

Europäische Technische Bewertung

ETA 20/0812 09/10/2020

(Deutsche Übersetzung, der Original-Bewertungsbescheid ist in tschechischer Sprache verfasst)

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt:

Technical and Test Institute for Construction Prague

Handelsbezeichnung des Bauprodukts

Eurotec Injektionsmörtel Classic Eurotec Injektionsmörtel Easy Eurotec Injektionsmörtel Rapid Eurotec Injektionsmörtel Tropic

Produktgruppe, zu welcher das

Bauprodukt gehört

Code der Produktgruppe: 33

Injektionssystem zur Verankerung im Beton

Hersteller

EuroTec GmbH Unter dem Hofe 5 58099 Hagen Germany

Herstellerwerk

HSW C

Diese europäische technische

Bewertung umfasst

23 Seiten einschließlich 20 Anhänge, die Bestandteil dieser Bewertung bilden

Diese europäische technische Bewertung wird erteilt im Einklang mit der Verordnung (EU)

Nr. 305/2011 auf Grundlage der

EAD 330499-01-0601

Verbunddübel zur Verwendung in Beton

Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen komplett dem ursprünglichen ausgegebenen Dokument entsprechen und sollten als solche gekennzeichnet sein.

Die Reproduktion dieser Europäischen Technischen Bewertung, einschließlich von Übertragungen auf dem elektronischen Weg, muss in vollem Umfang erfolgen (außer den vertraulichen Anhangn). Teilreproduktionen können jedoch mit der schriftlichen Zustimmung der juristischen Person für die Technische Bewertung - des Technický a Zkušební Ústav Stavební Praha, s.p. (staatlicher Betrieb Technisches und Prüfinstitut für Bauwesen Prag) vorgenommen werden. Jede Teilreproduktion ist als solche zu kennzeichnen.

1. Technische Produktbeschreibung

Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic für gerissenen und ungerissenen Beton ist ein Verbunddübel (Injektionssystem), der aus einer Mörtelkartusche und einer Ankerstange besteht. Bei den Ankerstangen handelt es sich um eine handelsübliche Gewindestangen mit einer Sechskantmutter sowie einer Unterlegscheibe.

Die Ankerstange wird drehend bis zur Verankerungstiefenmarkierung in das vermörtelte Bohrloch gedrückt. Der Dübel wird durch Verbund zwischen der Ankerstange, dem Injektionsmörtel und dem Beton verankert.

Ein Produktmuster, einschließlich der Produktbeschreibung befindet sich in der Anhang A.

2. Spezifikation des beabsichtigten Verwendungszwecks im Einklang mit dem betreffenden EAD

Die Eigenschaften, welche in Teil 3 genannt sind, gelten nur, sofern die Verwendung des Dübels im Einklang mit den Spezifikationen sowie mit den Bedingungen verwendet wird, welche in der Anhang B aufgeführt sind.

Die Anforderungen dieser Europäischen Technischen Bewertung beruhen auf einer angenommenen Nutzungsdauer der Dübel von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

3. Produkteigenschaften sowie Verweise auf die Methoden, welche zur Produktbewertung verwendet wurden

3.1 Mechanische Tragfähigkeit und Stabilität (BWR 1)

Wesentliche Merkmale	Eigenschaften
Charakteristischer Widerstand unter Zug – und Querbeanspruchung für statische und quasi-statische Einwirkungen	Anhang C 1 bis C 5
Verschiebungen unter Kurzzeit- und Langzeitbeanspruchung	Anhang C 6 bis C 7
Dauerhaftigkeit	Anhang B 1
Charakteristischer Widerstand und Verschiebungen für seismische Leistungskategorie C1 und C2	Anhang C 8 bis C 10

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Keine Leistung festgelegt.

3.3 Allgemeine Aspekte in Bezug auf die Nutzungseignung

Die Nutzungsdauer sowie Funktionsfähigkeit ist nur gewährleistet, sofern die Spezifikationen für den beabsichtigten Verwendungszweck entsprechend der Anhang B1 eingehalten werden.

4. Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit Angabe der Rechtsgrundlage

Im Einklang mit dem Beschluss der Europäischen Kommission ¹96/582/EC gilt das Bewertungs- und Überprüfungssystem für die Nachhaltigkeit der Eigenschaften (s. Verordnung (EU) Nr. 305/2011, Anhang V), welches in der nachfolgenden Tabelle aufgeführt ist.

Produkt	beabsichtigter Verwendungszweck	Stufe oder Klasse	System
Verbunddübel aus	Zum Befestigen und/oder zur Unterstützung		
Metall	im Beton von strukturellen Elementen		1
(Injektionssystem) zur	(welche zur Stabilität des Bauwerks	-	!
Verankerung im Beton	beitragen) oder von schweren Teilen.		

