 •	50
945871	8,0	195	16,0	60/95	TX40 •	50
945813	8,0	225	16,0	60/95	TX40 •	50
945814	8,0	235	16,0	60/95	TX40 •	50
945815	8,0	255	16,0	60/95	TX40 •	50
945816	8,0	275	16,0	60/95	TX40 •	50
945817	8,0	302	16,0	60/95	TX40 •	50
945818	8,0	335	16,0	60/95	TX40 •	50
945819	8,0	365	16,0	60/95	TX40 •	50
945820	8,0	397	16,0	60/95	TX40 •	50
945821	8,0	435	16,0	60/95	TX40 •	50
945843	8,0	472	16,0	60/95	TX40 •	50

Vis pour construction de toits TopDuo

Vis à tête cylindrique, acier au carbone trempé, galvanisé $_{,\emptyset} d_{h_{1}}$



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/lg2[mm]	Empreinte	PU
945956	8,0	225	10,0	60/95	TX40 •	50
945965	8,0	235	10,0	60/95	TX40 •	50
945957	8,0	255	10,0	60/95	TX40 •	50
945958	8,0	275	10,0	60/95	TX40 •	50
945960	8,0	302	10,0	60/95	TX40 •	50
945961	8,0	335	10,0	60/95	TX40 •	50
945962	8,0	365	10,0	60/95	TX40 •	50
945963	8,0	397	10,0	60/95	TX40 •	50
945964	8,0	435	10,0	60/95	TX40 •	50

DÉTERMINATION DE LA QUANTITÉ DE VIS POUR CONSTRUCTION DE TOITS TOPDUO ISOLANTS NON RÉSISTANTS À LA PRESSION SUR LE PLAN STATIQUE AVEC MIT $\Sigma_{10\%}$ < 50 KPA

Exemple de dimensionnement pour les hypothèses mentionnées ; le dimensionnement du projet peut déboucher sur des résultats nettement plus avantageux															
Nombre de vis	Topduo par m²														
Épaisseur de l'isolation		40	60	80	100	120	140	140	160	180	200	220	240	260	280
Épaisseur du coffrage		24	24	24	24	24	-	24	24	24	24	24	24	24	24
Dimension Topduo TK ou ZK®)		8 x 165 ^{b)}	8 x 195 ^{b)}	8 x 225	8 x 235	8 x 255	8 x 275	8 x 302	8 x 335	8 x 335	8 x 365	8 x 365	8 x 397	8 x 435	8 x 435
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Zone de charge de neige 2'¹¹ Zone de charge de vent 4 ^d ¹ Niveau de la mer ≤ 285 m	0° ≤ DN ≤ 10°	2,20	2,20	2,38	2,38	2,38	2,38	2,38	2,29	2,29	2,48	3,01	3,57	4,08	4,76
	$10^{\circ} \leq \alpha \leq 25^{\circ}$	2,38	2,38	2,60	2,60	2,60	2,60	2,60	2,60	2,60	3,17	3,81	4,40	e)	e)
	25° ≤ α ≤ 40°	2,72	2,72	3,01	3,01	3,01	3,01	3,01	3,01	3,01	3,57	4,40	5,19	e)	e)
	$40^{\circ} \leq \alpha \leq 60^{\circ}$	2,86	3,01	3,17	3,17	3,36	3,36	3,36	3,36	3,36	3,57	4,40	5,19	e)	e)
Zone de charge de neige 3 ^{f)} Zone de charge de vent 2 ^{g)} Niveau de la mer ≤ 600 m	0° ≤ DN ≤ 10°	1,79	1,79	1,97	2,04	2,04	2,04	2,04	2,12	2,60	3,81	4,40	5,19	e)	e)
	$10^{\circ} < \text{DN} \leq 25^{\circ}$	2,29	2,29	2,48	2,60	2,60	2,60	2,60	2,72	3,36	4,76	e)	e)	e)	e)
	$25^{\circ} < \text{DN} \leq 40^{\circ}$	2,38	2,48	2,72	2,72	2,72	2,86	2,86	2,86	3,57	5,19	e)	e)	e)	e)
	$40^{\circ} < DN \leq 60^{\circ}$	2,60	2,60	2,86	2,86	2,86	2,86	2,86	3,01	3,57	5,19	e)	e)	e)	e)

a) Quantité toujours rapportée à la valeur la plus défavorable découlant de Topduo TK et ZK

Autres hypothèses :

Dimensionnement avec le logiciel ECS conformément à ETA-11/0024 ; angle de vissage 65°; toit à pignon ; hauteur du faîte au-dessus du sol 18 m au plus ; masse volumique de l'isolation 1,50 kN/m³ ; chevrons C24 8/≥12 cm ; contre-latte C24 4/6 cm ; entraxe chevrons 0,70 m ; proprie poids de la couverture 0,55 kN/m² ; présence d'un dispositif d'arrêt de la neige ; détermination des quantités concernant l'action du vent en fonction de la partie du toit la plus défavorable. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues. Ce sont donc des exemples de dimensionnement, sous réserve d'erreurs de composition ou d'impression.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

DÉTERMINATION DE LA QUANTITÉ DE VIS POUR CONSTRUCTION DE TOITS TOPDUO ISOLANTS NON RÉSISTANTS À LA PRESSION SUR LE PLAN STATIQUE AVEC $\Sigma_{10\%} \geq 50$ KPA

Exemple de dimensionnement pour les hypothèses mentionnées ; le dimensionnement du projet peut déboucher sur des résultats nettement plus avantageux															
Nombre de vis Topduo par m²															
Épaisseur de l'isolation 40		40	60	80	100	120	140	160	180	200	220	240	260	280	300
Épaisseur du coffrage		24	24	24	24	24	24	24	24	24	24	24	24	24	24
Dimension Topduo TK ou ZK ^{a)}		8 x 195 ^{b)}	8 x 225	8 x 235	8 x 255	8 x 275	8 x 302	8 x 335	8 x 335	8 x 365	8 x 365	8 x 397	8 x 435	8 x 435	8 x 472 ^{b)}
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Zone de charge de neige 2'¹¹ Zone de charge de vent 4⁴¹ Niveau de la mer ≤ 285 m	0° ≤ DN ≤ 10°	1,96	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,12	1,80	2,40	2,32
	$10^{\circ} < \text{DN} \leq 25^{\circ}$	2,11	2,05	1,97	1,94	1,97	1,90	1,85	2,14	2,01	2,74	2,57	2,38	3,23	2,93
	25° < DN ≤ 40°	2,48	2,41	2,28	2,35	2,41	2,35	2,18	2,67	2,49	3,48	3,22	2,96	4,42	3,79
	$40^{\circ} < DN \leq 60^{\circ}$	2,31	2,30	2,56	2,65	2,74	2,65	2,42	2,96	2,74	4,00	3,70	3,48	4,87	4,47
Zone de charge de neige 3 [§] Zone de charge de vent 2 ^{g)} Niveau de la mer ≤ 400 m	$0^{\circ} \le DN \le 10^{\circ}$	2,65	2,54	2,39	2,34	2,26	2,23	2,34	2,34	2,16	2,46	2,32	2,19	2,86	2,65
	$10^{\circ} < \text{DN} \leq 25^{\circ}$	4,04	3,81	3,55	3,33	3,33	3,15	3,15	2,99	2,99	3,66	3,37	3,06	4,37	3,74
	25° < DN ≤ 40°	4,46	4,16	3,84	3,58	3,58	3,58	3,37	3,37	3,37	4,67	4,20	3,92	e)	e)
	$40^{\circ} < DN \leq 60^{\circ}$	3,55	3,26	3,26	3,26	3,44	3,26	2,96	3,66	3,44	e)	4,67	4,27	e)	e)

a) Quantité toujours rapportée à la valeur la plus défavorable découlant de Topduo TK et ZK

Autres hypothèses

Dimensionnement avec le logiciel ECS conformément à ETA-11/0024 ; angle de vissage de la vis de poussée pour toits 65°/vis d'aspiration du vent 90°; toit à pignon ; hauteur du faîte au-dessus du sol 18 m au plus ; masse volumique de l'isolation 1,50 kN/m³; chevrons C24 8/≥12 cm ; contre-latte C24 4/6 cm ; entraxe chevrons 0,70 m ; propre poids de la couverture 0,55 kN/m²; présence d'un dispositif d'arrêt de la neige ; détermination des quantités concernant l'action du vent en fonction de la partie du toit la plus défavorable.

Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues. Ce sont donc des exemples de dimensionnement, sous réserve d'erreurs de composition ou d'impression.

b) Uniquement Topduo TK, c) comprend la zone de charge de neige 1, 2 et 2*, d) comprend toutes les zones de charge de vent à l'exception des îles dans la mer du Nord

e) Recommandation d'utiliser notre service de dimensionnement rapporté aux projets. Les exemples de dimensionnement indiqués ici sont des cas défavorables, c'est-à-dire offrant une sécurité statique

f) comprend la zone de charge de neige 1, 2 et 3, g) comprend la zone de charge de vent 1 et 2 (intérieur des terres)

b) Uniquement Topduo TK, c) comprend la zone de charge de neige 1, 2 et 2* avec dispositif de retenue de neige à chaque fois, d) comprend toutes les zones de charge de vent à l'exception des îles dans la mer du Nord

e) Recommandation d'utiliser notre service de dimensionnement rapporté aux projets. Les exemples de dimensionnement indiqués ici sont des cas défavorables, c'est-à-dire offrant une sécurité statique.

f) comprend la zone de charge de neige 1, 2 et 3, g) comprend la zone de charge de vent 1 et 2 (intérieur des terres)