¹ Amtsanzeiger EG L 254, 08.10.1996

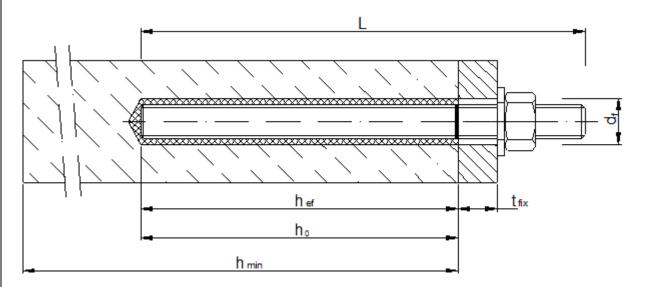
5. Technische Angaben, welche zur Implementierung des AVCP-Systems erforderlich sind, so wie im betreffenden EAD festgelegt

Das Produktionssteuerungssystem muss im Einklang mit dem Prüfplan stehen, welcher zum Bestandteil der technischen Dokumentation dieser Europäischen Technischen Bewertung gehört. Der Prüfplan wird im Kontext mit dem Produktionssteuerungssystem festgelegt, welches vom Hersteller betrieben wird und wird beim TZÚS Praha, s.p. (Technisches und Prüfinstitut für Bauwesen Prag) hinterlegt.² Die im Rahmen des Produktionssteuerungssystems erzielten Ergebnisse müssen aufgezeichnet sowie entsprechend den Bestimmungen ausgewertet werden, welche im Prüfplan genannt sind.

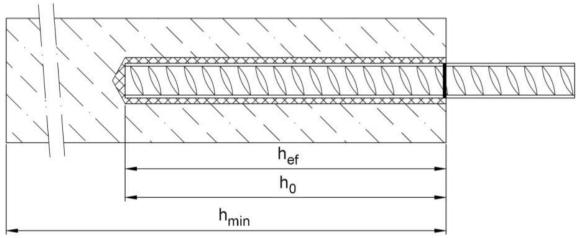
ausgestellt in Prag am 09.10.2020

Ing. Mária Schaan

Leiterin der technischen Bewertungsstelle


_

Der Prüfplan gehört zum vertraulichen Teil der ETA-Dokumentation und wird nicht veröffentlicht. Er wird lediglich zur Bewertung und Überprüfung der Leistungsbeständigkeit an die notifizierte Stelle übergeben.


Einbauzustand Ankerstange

Vorsteckmontage oder

Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl

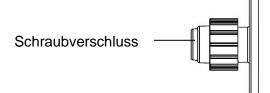
d_f = Durchgangsloch im anzuschließenden Bauteil

 t_{fix} = Dicke des Anbauteils

h_{ef} = effektive Verankerungstiefe

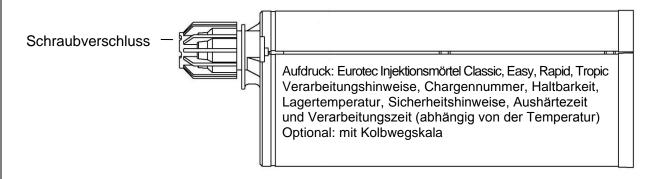
h₀ = Bohrlochtiefe

 h_{min} = Mindestbauteildicke


Injektionssystem für Beton
Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic

Produktbeschreibung
Einbauzustand

Anhang A 1


Kartusche:

150 ml, 280 ml, 300 ml bis 330 ml, 380 ml bis 420 ml Kartusche (Typ: koaxial)

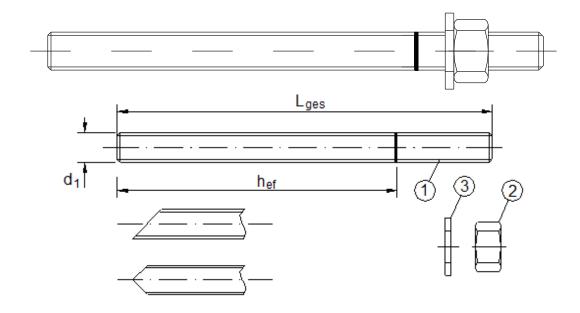
Aufdruck: Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Sicherheitshinweise, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur) Optional: mit Kolbwegskala

235 ml, 345 ml bis 360 ml, 825 ml Kartusche (Typ: "side-by-side")

165 ml und 300 ml Kartusche (Typ: Schlauchfolie)

Statikmischer

SM 14W



Injektionssystem für Beton
Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic

Produktbeschreibung
Injektionssystem

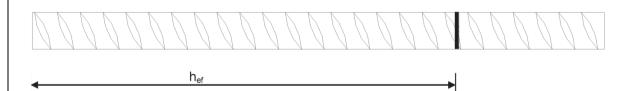
Anhang A 2

Gewindestange M8, M10, M12, M16, M20, M24 mit Unterlegscheibe und Mutter

Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Verfüllscheibe und Mischerreduzierstück zum Verfüllen des Ringspalts zwischen Anker und Anbauteil


Injektionssystem für Beton	
Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Produktbeschreibung	Anhang A 3
Ankerstange	
Verfüllscheibe	

eil	Benennung	Werkstoff				
Stał	lteile aus verzinkte	m Stahl (Stahl gemäß E	N 1008	37:1998 oder EN 1026	63:2001)	
-	galvanisch verzinkt	≥ 5 µm gemäß EN	I ISO 4	042:1999 oder		
-	feuerverzinkt				10684:2004+AC:2009	oder
-	diffusionsverzinkt	≥ 45 µm gemäß EN	I ISO 1			
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung
			4.6	f _{uk} =400 N/mm ²	f _{yk} =240 N/mm ²	$A_5 > 8\%$
1	Ankerstange		4.8	f _{uk} =400 N/mm ²	f _{yk} =320 N/mm ²	$A_5 > 8\%$
		gemäß EN ISO 898-1:2013	5.6	fuk=500 N/mm ²	fyk=300 N/mm ²	A ₅ > 8%
		EN 130 090-1.2013	5.8	fuk=500 N/mm²	fyk=400 N/mm²	A ₅ > 8%
			8.8	f _{uk} =800 N/mm ²	fyk=640 N/mm²	A ₅ > 12% ²⁾
			4	für Ankerstangen der	Klasse 4.6 oder 4.8	
2	Sechskantmutter	gemäß EN ISO 898-2:2012	5	für Ankerstangen der	Klasse 5.6 oder 5.8	
		EN 130 090-2.2012	8	für Ankerstangen der	Klasse 8.8	
За	Unterlegscheibe			uerverzinkt oder diffus	ionsverzinkt O 7093:2000 oder EN IS	SO 7094·2000)
3b	Verfüllscheibe			uerverzinkt oder diffusi		50 1004.2000)
Nich	trostender Stahl A2			.4307 / 1.4567 oder 1.		3-1:2014)
		2 (Werkstoff 1.4301 / 1.4	311 / 1		4541, gemäß EN 10088 4578, gemäß EN 10088	
Nich	ntrostender Stahl A4	2 (Werkstoff 1.4301 / 1.4	1311 / 1 1404 / 1	.4571 / 1.4362 oder 1.	4541, gemäß EN 10088 4578, gemäß EN 10088	
Nich	ntrostender Stahl A4	2 (Werkstoff 1.4301 / 1.4 1 (Werkstoff 1.4401 / 1.4	1311 / 1 1404 / 1	.4571 / 1.4362 oder 1.	4541, gemäß EN 10088 4578, gemäß EN 10088	
lich loc	ntrostender Stahl A4	2 (Werkstoff 1.4301 / 1.4 1 (Werkstoff 1.4401 / 1.4 1 (Werkstoff 1.4401 / 1.4 1 (Werkstoff 1 1 Festigkeitsklasse	1311 / 1 1404 / 1	.4571 / 1.4362 oder 1. oder 1.4565, gemäß E Charakteristische	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische	3-1:2014)
lich loc	ntrostender Stahl A4 hkorrosionsbeständ	2 (Werkstoff 1.4301 / 1.4 4 (Werkstoff 1.4401 / 1.4 diger Stahl (Werkstoff 1 Festigkeitsklasse gemäß	1311 / 1 1404 / 1 .4529 (.4571 / 1.4362 oder 1. oder 1.4565, gemäß E Charakteristische Zugfestigkeit	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze	Bruchdehnung
Nicł łoc	ntrostender Stahl A4 hkorrosionsbeständ	2 (Werkstoff 1.4301 / 1.4 1 (Werkstoff 1.4401 / 1.4 1 (Werkstoff 1.4401 / 1.4 1 (Werkstoff 1 1 Festigkeitsklasse	311 / 1 404 / 1 .4529 d	.4571 / 1.4362 oder 1. oder 1.4565, gemäß El Charakteristische Zugfestigkeit fuk=500 N/mm²	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze f _{yk} =210 N/mm²	Bruchdehnung A ₅ ≥ 8%
Nicł łoc	ntrostender Stahl A4 hkorrosionsbeständ	Werkstoff 1.4301 / 1.4 Werkstoff 1.4401 / 1.4 diger Stahl (Werkstoff 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009	311 / 1 404 / 1 .4529 (50 70	.4571 / 1.4362 oder 1. oder 1.4565, gemäß El Charakteristische Zugfestigkeit f _{uk} =500 N/mm ² f _{uk} =700 N/mm ²	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze f _{yk} =210 N/mm² f _{yk} =450 N/mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 > 12\%^{2}$
Nich Hoc	ntrostender Stahl A4 hkorrosionsbeständ	Werkstoff 1.4301 / 1.4 Werkstoff 1.4401 / 1.4 Giger Stahl (Werkstoff 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß	311 / 1 404 / 1 .4529 0 50 70 80	.4571 / 1.4362 oder 1. oder 1.4565, gemäß El Charakteristische Zugfestigkeit fuk=500 N/mm² fuk=700 N/mm² fuk=800 N/mm²	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze f _{yk} =210 N/mm² f _{yk} =450 N/mm² f _{yk} =600 N/mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 > 12\%^{2}$
Nich	Ankerstange 1)	Werkstoff 1.4301 / 1.4 Werkstoff 1.4401 / 1.4 diger Stahl (Werkstoff 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009	50 70 80 50	.4571 / 1.4362 oder 1. oder 1.4565, gemäß El Charakteristische Zugfestigkeit fuk=500 N/mm² fuk=700 N/mm² fuk=800 N/mm² für Ankerstangen der	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze f _{yk} =210 N/mm² f _{yk} =450 N/mm² f _{yk} =600 N/mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 > 12\%^{2}$
lich loc	Ankerstange 1)	Werkstoff 1.4301 / 1.4 Werkstoff 1.4401 / 1.4 Giger Stahl (Werkstoff 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009	311 / 1 404 / 1 .4529 0 50 70 80 50 70 80	.4571 / 1.4362 oder 1. der 1.4565, gemäß El Charakteristische Zugfestigkeit fuk=500 N/mm² fuk=700 N/mm² für Ankerstangen der für Ankerstangen der	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze f _{yk} =210 N/mm² f _{yk} =450 N/mm² f _{yk} =600 N/mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 > 12\%^{2}$ $A_5 > 12\%^{2}$
1 1 2	Ankerstange 1) Sechskantmutter 1)	Werkstoff 1.4301 / 1.4 Werkstoff 1.4401 / 1.4 Giger Stahl (Werkstoff 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301,	50 70 80 70 80 1.4311	.4571 / 1.4362 oder 1. oder 1.4565, gemäß El Charakteristische Zugfestigkeit fuk=500 N/mm² fuk=700 N/mm² fuk=800 N/mm² für Ankerstangen der für Ankerstangen der / 1.4307 / 1.4567 ode	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze f _{yk} =210 N/mm² f _{yk} =450 N/mm² f _{yk} =600 N/mm² *Klasse 50 *Klasse 70	Bruchdehnung $A_{5} \ge 8\%$ $A_{5} > 12\%^{2}$ $A_{5} > 12\%^{2}$ $A_{5} > 12\%^{2}$
Nich Hoc	Ankerstange 1)	Werkstoff 1.4301 / 1.4 Werkstoff 1.4401 / 1.4 Giger Stahl (Werkstoff 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301, A4: Werkstoff 1.4401, HCR: Werkstoff 1.452	50 70 80 50 70 80 1.4311 1.4404 9 oder	.4571 / 1.4362 oder 1. oder 1.4565, gemäß El Charakteristische Zugfestigkeit fuk=500 N/mm² fuk=700 N/mm² für Ankerstangen der für Ankerstangen der für Ankerstangen der / 1.4307 / 1.4567 ode / 1.4565, gemäß EN 10	4541, gemäß EN 10088 4578, gemäß EN 10088 N 10088-1: 2014) Charakteristische Streckgrenze f _{yk} =210 N/mm² f _{yk} =450 N/mm² f _{yk} =600 N/mm² Klasse 50 Klasse 70 Klasse 80 er 1.4541, EN 10088-1:2 er 1.4578, EN 10088-1:2	Bruchdehnung $A_{5} \ge 8\%$ $A_{5} > 12\%^{2}$ $A_{5} > 12\%^{2}$ $A_{5} > 12\%^{2}$ 2014