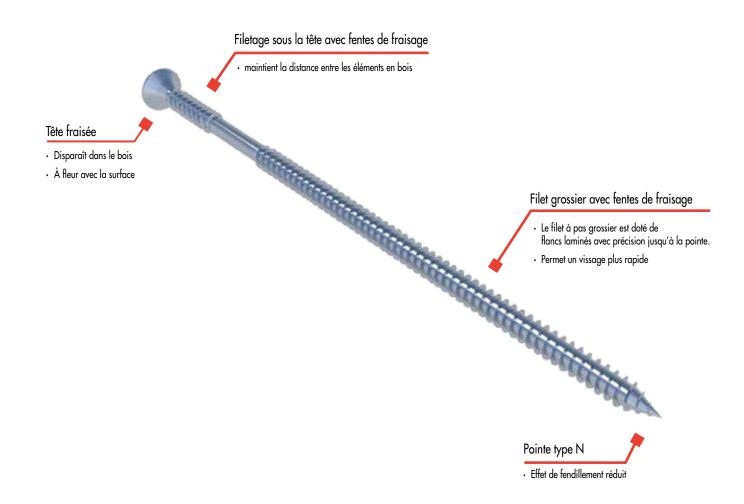
Service de mesure Eurotec Isolation de toit extérieur selon ATE-11/0024

par téléphone +49 2331 6245-444 · par fax au +49 2331 6245-200 · par mail à technik@eurotec.team

Contactez notre service technique ou utilisez le service de conception gratuit dans l'onglet service sur notre page d'accueil.

commerçant:		_	personne chargée de l'exécution:	
interlocuteur:		_	interlocuteur:	
E-mail:		_	téléphone:	
projet de construction:			E-mail:	
Indications concernan	it le projet de constructi	on		
☐ toit en appentis ☐ t	toit à deux versants 🔲 toit en	croupe	s (open sp	
longueur de bâtiment côté chéne	eau:	m	soille de chéneou soille de rive	
largeur de pignon:		m	largeur de pagnon largeur de contrelatte: (mind. 60 mm)	
longueur de chevron: (indication facultative)		m	hauteur de contrelatte:	
hauteur de faîtage: (en surplomb du terrain)		m	longueur de contrelatte: [longueur des pièces de contrelatte effectivement posées]	
saillie de toit: (la détermination de quantité est effectuée	chéneau /rive e pour la surface totale de toit)	m	Charge de couverture de toit et de lattage:	
inclinaison de toit:	toit principal /croupe	· ·	 couverture en assemblage métallique par agrafage sur bords relevés 	0,35 kN/
			☐ tuiles en béton, tuiles	0,55 kN/
isolation:		_	couverture double à chapiteau avec tuiles à crochet	0,75 kN/
épaisseur d'isolation:		mm	OU	kN/
largeur de chevron:		mm	code postal du projet de construction: (pour la détermination de la zone de charge de vent et de neige)	
hauteur de chevron:		mm	charge caractéristique de neige au sol sk: (pour la détermination de la zone de charge de vent et de neige)	/
distance de chevron:		mm	hauteur de terrain au-dessus du niveau de la mer: (important pour les localités à relief prononcé)	
épaisseur de coffrage:		mm	grille à neige prévue?	□ non
Choix vis				

^{*}uniquement pour les matériaux isolants résistants à la pression ayant une résistance à la pression de 50 kPa **également pour les matériaux isolants non résistants à la pression

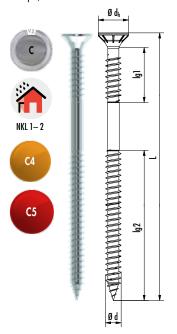

VIS SYSTÈME BLUE-POWER

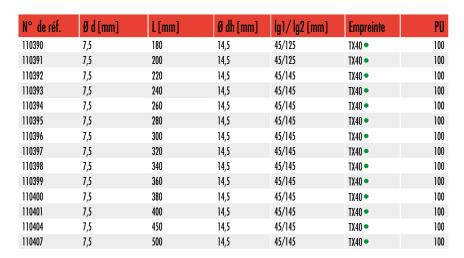
Pour fixation d'ossatures en bois sur béton ou maçonnerie

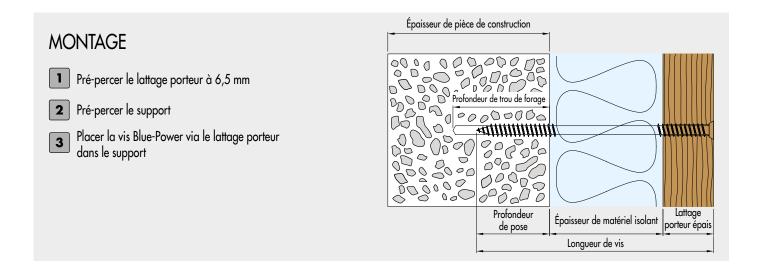
Le système de fixation sur la façade Blue-Power est une solution efficace pour la **fixation rapide d'ossatures en bois sur béton ou maçonnerie.** Ces vis absorbent sans problèmes les forces de traction et les forces transversales, notamment dans les applications sur isolations de façades. L'isolation absorbe une partie des forces transversales et requiert une **résistance à la pression** d'au moins **50 kPa pour une compression de 10 %.** Pour **une stabilité maximale**, la **section transversale du lattage porteur en C24** devrait être d'au moins **30 x 50 mm**.

Le système est **résistant à la corrosion conformément à la norme EN 12944-6 en C4 long et C5-M long**, convient aux classes d'utilisation 1 et 2 conformément à la norme EN 1995-1-1.

Il résiste aux sollicitations mécaniques mais ne convient toutefois pas aux bois contenant des tanins. Le montage sans chevilles et les temps de montage courts font du système de fixation sur la façade Blue-Power une solution pragmatique pour tous les projets de construction performants.




VIS SYSTÈME BLUE-POWER


Pour fixation d'ossatures en bois sur béton ou maçonnerie

Vis Blue-Power

Tête fraisée, utilisation d'acier au carbone trempé, revêtement à base de zinc

Eurotec Vis système Blue-Power

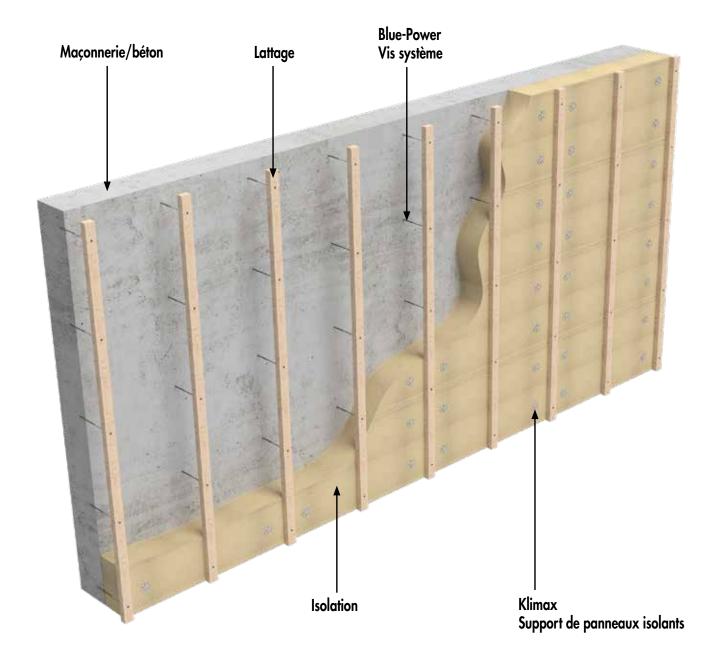
VALEURS STATISTIQUES

Support	Ø de perçage Support [mm]	Profondeur min. du trou [mm]	Profondeur min. d'implantation de la vis [mm]	Procédure de forage ^{a)}	Épaisseur minimale de l'élément de construction [mm]	Distance minimale au bord [mm]	Entraxe min. [mm]	Résistance caractéris- tique à la traction N _{Rk} b) [kN]	Capacité de charge transversale caractéris- tique V _{RK} [kN]
Béton C20/25	6,0	70	50	Н	100	50	100	2,5	0,75
Brique de construction (Mz)	6,0	70	50	H	115	50	100	3,5	0,6
Brique silico-calcaire pleine	6,0	70	50	Н	115	50	100	3,5	0,5
Béton cellulaire	5,0	85	70	D	115	50	100	0,9	0,3
Brique silico-calcaire creuse	5,0	85	70	D	115	50	100	2,0	0,6
Brique perforée (HLz)	6,5	140	120	D	175	50	100	0,5	0,4
Bois	c)	c)	50	D	60	25	100	d)	d)

a) $H = \mbox{Perçage}$ au marteau perforateur, $D = \mbox{perçage}$ rotatif

d) à dimensionner selon la norme 1995-1-1:2010-12.

N° de réf.	Béton, brique de construction & brique silico-cal- caire pleine [mm] ^{o)}	Béton cellulaire & brique silico-calcaire creuse [mm]º)	Brique perforée [mm] ^{a)}
110390	100	80	30
110391	120	100	50
110392	140	120	70
110393	160	140	90
110394	180	160	110
110395	200	180	130
110396	220	200	150
110397	240	220	170
110398	260	240	190
110399	280	260	210
110400	300	280	230
110401	320	300	250
110404	340	320	270
110407	360	340	290

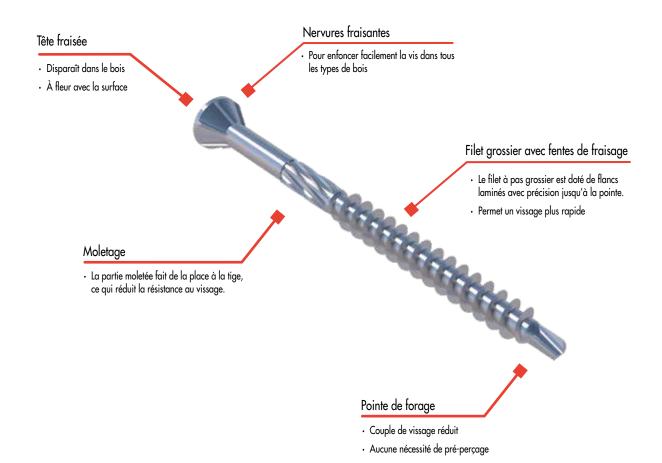

a) Pour une épaisseur du lattage de 30 mm

Longueur de la vis ≥ profondeur d'implantation minimale + épaisseur de l'isolation + épaisseur du lattage

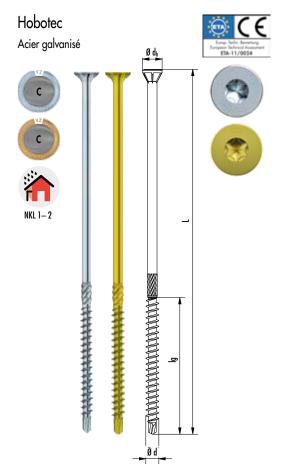
b) La résistance caractéristique à la pénétration de la tête $F_{ax,bead,Rd}$ dans le lattage porteur doit être pris en compte. $F_{ax,bead,Rd}$ (ρ_k 350)= 1,45 kN. Le lattage porteur doit être pré-percé sur 6,5 mm.

c) Le support en bois ne doit pas être pré-percé.

STRUCTURE SCHÉMATIQUE

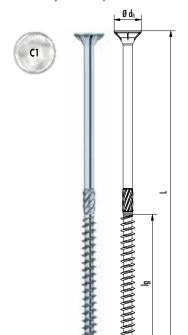

HOBOTEC

Acier galvanisé et acier inoxydable trempé



Les vis Hobotec permettent de réaliser des assemblages bois-boissimples, rapides et propres. Ces vis conviennent particulièrement aux applications présentant un risque élevé de fissuration et de fendillement. Le nouveau filet et la pointe de forage innovante sont garants d'un positionnement propre et de valeurs d'arrachement élevées. Les vis Hobotec sont disponibles en acier inoxydable trempé et en acier galvanisé.

Eurotec | Hobotec



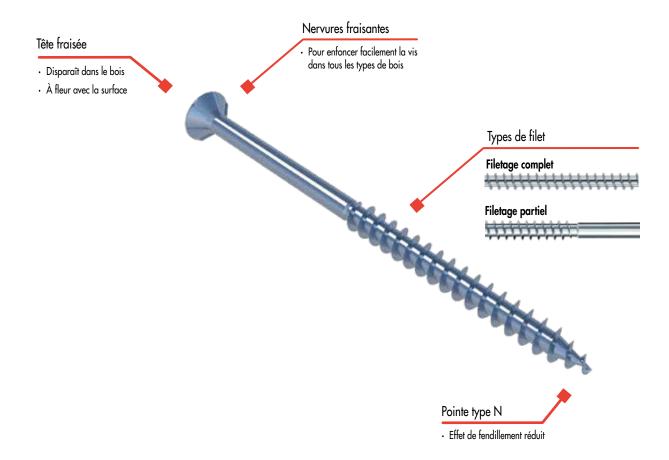
N° de réf. (jaune)	N° de réf. (bleu)	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
110045*	111494	4,0	30	7,7	21	TX15 ●	1000
	111495	4,0	35	7,7	24	TX15 •	1000
110047 *	111496	4,0	40	7,7	26	TX15 •	1000
	111497	4,0	45	7,7	28	TX15 •	500
	111498	4,0	50	7,7	30	TX15 •	500
	111499	4,0	60	7,7	36	TX15 •	200
110050 *	111501	4,5	35	8,7	24	TX20 -	500
110077*	111502	4,5	40	8,7	26	TX20 -	500
110052*	111503	4,5	45	8,7	28	TX20 •	500
	111504	4,5	50	8,7	30	TX20 -	500
	111505	4,5	60	8,7	36	TX20 -	200
110055*	111506	4,5	70	8,7	42	TX20 -	200
	111507	5,0	40	9,7	26	TX25 •	200
	111508	5,0	50	9,7	30	TX25 •	200
	111509	5,0	60	9,7	36	TX25 •	200
	111510	5,0	70	9,7	42	TX25 •	200
	111511	5,0	80	9,7	48	TX25 •	200
	111512	5,0	90	9,7	54	TX25 •	200
900462*	903623	5,0	100	9,7	60	TX25 •	200
	903117	6,0	80	11,7	48	TX25 •	200
	903118	6,0	90	11,7	54	TX25 •	100
	903119	6,0	100	11,7	60	TX25 •	100
	903120	6,0	120	11,7	60	TX25 •	100
	903121	6,0	140	11,7	70	TX25 •	100
* fin do cário	903122	6,0	160	11,7	70	TX25 •	100

Hobotec | Eurotec°

Hobotec

Acier inoxydable trempé

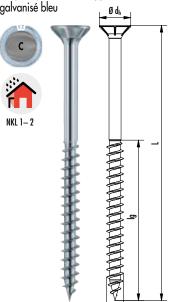
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903323	4,0	30	7,7	21	TX15 ●	500
110299	4,0	40	7,7	26	TX15 •	500
110300	4,0	45	7,7	28	TX15 ●	500
110301	4,0	50	7,7	30	TX15 ●	500
110302	4,0	60	7,7	36	TX15 ●	500
110319	4,5	40	8,7	26	TX20 -	200
944839	4,5	45	8,7	28	TX20 •	200
110303	4,5	50	8,7	30	TX20 •	200
110304	4,5	60	8,7	36	TX20 •	200
110305	4,5	70	8,7	42	TX20 -	200
110306	4,5	80	8,7	48	TX20 •	200
110307	5,0	50	9,7	30	TX25 •	200
110308	5,0	60	9,7	36	TX25 •	200
110309	5,0	70	9,7	42	TX25 •	200
110310	5,0	80	9,7	48	TX25 •	200
110311	5,0	90	9,7	54	TX25 •	200
110312	5,0	100	9,7	60	TX25 •	200
110313	6,0	80	11,7	48	TX25 •	100
110314	6,0	90	11,7	54	TX25 •	100
110315	6,0	100	11,7	60	TX25 ●	100
110316	6,0	120	11,7	60	TX25 ●	100
110317	6,0	140	11,7	70	TX25 •	100
110318	6.0	160	11.7	70	TX25 •	100


ECOTEC

Vis pour panneaux d'agglomérés pour l'intérieur

La vis pour panneaux d'agglomérés EcoTec est une vis à bois principalement utilisée à l'intérieur.

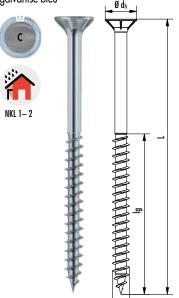
Elle est disponible en acier au carbone, galvanisé, trempé et en A2. Par ailleurs, elle existe avec un filetage partiel pour un assemblage par friction de plusieurs éléments en bois ainsi qu'avec un filetage complet pour l'absorption de forces de traction et de pression élevées.



Eurotec | EcoTec

EcoTec

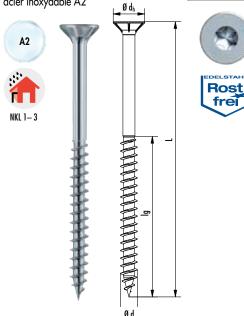
Vis pour panneaux d'agglomérés, acier galvanisé bleu $\emptyset d_h$


uo l d	W 15 3				
N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Empreinte	PU
903714	3,0	13	Filetage complet	TX10 O	1000
903715	3,0	15	Filetage complet	TX10 o	1000
903716	3,0	20	Filetage complet	TX10 O	1000
903717	3,0	25	Filetage complet	TX10 O	1000
903718	3,0	30	Filetage complet	TX10 O	1000
903719	3,0	35	Filetage complet	TX10 O	1000
903720	3,0	40	23	TX10 O	1000
903721	3,0	45	23	TX10 O	1000
903722	3,5	12	Filetage complet	TX20 -	1000
903723	3,5	15	Filetage complet	TX20 -	1000
903724	3,5	20	Filetage complet	TX20 -	1000
903725	3,5	25	Filetage complet	TX20 -	1000
903726	3,5	30	Filetage complet	TX20 -	1000
903727	3,5	35	21	TX20 -	1000
903728	3,5	40	23	TX20 -	1000
903729	3,5	45	25	TX20 -	500
903730	3,5	50	30	TX20 -	500
903731	4,0	15	Filetage complet	TX20 -	1000
903732	4,0	20	Filetage complet	TX20 -	1000
903733	4,0	25	Filetage complet	TX20 -	1000
903734	4,0	30	Filetage complet	TX20 -	1000
903735	4,0	35	Filetage complet	TX20 -	1000
903736	4,0	40	23	TX20 -	1000
903737	4,0	45	25	TX20 -	500
903738	4,0	50	30	TX20 -	500
903739	4,0	60	39	TX20 -	200
903740	4,0	70	44	TX20 -	200
903783	4,0	80	44	TX20 -	200
903741	4,5	20	Filetage complet	TX20 -	500
903742	4,5	25	Filetage complet	TX20 -	500
903743	4,5	30	Filetage complet	TX20 -	500
903744	4,5	35	Filetage complet	TX20 -	500
903745	4,5	40	23	TX20 -	500
903746	4,5	45	25	TX20 -	500
903747	4,5	50	30	TX20 -	500
903748	4,5	60	39	TX20 -	200
903749	4,5	70	44	TX20 -	200
903750	4,5	80	44	TX20 -	200
903751	5,0	20	Filetage complet	TX20 -	500
903752	5,0	25	Filetage complet	TX20 -	500
903753	5,0	30	Filetage complet	TX20 -	500
903754	5,0	35	Filetage complet	TX20 -	500
903755	5,0	40	23	TX20 -	200
903756	5,0	45	25	TX20 -	200
903757	5,0	50	30	TX20 -	200
903758	5,0	60	39	TX20 -	200
903759	5,0	70	44	TX20 -	200
903760	5,0	80	44	TX20 -	200
903761	5,0	90	54	TX20 -	200
903762	5,0	100	54	TX20 -	200
903763	5,0	120	70	TX20 -	200
903764	6,0	40	Filetage complet	TX30 •	200
903765	6,0	50	Filetage complet	TX30 •	200
903766	6,0	60	39	TX30 •	200
903767	6,0	70	44	TX30 •	200
903768	6,0	80	44	TX30 •	200
903769	6,0	90	54	TX30 •	100
	·				res tailles à la page suivante