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Produktbeschreibung Werkstoff Ankerstangen	Anhang A 4

 $^{^{1)}}$ Festigkeitsklasse 80 nur für nichtrostenden Stahl A4 + hochkorrosionsbeständiger Stahl HCR $^{2)}$ As > 8% Bruchdehnung wenn <u>keine</u> Anforderungen der seismischen Leistungkategorie C2 bestehen

Betonstahl Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25

- Mindestwerte der bezogenen Rippenfläche $f_{R,min}$ gemäß EN 1992-1-1:2004+AC:2010 Die Rippenhöhe muss $0,05d \le h \le 0,07d$ betragen
- (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe

Teil	Benennung	Werkstoff
Beto	onshahl	
3		Stäbe und Betonstabstahl vom Ring Klass B oder C f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic

Produktbeschreibung

Betonstahl

Werkstoffe Betonstahl

Anhang A 5

Angaben zum Verwendungszweck

Bedingungen der Verankerung:

- Statische und quasi-statische Lasten: Gewindestange M8 bis M30, Betonstahl Ø 8 bis Ø 25
- Seismische Einwirkung für Anforderungsstufe C1: Gewindestange M8 bis M16 (außer feuerverzinkte Gewindestangen)
- Seismische Einwirkung für Anforderungsstufe C2: Gewindestange M12 bis M16 (außer feuerverzinkte Gewindestangen)

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton ohne Fasern entsprechend EN 206:2013+A1:2016.
- Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 entsprechend EN 206:2013+A1:2016.
- Ungerissener Beton: Gewindestange M8 bis M30, Betonstahl Ø 8 bis Ø 25
- Gerissener Beton: Gewindestange M8 bis M16

Temperaturbereich:

- -40°C bis +40°C (maximale Kurzzeittemperatur +40°C und maximale Langzeittemperatur +24°C)
- -40°C bis +80°C (maximale Kurzzeittemperatur +80°C und maximale Langzeittemperatur +50°C)

Anwendungsbedingungen (Umgebungsbedingungen)

- · Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostendem Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostendem Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Bemessung der Verankerungen:

- Es sind prüfbare Berechnungen und Konstruktionszeichnungen für die betreffende Last anzufertigen, welche vom Dübel übertragen werden soll. Auf den Konstruktionszeichnungen ist die Lage des Dübels anzugeben.
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerung und des Betonbaus erfahrenen Ingenieurs.
- · Die Bemessung der Verankerungen unter statischen und quasi-statischen Lasten erfolgt nach EN 1992-4

Beton Bedingungen:

- I1 Einbau in trockenem oder nassem (wassergesättigtem) Beton, Verwendung in trockenem oder feuchtem Beton
- 12 Einbau in wassergefüllte Bohrlöcher (kein Meerwasser), Verwendung in trockenem oder feuchtem Beton.

Installation:

- Bohrlochherstellung durch Hammer- oder Pressluftbohren
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Einbaurichtung:

D3 - Einbau nach unten, horizontal und nach oben (z.B. Überkopf).