ATTENTION : les vis de \varnothing = 3,0 mm ne sont pas réglées selon ETE

158

Vis pour panneaux d'agglomérés, acier galvanisé bleu

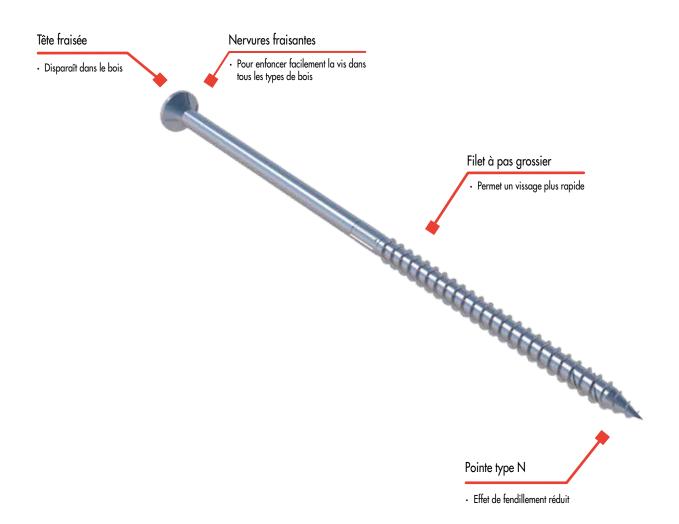


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903770	6,0	100	11,5	60	TX30 •	100
903771	6,0	120	11,5	70	TX30 •	100
903772	6,0	140	11,5	70	TX30 •	100
904540	6,0	160	11,5	70	TX30 •	100
904541	6,0	180	11,5	70	TX30 •	100
904542	6,0	200	11,5	70	TX30 •	100
904617	6,0	220	11,5	70	TX30 •	100
904618	6,0	240	11,5	70	TX30 •	100
904619	6,0	260	11,5	70	TX30 •	100
904620	6,0	280	11,5	70	TX30 •	100
904621	6,0	300	11,5	70	TX30 •	100

ATTENTION : les vis de \emptyset = 3,0 mm ne sont pas réglées selon ETA

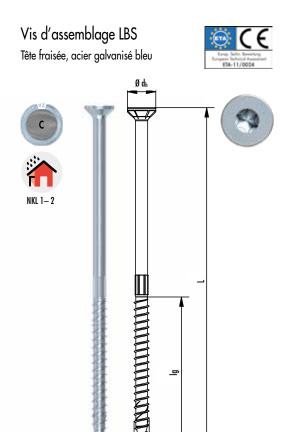
EcoTec A2

Vis pour panneaux d'agglomérés, acier inoxydable A2 g dh

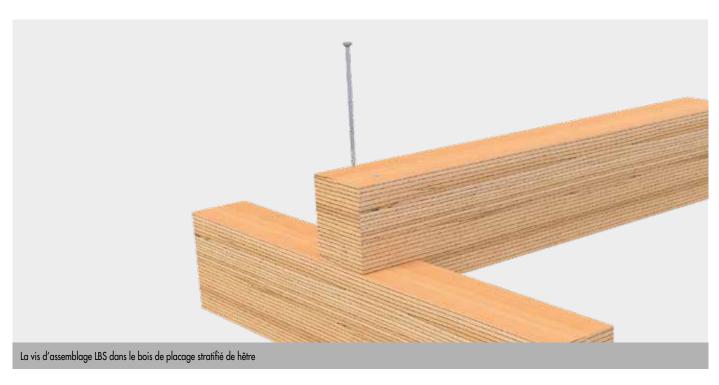

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903824	4,0	30	8,0	Filetage complet	TX20 •	500
903791	4,0	35	8,0	24	TX20 -	1000
903792	4,0	40	8,0	24	TX20 -	1000
903793	4,0	45	8,0	30	TX20 -	500
903794	4,0	50	8,0	30	TX20 -	500
903795	4,0	60	8,0	36	TX20 -	200
903796	4,0	70	8,0	42	TX20 •	200
903797	4,0	80	8,0	48	TX20 -	200
903836	4,5	20	9,0	Filetage complet	TX20 •	500
903837	4,5	25	9,0	Filetage complet	TX20 -	500
903838	4,5	30	9,0	Filetage complet	TX20 •	500
903839	4,5	35	9,0	Filetage complet	TX20 -	500
903840	4,5	40	9,0	23	TX20 •	500
903798	4,5	45	9,0	30	TX20 -	500
903799	4,5	50	9,0	30	TX20 •	500
903800	4,5	60	9,0	36	TX20 -	200
903801	4,5	70	9,0	42	TX20 •	200
903802	4,5	80	9,0	48	TX20 -	200
903841	5,0	40	10,0	23	TX25 •	500
903803	5,0	50	10,0	30	TX25 •	200
903804	5,0	60	10,0	36	TX25 •	200
903805	5,0	70	10,0	42	TX25 •	200
903806	5,0	80	10,0	48	TX25 •	200
903807	5,0	90	10,0	54	TX25 •	200
903808	5,0	100	10,0	60	TX25 •	200
903809	5,0	120	10,0	70	TX25 •	200
903810	6,0	50	12,0	30	TX25 •	200
903811	6,0	60	12,0	36	TX25 •	200
903812	6,0	70	12,0	42	TX25 •	200
903813	6,0	80	12,0	48	TX25 •	200
903814	6,0	90	12,0	54	TX25 •	100
903815	6,0	100	12,0	70	TX25 •	100
903816	6,0	120	12,0	70	TX25 •	100
903817	6,0	140	12,0	70	TX25 •	100
903818	6,0	160	12,0	70	TX25 •	100
903825	6,0	180	12,0	70	TX25 •	100
903826	6,0	200	12,0	70	TX25 •	100

VIS D'ASSEMBLAGE LBS

Vis en bois dur pour la fixation d'éléments en bois de placage stratifié de hêtre



La vis d'assemblage Eurotec LBS est une vis en bois qui permet d'assembler des éléments de construction en bois de placage stratifié de hêtre ou des pièces raccordées composées d'autres bois, de matériaux dérivés du bois et d'acier. La vis d'assemblage LBS est utilisée dans les structures porteuses dans les classes d'utilisation 1 et 2. Grâce à son revêtement glissant optimisé, elle est optimale pour être utilisée dans le bois dur. La géométrie spéciale du filet et le couple de rupture particulièrement élevé permet de positionner la vis sans pré-perçage.



Eurotec° | Vis d'assemblage LBS

N° de réf.	Ød[mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
904881	8,0	80	15	50	TX40 ●	50
904882	8,0	100	15	80	TX40 •	50
904883	8,0	120	15	80	TX40 •	50
904884	8,0	140	15	80	TX40 •	50
904885	8,0	160	15	80	TX40 •	50
904886	8,0	180	15	80	TX40 •	50
904887	8,0	200	15	80	TX40 •	50
904888	8,0	220	15	80	TX40 •	50
904889	8,0	240	15	80	TX40 •	50

INFORMATIONS TECHNIQUES VIS D'ASSEMBLAGE LBS , TÊTE FRAISÉE, ACIER GALVANISÉ BLEU

	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration de la tête			Cisaillement bois-bois				Cisaillement acier-bois		
dk QV			ET AD	N Fax.90.Rk		V (a= 0° V (a= 0°		ET AD	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)	AD ET ET	V (a= (t	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,heod,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$				
							$\alpha = 0^{\circ}$	α^{AD} = 90°	$\alpha_{\rm EI}$ = 90°	$\alpha_{\rm EI}$ = 0°		α= 0 °	α= 90 °	
8,0 x 80	15,0	40	40	9,60	9,93		9,58	8,37	9,58	8,37	3	9,58	8,37	
8,0 x 100	15,0	40	60	14,40	9,93		9,66	8,46	9,66	8,46	3	10,78	9,57	
80 x 120	15,0	40	80	19,20	9,93		9,66	8,46	9,66	8,46	3	11,98	10,77	
8,0 x 140	15,0	60	80	19,20	9,93		9,66	8,46	9,66	8,46	3	11,98	10,77	
8,0 x 160	15,0	80	80	19,20	9,93		9,66	8,46	9,66	8,46	3	11,98	10,77	
8,0 x 180	15,0	100	80	19,20	9,93		9,66	8,46	8,46	9,66	3	11,98	10,77	
8,0 x 200	15,0	120	80	19,20	9,93		9,66	8,46	8,46	9,66	3	11,98	10,77	
8,0 x 220	15,0	140	80	19,20	9,93		9,66	8,46	8,46	9,66	3	11,98	10,77	
8,0 x 240	15,0	160	80	19,20	9,93 ronéenne (FTE). Masse volumique du hois d		9,66	8,46	8,46	9,66	. 3	11,98	10,77	

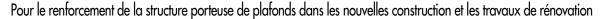
Dimensionnement selon les valeurs de test pour obtention d'une Évaluation Technique Européenne (ETE). Masse volumique du bois de placage stratifié de feuillus ρ k= 730 kg/m³ (non pré-percé). Toutes les valeurs miniquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k nont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k$ x kmod / γ M. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{met}=0,9.\ \gamma_N=1,3.$

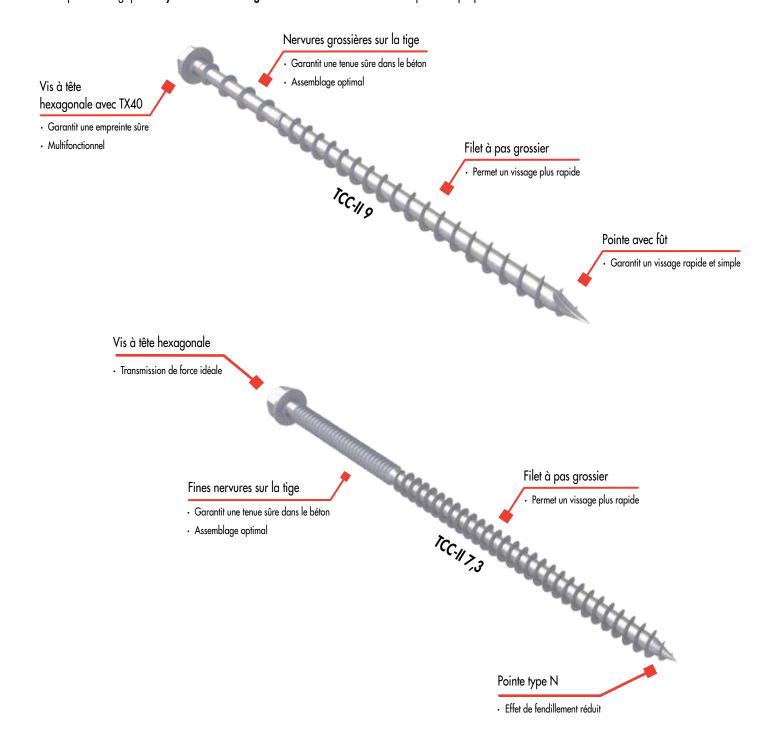
 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.


La capacité de charge de l'assemblage est réputée prouvée lorsque R_d \geq E_d. \longrightarrow min R_k= R_d \cdot γ_{M} / k_{mod}

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$

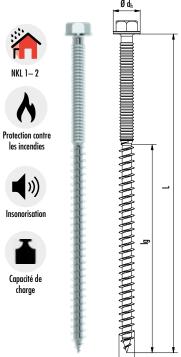
Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

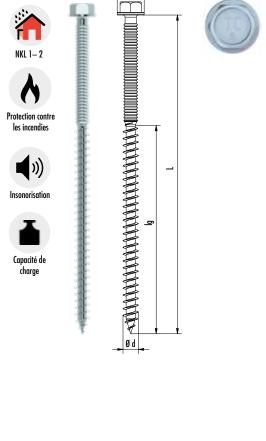
Les valeurs indiquées ici sont des valeurs d'essai!


VIS D'ASSEMBLAGE BOIS-BÉTON

Les projets de construction de **grande envergure** et avec **des charges utiles élevées** requièrent **une grande rigidité**. Les plafonds à poutres arrivent rapidement à leurs limites. L'**assemblage innovant bois-béton avec des vis d'assemblage** permet de profiter efficacement des meilleures propriétés du bois et du béton armé, ce qui donne comme résultat une structure porteuse résistante.

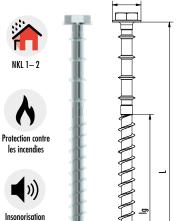
Le système est utilisé dans les nouvelles constructions de grande envergure et dans les travaux de rénovation de bâtiments dont l'utilisation a changé. Les avantages sont une capacité de charge accrue, une rigidité plus importante, une protection acoustique améliorée et une résistance plus élevée au feu. Les travaux de rénovation profitent de la préservation des poutres existantes et souvent aussi du coffrage – ce qui est avantageux sur le plan économique et écologique. Le système d'assemblage bois-béton est un choix d'avenir pour des projets de construction ambitieux.

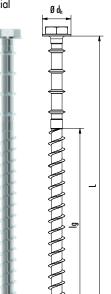

Eurotec° | Vis d'assemblage bois-béton


TCC-II 7,3


Vis à tête hexagonale, acier au carbone,revêtement spécial

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
981841	7,3	150	12,7	98	Vis à tête hexagonale	200

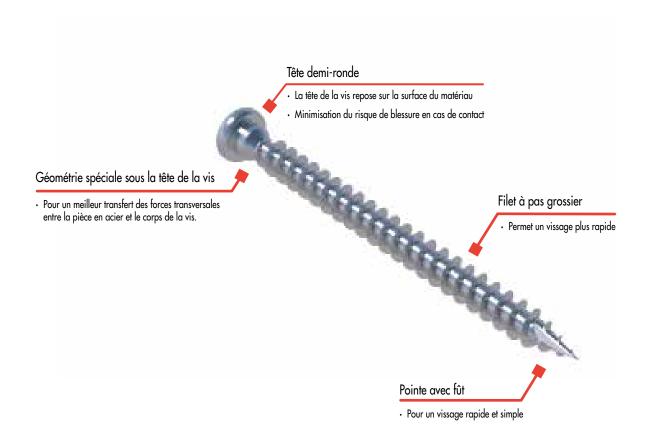

TCC-II 9


Capacité de charge

Vis à tête hexagonale, acier au carbone, revêtement spécial

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903592	9,0	180	15,5	125	TX40 •	200

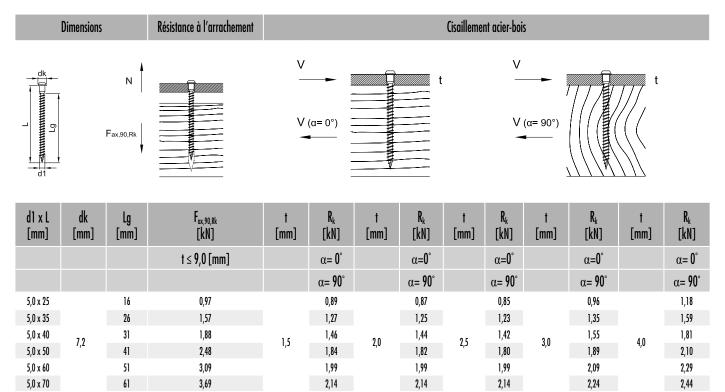
167



VIS POUR ÉQUERRE (WBS)

Pour un vissage simple et rapide

La vis pour équerre Eurotec (WBS) est fabriquée en acier au carbone trempé et a été conçue spécialement pour assembler les tôles d'acier et le bois. Le fendillement dans le bois est réduit par la géométrie de la pointe de la vis. Par ailleurs, la vis se caractérise entre autres par la tige lisse au-dessous de la tête. Cette tige permet de transférer les forces lors du cisaillement.



Eurotec Vis pour équerre

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	PU
945343	5,0	25	16	7,2	TX20 -	250
945232	5,0	35	26	7,2	TX20 -	250
945241	5,0	40	31	7,2	TX20 -	250
945233	5,0	50	41	7,2	TX20 -	250
945344	5,0	60	51	7,2	TX20 -	250
945345	5.0	70	61	7.2	TX20 -	250

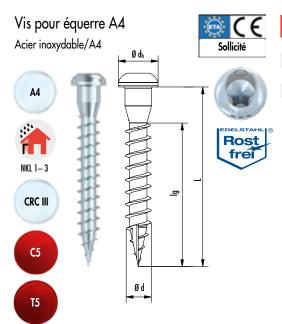
INFORMATIONS TECHNIQUES VIS POUR ÉQUERRE, ACIER GALVANISÉ BLEU

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des ffets E_d ($R_d \ge E_d$).

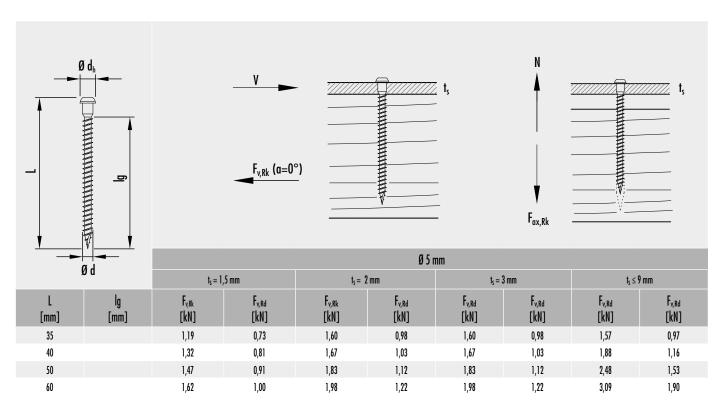
Exemple :

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{med}=0,9.\ \gamma_{Nl}=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

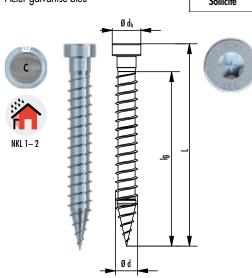

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

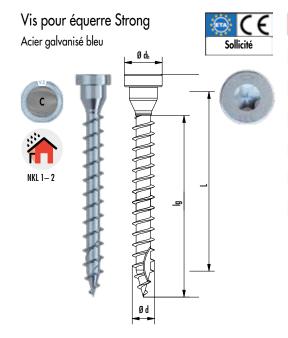
Attention : vérifiez les hypothèses retenues. Les valeurs indiquées, le type et le nombre de moyens de fixation sont pré-dimensionnés. Les projets ne peuvent être dimensionnés que par des personnes autorisées selon le code de la construction du Land. Pour obtenir une attestation de stabilité (payante), veuillez vous adresser à un spécialiste de structures porteuses selon le code de construction du Land. N'hésitez pas à nous contacter si vous souhaitez obtenir un contact.