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Verwendungszweck Bedingungen	Anhang B 1

Tabelle B1: Montagekennwerte für Gewindestange									
Dübelgröße				М 8	M 10	M 12	M 16	M 20	M 24
Durchmesser Gewindestange	Э	$d = d_{nom}$	[mm]	8	10	12	16	20	24
Bohrernenndurchmesser		d ₀	[mm]	10	12	14	18	24	28
Emiliar Managhar and Safe		h _{ef,min}	[mm]	60	60	70	80	90	96
Effektive Verankerungstiefe		h _{ef,max}	[mm]	160	200	240	320	400	480
Durchgangsloch im	Vorsteckm	ontage d _f	[mm]	9	12	14	18	22	26
anzuschließenden Bauteil	Durchsteckmontage d _f		[mm]	12	14	16	20	24	30
Maximales Montagedrehmon	nent	T _{inst} ≤	[Nm]	10	20	40	80	120	160
Diaka daa Anhautaila		t _{fix,min} >	[mm]			()		
Dicke des Anbauteils t _{fix}		t _{fix,max} <	[mm]	1500					
Mindestbauteildicke h _{min} [h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀					

50

50

60

60

80

80

100

100

120

120

40

40

Tabelle B2: Montagekennwerte für Betonstahl

Minimaler Achsabstand

Minimaler Randabstand

Größe Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25
Bohrernenndurchmesser	d ₀	[mm]	12	14	16	18	20	25	32
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	60	70	75	80	90	100
Ellektive verafikerungstiele	h _{ef,max}	[mm]	160	200	240	280	320	400	500
Mindestbauteildicke	h _{min}	[mm]	-	30 mm 0 mm	h _{ef} + 2d ₀				
Minimaler Achsabstand	Smin	[mm]	50	55	65	70	80	100	130
Minimaler Randabstand	Cmin	[mm]	50	55	65	70	80	100	130

[mm]

[mm]

Smin

Cmin

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Verwendungszweck Montageparameter	Anhang B 2

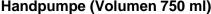
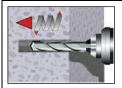

Stahlbürste ERB

Tabelle B3: Parameter Reinigungs- und Setzwerkzeuge

Gewindestange	Betonstahl	d₀ Bohrer - Ø	d _b Bürsten - Ø		d _{b,min} min. Bürsten - Ø
[mm]	[mm]	[mm]	[mm	n]	[mm]
M8		10	ERB10	12	10,5
M10	8	12	ERB12	14	12,5
M12	10	14	ERB14	16	14,5
	12	16	ERB16	18	16,5
M16	14	18	ERB18	20	18,5
	16	20	ERB20	22	20,5
M20		24	ERB24	26	24,5
	20	25	ERB25	27	25,5
M24		28	ERB28	30	28,5
	25	32	ERB32	34	32,5


Handpumpe (Volumen 750 ml)
Bohrernenndurchmesser (d_o): 10 mm bis 20 mm oder Setztiefe bis 240 mm


Druckluft (min 6 bar) Bohrernenndurchmesser (d_o): 10 mm bis 28 mm

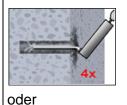
Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Verwendungszweck Reinigung	Anhang B 3

Montageanweisung

1 Bohrloch drehschlagend mit vorgeschriebenem Bohrernenndurchmesser (Tabelle B1 oder B2) und gewählter Bohrlochtiefe erstellen.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt $_{\mbox{\scriptsize 2a}}$ werden.

Das Bohrloch vom Bohrlochgrund her 4x vollständig mit Druckluft (min. 6bar) oder Handpumpe (Anhang B 3) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.


Bohrlöcher bis Durchmesser 20 mm dürfen mit der Handpumpe ausgeblasen werden.

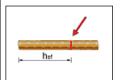
Bohrlöcher ab Durchmesser 20 mm oder Setztiefe ab 240 mm <u>müssen</u> mit min. 6 bar ölfreier Druckluft ausgeblasen werden.

2b Bohrloch mit geeigneter Drahtbürste gem. Tabelle B3 (minimaler Bürstendurchmesser db,min ist einzuhalten und zu überprüfen) 4x mittels eines Akkuschraubers oder Bohrmaschine ausbürsten.

Bei tiefen Bohrlöchern sind Bürstenverlängerung zu verwenden.

2c Anschließend das Bohrloch gem. Anhang 4 erneut vom Bohrlochgrund 4x vollständig mit Druckluft (min. 6 bar) oder Handpumpe (Anhang B 3) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden. Bohrlöcher bis Durchmesser 20 mm dürfen mit der Handpumpe ausgeblasen werden.

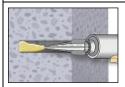
Bohrlöcher ab Durchmesser 20 mm oder Setztiefe ab 240 mm <u>müssen</u> mit min. 6 bar ölfreier Druckluft ausgeblasen werden.

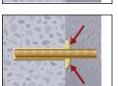


Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen.

3. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei Schlauchfolien Kartuschen: Den Schlauchfolienclip vor der Verwendung abschneiden.

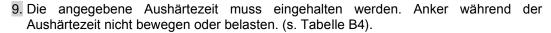
Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B4) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.


4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.


5. Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue oder blau (Easy) Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe. Bei Schlauchfoliengebinden sind min. 6 volle Hübe zu verwerfen.

Injektionssystem für Beton	
Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Verwendungszweck Montageanweisung	Anhang B 4

Montageanweisung (Fortsetzung)



- 6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B4) sind zu beachten.
- 7. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

- 8. Nach Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Setztiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange während der Aushärtung zu fixieren (z.B.Holzkeile).

10. Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment (Tabelle B1) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel festgezogen werden.