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	PU
945621	5,0	35	26	7,2	TX20 •	250
945622	5,0	40	31	7,2	TX20 -	250
945623	5,0	50	41	7,2	TX20 •	250
945625	5,0	60	51	7,2	TX20 -	250

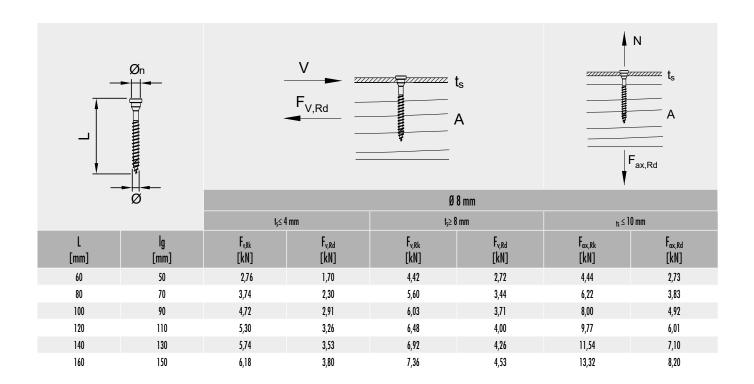
CAPACITÉS DE CHARGE DE VIS AVEC LONGUEURS MINIMUM REQUISES

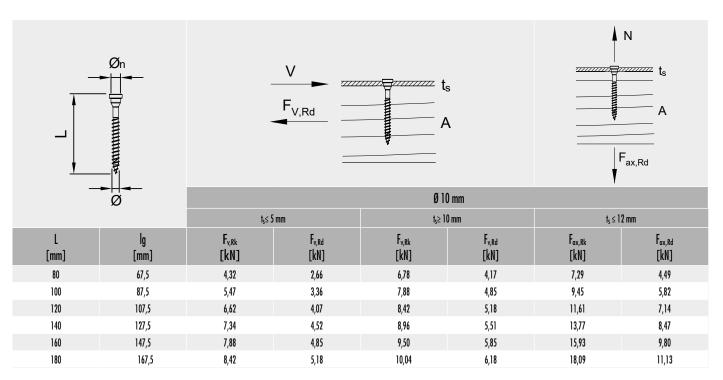
Calculé selon ETA-1 1/0024 compte tenu de l'absence de trous pré-percés et de la densité du bois ρ_k = 350 kg/m³. Les valeurs de dimensionnement F_{nd} ont été calculées compte tenu de k_{mod} = 0,8 et γ_M = 1,3. On entend par tôle épaisse une tôle en acier d'une épaisseur ts \geq 2,0 mm selon ETA-11/0024. L est la longueur minimale de la vis pour atteindre la capacité de charge respective.


Veuillez tenir compte du fait qu'il s'agit d'outils d'aide à la planification. Seules des personnes habilitées peuvent procéder aux calculs nécessaires aux projets.


Eurotec | Vis pour équerre

Vis pour équerre ZK Hardwood Acier galvanisé bleu


N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	PU
945383	5,0	35	31	7,2	TX20 -	250
945384	5,0	40	36	7,2	TX20 -	250
945385	5,0	50	46	7,2	TX20 -	250
945386	5,0	60	56	7,2	TX20 -	250

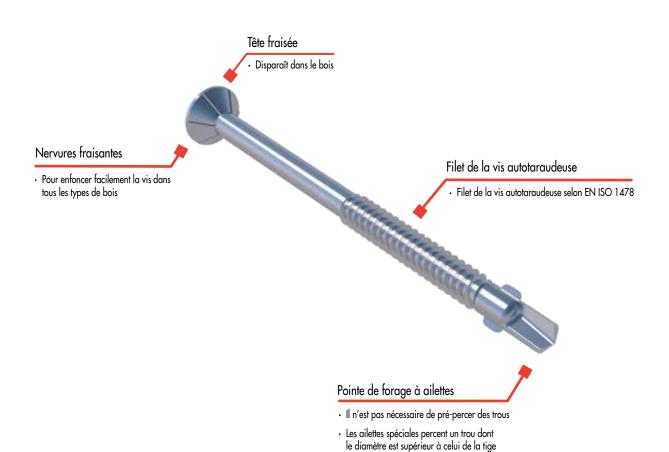


N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	PU
975815	8,0	60	50	13,5	TX40 •	50
975816	8,0	80	70	13,5	TX40 •	50
975817	8,0	100	90	13,5	TX40 •	50
975818	8,0	120	110	13,5	TX40 •	50
975819	8,0	140	130	13,5	TX40 •	50
975820	8,0	160	150	13,5	TX40 •	50
975821	10,0	80	67,5	16,5	TX50 ●	50
975822	10,0	100	87,5	16,5	TX50 ●	50
975823	10,0	120	107,5	16,5	TX50 ●	50
975824	10,0	140	127,5	16,5	TX50 ●	50
975825	10,0	160	147,5	16,5	TX50 ●	50
975826	10,0	180	167,5	16,5	TX50 ●	50

INFORMATIONS TECHNIQUES VIS POUR ÉQUERRE STRONG, ACIER GALVANISÉ BLEU

Calculé selon ETA-1 1/0024 compte tenu de l'absence de trous pré-percés et de la densité du boisp_k = 350 kg/m². Les valeurs de dimensionnement F_{R.d} ont été calculées compte tenu de k_{mod} = 0,8 et γ_M = 1,3. Pour différentes épaisseurs de tôle, il est possible d'interpoler la résistance au cisaillement entre les tôles d'actier fines et épaisses. L est la longueur minimale de la vis pour atteindre la capacité de charge respective.

Veuillez tenir compte du fait qu'il s'agit d'outils d'aide à la planification. Seules des personnes habilitées peuvent procéder aux calculs nécessaires aux projets.

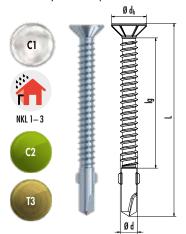

VIS DE FORAGE À AILETTES


Pour la fixation de profilés minces

La vis de forage à ailettes en acier inoxydable trempé ou en acier au carbone est une vis conçue spécialement pour la fixation de profilés minces. La vis dispose d'une pointe de forage avec des ailettes spéciales et une tête fraisée avec empreinte TX.

Ces vis se caractérisent par le fait qu'elles peuvent être utilisées sans pré-perçage car les ailettes percent un trou supérieur au diamètre du filetage. Elles percent à la fois l'avant-trou et le contre-filetage dans l'acier même.

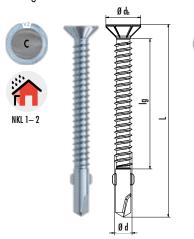
Il est important de savoir que que l'acier galvanisé et l'acier inoxydable trempé ne sont pas résistants aux acides et ne se prêtent donc pas à la fixation de bois contenant des tanins comme le chêne. À l'extérieur, nous recommandons l'utilisation de ces vis **uniquement pour les fixations acier-bois.** Dans ce cas, une vis par point de fixation est suffisante.



Eurotec° | Vis de forage à ailettes

Vis de forage à ailettes

Acier inoxydable trempé

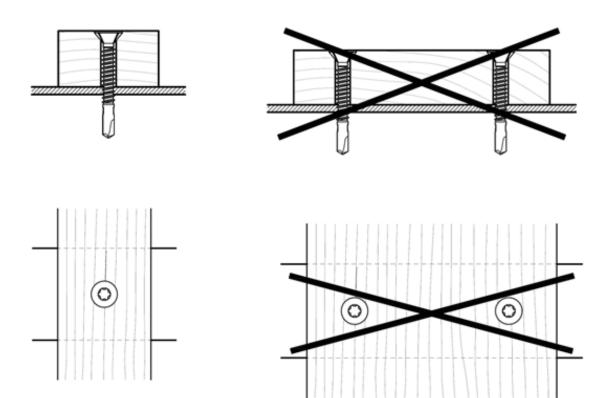


N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	Épaisseur de l'élément à fixer [mm] ^{o)}	Capacité de forage	PU
901990	4,8	38	22	9,5	TX25 •	20	3	200
111404	5,5	45	26,5	10,8	TX30 •	25	3	200
111405	5,5	50	32	10,8	TX30 •	30	3	200
111406	6,3	60	31	12,4	TX30 •	35	5	200
901585	6,3	70	41	12,4	TX30 •	45	5	200
904333	6,3	80	41	12,4	TX30 •	55	5	200
901581	6,3	85	46	12,4	TX30 •	60	5	100
901584	6,3	110	46	12,4	TX30 •	85	5	100

a) Épaisseur de l'élément à fixer = épaisseur de la pièce rapportée + épaisseur de la tôle t; t_{max} = capacité de forage

Vis de forage à ailettes

Acier galvanisé bleu


a) Épaisseur de l'élément à fixer = épaisseur de la pièce rapportée + épaisseur de la tôle t; t_{max} = capacité de forage

INFORMATIONS SUR LES APPLICATIONS

La vis de forage à ailettes est conçue uniquement pour la fixation de profilés minces, c'est-à-dire pour les applications avec une seule vis par point de fixation.

En cas de fixation d'éléments tels que des planches avec deux vis par point de fixation, il peut y avoir une perturbation réciproque si les vis ont tendance à se plier avec le bois « qui travaille » (qui bouge ou se déforme). Dans ce cas, les vis peuvent être arrachées, surtout si l'on utilise du bois de conifères relativement tendre.

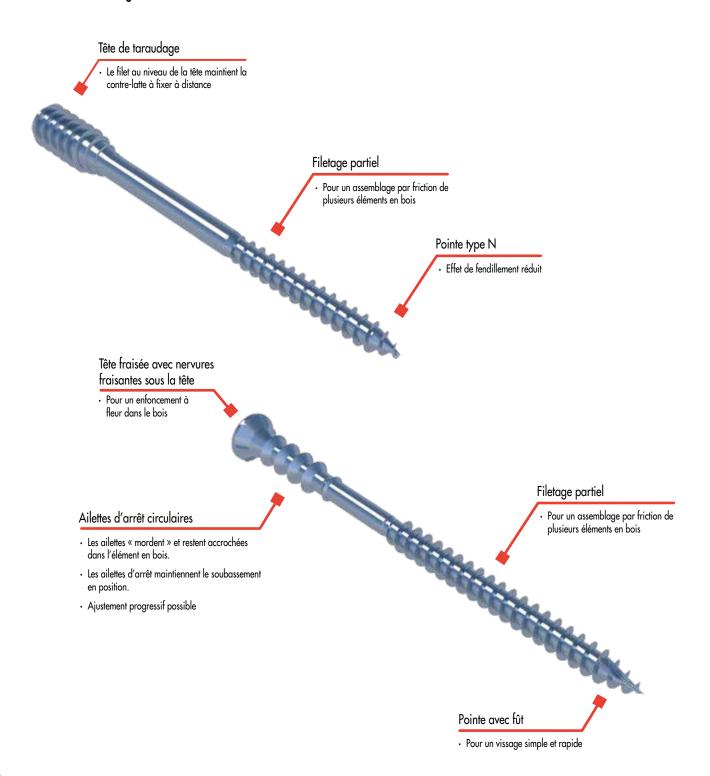
La vis de forage à ailettes ne convient pas à la fixation d'assemblages bois-aluminium.