Tabelle B4: Verarbeitungs- und Aushärtezeiten

Deten	Tro	pic	Classic	, Easy ¹⁾	Ra	pid
Beton- temperatur	Max. Verar- beitungszeit	Min. Aushärtezeit	Max. Verar- beitungszeit	Min. Aushärtezeit	Max. Verar- beitungszeit	Min. Aushärtezeit
-10 bis -6 °C					60 min	4 h
-5 bis -1 °C			90 min	6 h	45 min	2 h
0 bis +4 °C			45 min	3 h	25 min	80 min
+5 bis +9 °C			25 min	2 h	10 min	45 min
+10 bis +14 °C	30 min	5 h	20 min	100 min	4 min	25 min
+15 bis +19 °C	20 min	210 min	15 min	80 min	3 min	20 min
+20 bis +29 °C	15 min	145 min	6 min	45 min	2 min	15 min
+30 bis +34 °C	10 min	80 min	4 min	25 min		
+35 bis +39 °C	6 min	45 min	2 min	20 min		
+40 bis +44 °C	4 min	25 min				
+45 °C	2 min	20 min				
Kartuschen- temperatur	+5°C bi	s +45°C	+5°C bi	+5°C bis +40°C 0°C bis +30		s +30°C

¹⁾ Der Easy Injektionsmörtel besitzt einen Aushärtezeitkontrolle, indem nach Erreichen der Mindestaushärtezeit die Farbe von blau in grau wechselt. Die Aushärtezeitkontrolle gilt nur für die Standard Version des Mörtels.

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Verwendungszweck Montageanweisung (Fortsetzung) Aushärtezeiten	Anhang B 5

Größ	e			M 8	M 10	M 12	M 16	M 20	M24
Span	nungsquerschnitt	As	[mm ²]	36,6	58	84,3	157	245	353
Char	akteristische Zugtragfähigkeit, Stahlversagen ¹)								
Stahl	, Festigkeitsklasse 4.6 und 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141
Stahl	, Festigkeitsklasse 5.6 und 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176
Stahl	, Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282
Nicht	rostender Stahl A2, A4 und HCR, Festigkeitsklasse 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Nicht	rostender Stahl A2, A4 und HCR, Festigkeitsklasse 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247
Nicht	htrostender Stahl A4 und HCR, Festigkeitsklasse 80 N _{Rk,s} [kN] 29 46 67 126						196	282	
Char	akteristische Zugtragfähigkeit, Widerstandsbeiwert ²⁾								
Stahl	, Festigkeitsklasse 4.6	γ _{Ms,N}	[-]			2	,0		
Stahl	, Festigkeitsklasse 4.8	γ _{Ms,N}	[-]			1	,5		
Stahl	, Festigkeitsklasse 5.6	γ _{Ms,N}	[-]			2	,0		
Stahl	, Festigkeitsklasse 5.8	γMs,N	[-]			1	,5		
	, Festigkeitsklasse 8.8	γMs,N	[-]				,5		
	rostender Stahl A2, A4 und HCR, Festigkeitsklasse 50	γ _{Ms,N}	[-]				86		
	rostender Stahl A2, A4 und HCR, Festigkeitsklasse 70	γMs,N	[-]				87		
	ichtrostender Stahl A4 und HCR, Festigkeitsklasse 80 $\gamma_{Ms,N}$ [-] 1,6						,6		
Char	akteristische Quertragfähigkeit, Stahlversagen 1)		1	1	1		1	1	1
	Stahl, Festigkeitsklasse 4.6 und 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85
Ohne Hebelarm	Stahl, Festigkeitsklasse 5.6 und 5.8	V ⁰ _{Rk,s}	[kN]	11 (10)	17 (16)	25	47	74	106
lebe	Stahl, Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141
nne F	Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88
Ò	Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124
	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141
	Stahl, Festigkeitsklasse 4.6 und 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449
arm	Stahl, Festigkeitsklasse 5.6 und 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560
Hebelarm	Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896
Mit T	Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561
	Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784
	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896
	akteristische Quertragfähigkeit, Widerstandsbeiwert 2)		1	ı					
	, Festigkeitsklasse 4.6	γMs,V	[-]				67		
	, Festigkeitsklasse 4.8	γMs,V	[-]				25		
	, Festigkeitsklasse 5.6	γMs,V γMs,V	[-]				67 25		
	, Festigkeitsklasse 5.8 , Festigkeitsklasse 8.8	γMs,V	[-]				25 25		
	rostender Stahl A2, A4 und HCR, Festigkeitsklasse 50	γMs,V	[-]				38		
	rostender Stahl A2, A4 und HCR, Festigkeitsklasse 70	γMs,V	[-]			•	56		
	rostender Stahl A4 und HCR, Festigkeitsklasse 80	γ _{Ms,V}	[-]				33		
G	erte sind nur gültig für den hier angegebenen Spannungsquer ewindestange mit geringerem Spannungsquerschnitt As für fe ofern andere nationalen Regelungen fehlen		Die Werte						
	jektionssystem für Beton								
Εi	ırotec Injektionsmörtel Classic, Easy, Rap	id, Trop	ic						

Dübelgröße Gewindes	tangen			M 8	M 10	M 12	M 16	M 20	M 24		
Stahlversagen					l .				ı		
Charakteristische Zugtra	gfähigkeit	$N_{Rk,s}$	[kN]		A _s •	f _{uk} (oder sie	he Tabelle (C1)			
Teilsicherheitsbeiwert	0 0	γ _{Ms,N}	[-]		<u> </u>	Siehe Ta					
Kombiniertes Versage	n durch Herausziehen	und Beton	ausbruch								
Charakteristische Verbu	ndtragfähigkeit im unge	rissenen Be	ton C20/25								
	trockener und		[N/mm²]	8,5	8,0	8,0	8,0	8,0	8,0		
Femperaturbereich I: 10°C/24°C	feuchter Beton wassergefülltes	τ _{Rk,ucr}	[N/mm²]	8,5	8,0	8,0	8,0	8,0	8,0		
	Bohrloch trockener und		[N1/mm 2]	0.5	0.0	0.0	0.0	0.0	0.0		
Temperaturbereich II: 80°C/50°C	feuchter Beton wassergefülltes	T _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	6,0	6,0	6,0		
	Bohrloch	τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	6,0	6,0	6,0		
			25/30			1,0					
-rhähungafaktar für una	oriogonon Doton		C30/37 C35/45		1,08 1,13						
Erhöhungsfaktor für ung $\jmath_{ m c}$	erissenen Beton	C40/50				1,					
, 0			245/55								
			550/60		1,19						
Charakteristische Verbu	ndtragfähigkeit im geris	senen Betor	n C20/25								
Temperaturbereich I:	trockener und feuchter Beton	$ au_{Rk,cr}$	[N/mm²]	4,5	4,5	4,5	4,5	NF	PA		
0°C/24°C	wassergefülltes Bohrloch	$ au_{Rk,cr}$	[N/mm²]	4,5	4,5	4,5	4,5	NF	PA		
Temperaturbereich II: 80°C/50°C	trockener und feuchter Beton	T _{Rk,cr}	[N/mm²]	3,5	3,5	3,5	3,5	NF	PA		
	wassergefülltes Bohrloch	$ au_{Rk,cr}$	[N/mm²]	3,5	3,5	3,5	3,5	NF	PA		
		С	25/30		•	1,0	02	•			
		С	C30/37 1				04				
Erhöhungsfaktor für geri	ssenen Beton		35/45	1,06							
Vc			240/50 245/55	1,07							
			250/60	1,08 1,09							
Betonausbruch			700/00			1,0	30				
Ingerissener Beton		l k	[1]			11	0				
gerissener Beton		k _{ucr,N}	[-] [-]			11 7,					
Randabstand		C _{cr,N}	[mm]			1,5					
Achsabstand		S _{cr,N}	[mm]			2 c					
Spalten											
	h/h _{ef} ≥ 2,0					1,0	h _{ef}				
Randabstand	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]			$2 \cdot h_{e\!f} \Biggl(2,$	$5 - \frac{h}{h_{ef}}$				
	h/h _{ef} ≤ 1,3					2,4	0.				
Achsabstand		S _{cr,sp}	[mm]			2 c	cr,sp				
/lontagebeiwert											
für trockenen und feuchten Beton		γinst	[-]			1,					
ür wassergefülltes Bohr	loch	γ_{inst}	[-]			1,	2				
Injektionssyste	m für Beton										
	onsmörtel Class		Desile To	!-							

Dübelgröße Gewindestangen			M 8	M 10	M 12	M 16	M 20	M 24
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8 und 5.6, 5.8	$V^0_{Rk,s}$	[kN]		0,6 •	siehe Tabelle	e C1)		
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Klassen	V ⁰ _{Rk,s}	[kN]	0,5 • A₅ • f _{uk} (oder siehe Tabelle C1)					
Teilsicherheitsbeiwert	γMs,∨	[-]			Siehe Ta	belle C1		
Duktilitätsfaktor	k ₇	[-]			1,	0		
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]		1,2 • \	V _{el} • f _{uk} (oder	siehe Tabell	e C1)	
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			Siehe Ta	belle C1		
Betonausbruch auf der lastabgewandten Se	eite							
Faktor	k ₈	[-]						
Montagebeiwert	γinst	[-]	1,0					
Betonkantenbruch	I							
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 d _{nom})					
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24
Montagebeiwert	γinst	[-]			1,	0	l	

Dübelgröße Stahlbeton				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Stahlversagen										
Charakteristische Zugtrag	fähigkeit	$N_{Rk,s}$	[kN]		$A_s \cdot f_{uk}^{1)}$					
Stahlspannungsquertschr	_	As	[mm ²]	50	79	113	154	201	314	491
Teilsicherheitsbeiwert		γMs,N	[-]				1,4 ²⁾			
Kombiniertes Versage	en durch Herauszie	hen und B	etonausbruc	h						
Charakteristische Verbun	dtragfähigkeit im unge	erissenen Be	ton C20/25							
Temperaturbereich I:	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	7,0	7,0	7,0	7,0	6,5	6,5	6,5
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	7,0	6,5	6,5	6,5
Temperaturbereich II: 80°C/50°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	5,5	5,5	5,5	5,5	5,5	5,0	5,0
80°C/50°C	wassergefülltes Bohrloch	$ au_{Rk,ucr}$	[N/mm²]	5,5	5,5	5,5	5,5	5,5	5,0	5,0
	С	25/30				1,02				
Erhöhungsfaktor für ungerissenen Beton		С	30/37				1,04			
		С	C35/45 1,06							
Ψc			C40/50		1,07					
			C45/55		1,08					
		C	50/60	1,09						
Betonausbruch										
ungerissenen Beton		k _{ucr,N}	[-]				11,0			
Randabstand		C _{cr,N}	[mm]				1,5 h _{ef}			
Achsabstand		S _{cr,N}	[mm]				2 c _{cr,N}			
Spalten										
	h/h _{ef} ≥ 2,0						1,0 h _{ef}			
Randabstand	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{e\!f} \left(2,5 - rac{h}{h_{e\!f}} ight)$						
	h/h _{ef} ≤ 1,3		2,4 h _{ef}							
Achsabstand		S _{cr,sp}	[mm]				2 c _{cr,sp}			
Montagebeiwert										
für trockenen und feuchte	n Beton	γinst	[-]				1,2			
für wassergefülltes Bohrlo	och	γinst	[-]	1,2						