MODE DE TRAVAIL DE LA VIS DE FORAGE À AILETTES

- Le trou percé dans le bois est plus grand que le diamètre du filetage de la vis, ce qui est dû aux ailettes spéciales.
- La pointe de forage pré-perce le trou central dans l'acier et donne sa forme au contre-filetage dans l'acier.
- Positionnement sûr du filet dans le support d'ancrage en acier.

Mode de travail de la vis de forage à ailettes

VIS D'ÉCARTEMENT / MINI, JUSTITEC


Convient à la fixation d'ossatures bois en cas de revêtements de murs et de plafonds

La vis d'écartement permet de fixer des ossatures bois en cas de revêtements de murs et de plafonds et de monter des faîtes et des lattes d'arête de toit. Contrairement aux vis conventionnelles, la vis d'écartement est dotée de deux filets différents au niveau de la tête et de la pointe. Le filet au niveau de la tête maintient la contre-latte à fixer (à distance). Le filet au niveau de la pointe, plus fin, sert à fixer l'ossature.

Pour éviter que la contre-latte se fende, nous recommandons de pré-percer la contre-latte (diamètre du perçage = Ødh – 2 mm).

La latte en bois est positionnée en haut et en bas grâce à la vis Justitec. En complément, la vis d'écartement estutilisée pour maintenir la latte en position et éviter un éventuel décalage.

Vis d'écartement

Acier galvanisé, revêtement glissant

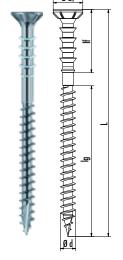
N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	lf [mm]	Empreinte	Distance [mm]	PU
110099	6,0	60	40	10	20	TX25 •	0 – 15	200
110100	6,0	70	40	10	20	TX25 •	15 – 25	200
110101	6,0	80	40	10	20	TX25 •	15 – 35	200
110102	6,0	90	40	10	20	TX25 •	25 – 45	200
110103	6,0	100	40	10	20	TX25 •	35 – 55	200
110104	6,0	120	40	10	20	TX25 •	55 – 75	100
110105	6,0	135	40	10	20	TX25 •	70 – 90	100
110106	6,0	150	40	10	20	TX25 •	75 – 105	100
110107	6,0	180	40	10	20	TX25 •	100 – 135	100
110108	6,0	200	40	10	20	TX25 •	135 – 155	100

Vis d'écartement mini

Acier galvanisé, revêtement glissant

NKL 1-2

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	If [mm]	Empreinte	Distance [mm]	PU
110121	4,5	60	30	8	22	TX25 •	0 – 15	100
110122	4,5	80	30	8	22	TX25 •	15 – 35	100
110123	4,5	100	30	8	22	TX25 •	35 – 55	100
110124	4,5	120	30	8	22	TX25 •	55 – 75	100


Justitec

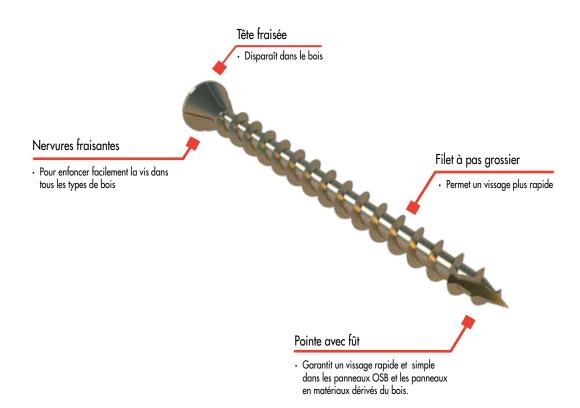
Acier galvanisé, revêtement glissant, tête fraisée

NKL 1-2

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	If [mm]	Empreinte	Plage de réglage [mm]	PU
111804	6,0	60	25	10	25	TX25 •	0-10	200
111805	6,0	70	30	10	25	TX25 •	0 – 20	200
111806	6,0	80	30	10	25	TX25 •	0 - 30	200
111807	6,0	90	40	10	25	TX25 •	0 - 40	100
111808	6,0	100	60	10	25	TX25 •	0 – 50	100
111824	6,0	110	60	10	25	TX25 •	0 - 60	100
111809	6,0	120	60	10	25	TX25 •	0 – 70	100
905632	6,0	130	60	10	25	TX25 •	0 – 80	100
905633	6,0	145	60	10	25	TX25 •	0 – 95	100
905634	6,0	160	60	10	25	TX25 •	0-110	100

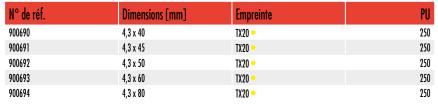
AVANTAGES

- · Il n'est pas nécessaire de pré-percer des trous ; ajustable progressivement
- · Il n'est pas nécessaire d'utiliser des cales Traitement bois sur bois


Fixation d'une latte de bois à l'aide de la vis d'écartement (en bas) et de la vis Justitec (en haut).

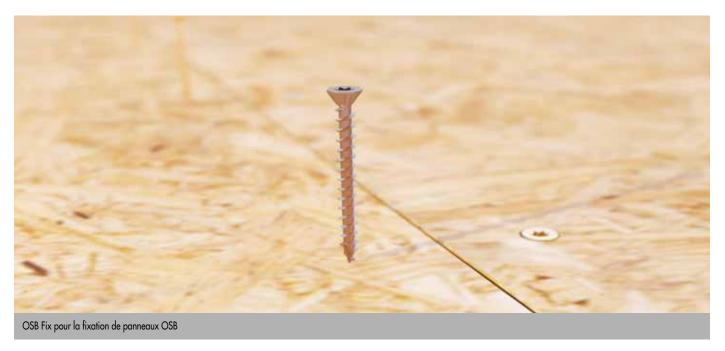
Eurotec | OSB Fix

OSB FIX


Vis en acier au carbone, galvanisée jaune

L'OSB Fix est une vis**galvanisée jaune en acier au carbone,** avec tête fraisée et filetage complet. La vis à filetage complet dispose d'une tête fraisée 60 °avec des **nervures fraisantes** et **une empreinte TX** ainsi que d'une pointe avec fût (type 17). La géométrie spéciale de la vis garantit une **réduction de l'effet de fendillement** lors du vissage.

OSB Fix Tête fraisée, acier galvanisé jaune



PROPRIÉTÉS

- · Le filetage complet maintient le panneau en place
- · Prévient les bruits de grincement
- · Convient à tous les matériaux dérivés du bois
- · Surface galvanisée jaune Cr3

ÉTAGÈRE DE VENTE EUROTEC

Petits emballages

AVANTAGES

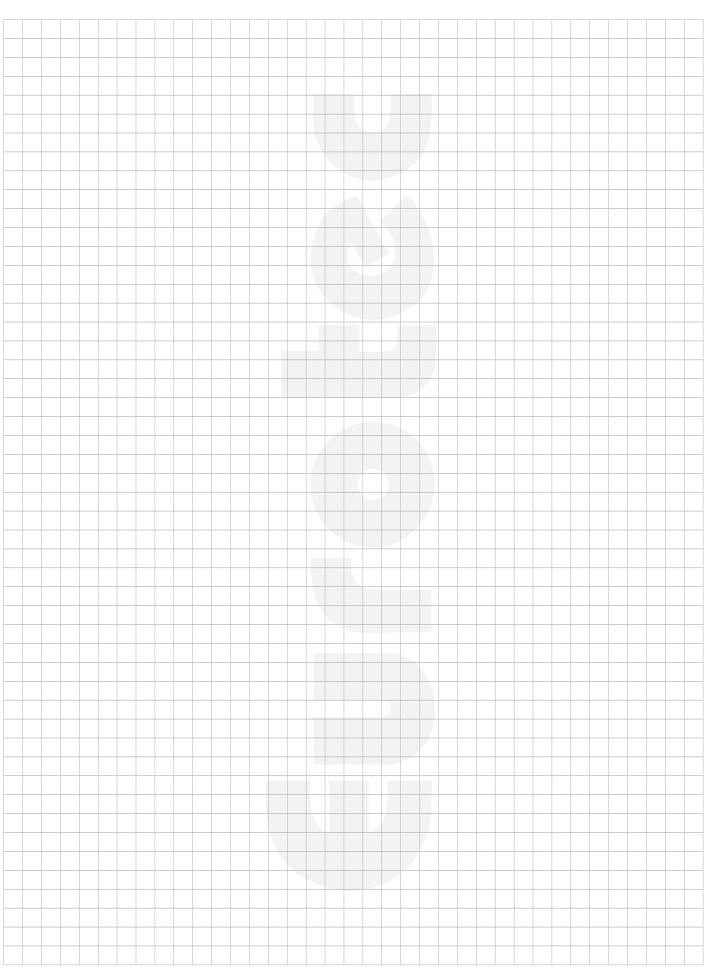
Avec l'étagère de vente d'Eurotec, vous obtenez des vis dans les dimensions et les matériaux les plus courants, bien triés dans une étagère. Vous avez ainsi la possibilité d'équiper vos clients pour les applications quotidiennes dans la construction en bois avec une seule étagère.

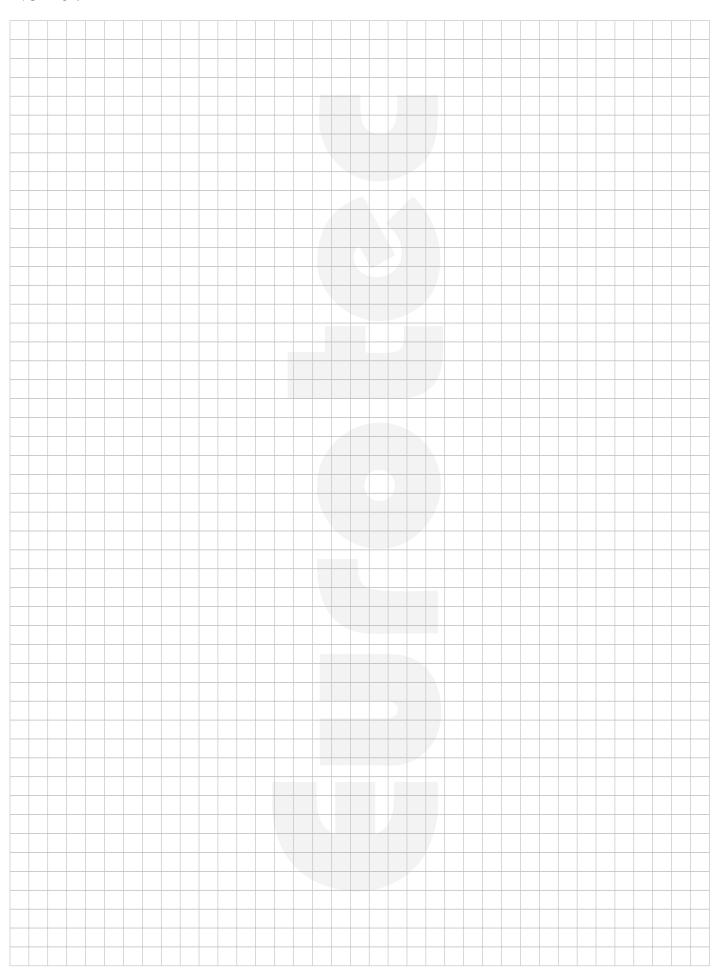
- Dans la partie supérieure de l'étagère, vous trouverez des sachets contenant 10, 15, 20 ou 45 vis.
- Dans la partie inférieure de l'étagère, vous trouverez des cartons contenant 50 et/ou 100 vis. Tous les cartons ont un bec serveur qui peut refermé.
- Des embouts, embouts longs et boîtes d'embouts avec les tailles TX assorties, le tout avec système de codage couleur, font également partie de cette étagère bien garnie.

VOUS TROUVEREZ DANS CETTE ÉTAGÈRE LES TYPES ET LES DIMENSIONS DE VIS COMME SUIT:

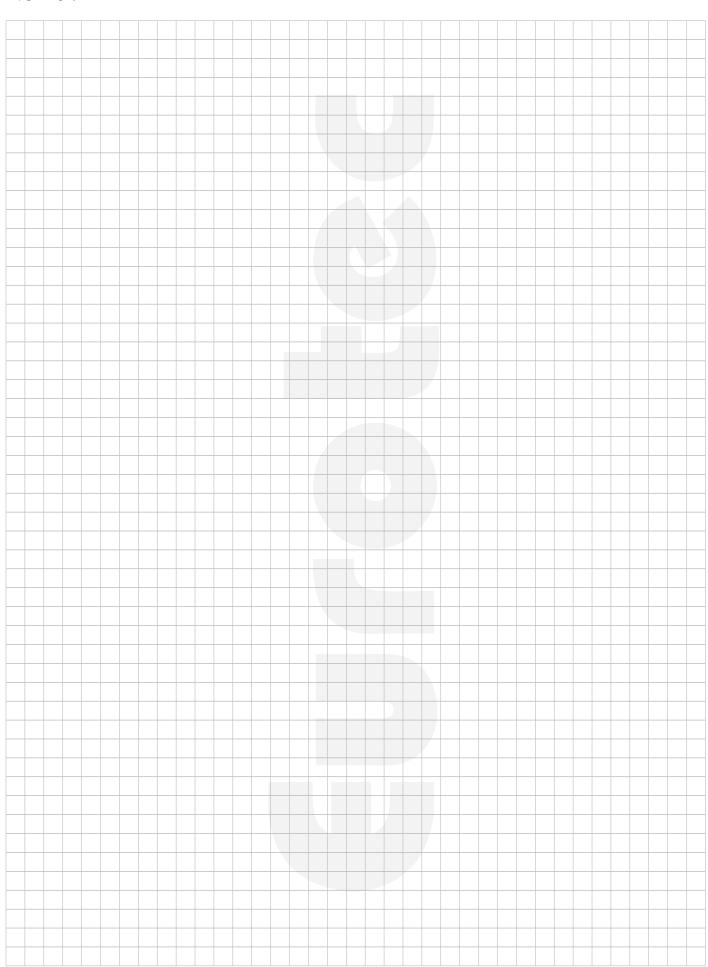
- Paneltwistec AG avec revêtement spécial, tête fraisée \varnothing 3,5 x 30 mm à \varnothing 6,0 x 120 mm
- Vis pour panneau d'agglomérés EcoTec A2, tête fraisée Ø 4,0 x 40 mm à Ø 6,0 x 120 mm
- Hapatec en acier inoxydable trempé,
 tête décorative Ø 4,0 x 30 mm à Ø 5,0 x 80 mm

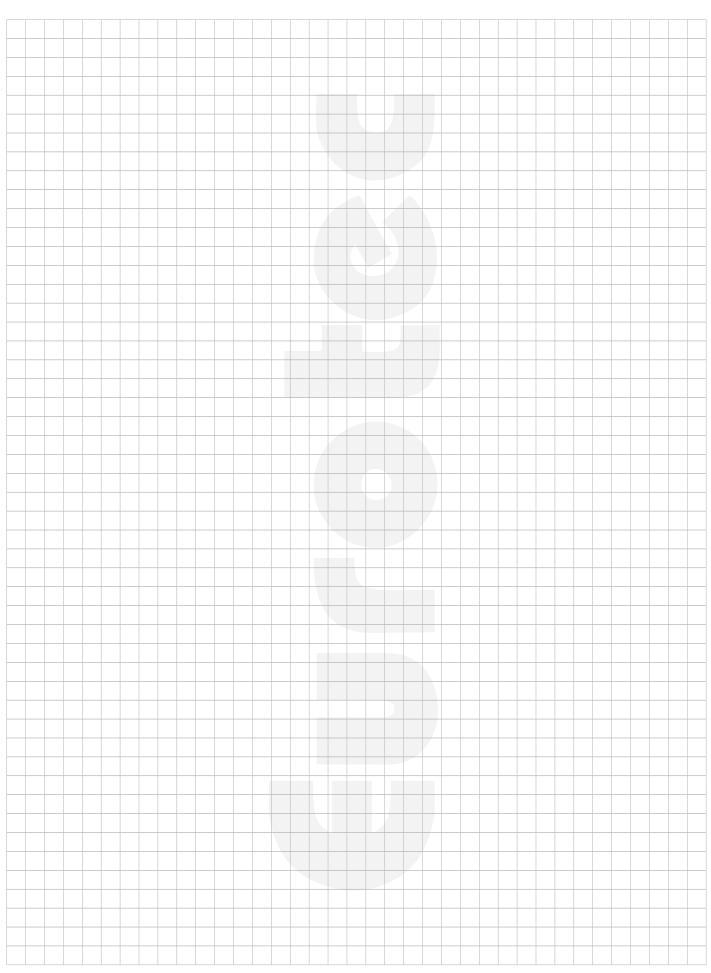
EUROPALETTES ET EMBALLAGES DE GRANDE TAILLE Avec 8, 16 ou 24 emballages Eurotec de grande taille


Eurotec | Vis pour constructions en bois


INDEX


A	Assemblage latéral à couvre-joints	8
C	Catégories C	
D	Déclaration d'homologation	
E	EcoTec	
F	Fixation poutre maîtresse / poutre auxiliaire	87
H	HBS	
J	Justitec	178 – 181
K	KonstruX, DUO 114- 119 KonstruX, 13 mm E12 120 - 125	
	Logiciel ECS 26, 84	
M	Matériau 14 – 15	
0	OSB Fix 182 – 183	
P	Paneltwistec 28 – 71 Paneltwistec en bande, acier galvanisé bleu 136 – 137 Paneltwistec en bande, acier inoxydable trempé 131 – 134 Paneltwistec TK AG Stronghead 72 – 175	
R	Redoublement de poutres 89 Renforcement de supports 86 Revêtement 14 – 16	
5	SawTec 126 – 130 Structure d'une vis à bois 12 – 13	
	TCC-II 7,3 166 TCC-II 9 167 Tige filetée BRUTUS 76	


Vis à bois universelle	135
Vis à filetage complet KonstruX	78 - 113
Vis d'assemblage bois-béton	
Vis d'assemblage LBS	160 – 163
Vis d'écartement	178 – 181
Vis de forage à ailettes	174 – 177
Vis en bande	131 – 137
Vis pour construction de toits Topduo	138 – 145
Vis pour équerre	168 – 173
Vis pour équerre A4	171
Vis pour équerre Strong	172
Vis pour équerre ZK Hardwood	172
Vis système Blue-Power	



Editeur: E. Lu.co.Tec GmbH. Mise à jour 02/2024

Sous réserve d'erreurs, de modifications et de complements techniques.

Toutes les dimensions sont approximatives. Sous réserve d'écars de modièles et de formes ainsi que d'erreurs.

Nous déclinons boule responsabilité quant var reure a l'impression. Le document (même cous forme d'extraits) ne peut être lous déclinons boule responsabilité quant oux rereurs d'impression. Le document (même cous forme d'extraits) ne peut être

E.u.r.o.Tec GmbH Unter dem Hofe 5 · D-58099 Hagen

Tél. +49 2331 62 45-0 Fax +49 2331 62 45-200 Courriel : info@eurotec.team

Suivez-nous