²⁾ Sofern andere nationalen Regelungen fehlen

Injektionssystem für Beton	
Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 4

Dübelgröße Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Stahlversagen ohne Hebelarm									
Charakteristische Quertragfähigkeit	V ⁰ _{Rk,s}	[kN]	0,5 • A _s • f _{uk} ¹⁾						
Stahlspannungsquertschnitt	As	[mm ²]	50 79 113 154 201 314					491	
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5²)						
Duktilitätsfaktor	k ₇	[-]	1,0						
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} ¹)						
Elastisches Widersstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1534
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				1,5 ²⁾			
Betonausbruch auf der lastabgewandte	n Seite								
Faktor	k ₈	[-]				2,0			
Montagebeiwert	γinst	[-]				1,0			
Betonkantenbruch	•	•							
Effektive Dübellänge	I _f	[mm]			min(h _{ef} ;	12 d _{nom})			min(h _{ef} 300mm
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	14	16	20	25
Montagebeiwert	γinst	[-]	1,0						

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic Anhang C 5 Charakteristische Werte der Querzugtragfähigkeit unter statischer und quasi-statischer Belastung

f_{uk} ist den Spezifikationen des Betonstahls zu
 Sofern andere nationalen Regelungen fehlen

Tabelle C6:	Verschi	ebung unter Zug	beanspru	chung ¹⁾ (Gewinde	stange)		
Dübelgröße Gewindest	ange		M 8	M 10	M 12	M 16	M 20	M24
Ungerissenen Beton C	20/25 unter s	statischer und quasi-	statischer E	Belastung				
Temperaturbereich I:	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,08	0,10
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,08	0,08	0,08	0,08	0,10
Temperaturbereich II:	δ_{N0} -factor	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,05
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,17	0,17	0,17	0,17	0,17
Gerissenen Beton C20/	25 unter sta	tischer und quasi-st	atischer Bel	astung				
Temperaturbereich I:	δ_{N0} -factor	[mm/(N/mm²)]	0,07	0,08	0,07	0,08	NF	PA
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,13	0,11	0,11	0,10	NF	PA
Temperaturbereich II:	δ _{N0} -factor	[mm/(N/mm²)]	0,09	0,08	0,07	0,09	NF	PA
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,17	0,14	0,14	0,13	NF	PA

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-faktor} \quad \tau; \quad \text{(τ: einwirkende Verbundspannung unter Zugbelastung)}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-faktor } \cdot \tau;$

Tabelle C7: Verschiebung unter Querbeanspruchung 2) (Gewindestange)

Dübelgröße Gewindestange			М 8	M 10	M 12	M 16	M 20	M24
Ungerissenen Beto	n C20/25 u	nter statischer und	l quasi-statis	cher Belas	stung			
Alle	δ_{V0} -faktor	[mm/kN]	0,02	0,02	0,01	0,01	0,01	0,01
Temperaturbereiche	δ _{V∞} -faktor	[mm/kN]	0,03	0,02	0,02	0,01	0,01	0,01
Gerissenen Beton	C20/25 unte	er statischer und q	uasi-statisch	er Belastu	ng			
Alle	δ _{v0} -factor	[mm/kN]	0,05	0,04	0,03	0,01	NF	PA
Temperaturbereiche	δ _{∨∞} -facto	r [mm/kN]	0,07	0,06	0,04	0,02	NPA	

 $^{1)}$ Berechnung der Verschiebung $_{\delta V0}=\delta _{V0}\text{-faktor }\cdot \text{V};\quad \text{(V: einwirkende Querlast)}$

 $\delta_{V\infty} = \delta_{V\infty}$ -faktor · V;

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Leistungen Verschiebung (Gewindestange)	Anhang C 6

Tabelle C8: Verschiebung unter Zugbeanspruchung 1) (Betonstahl)									
Dübelgröße Betonstahl Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25									
Ungerissenen Beton C20/25 unter statischer und quasi-statischer Belastung									
Temperaturbereich I:	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,06	0,02	0,03	0,05	0,06	0,06
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,08	0,08	0,08	0,08	0,08	0,08	0,08
Temperaturbereich II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,03	0,06	0,02	0,03	0,05	0,06	0,06
	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,15	0,15	0,15	0,15	0,16	0,16	0,16

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -faktor $\cdot \tau$; (τ : einwirkende Verbundspannung unter Zugbelastung)

 $\delta_{N\infty} = \delta_{N\infty}\text{-faktor } \cdot \tau;$

Tabelle C9: Verschiebung unter Querbeanspruchung 2) (Betonstahl)

Dübelgröße Betonstah	I	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Ungerissenen Beton C20/25 unter statischer und quasi-statischer Belastung									
Alle	δ _{V0} -factor	[mm/kN]	0,04	0,04	0,01	0,01	0,01	0,01	0,01
Temperaturbereiche	δ _{V∞} -factor	[mm/kN]	0,05	0,06	0,02	0,02	0,02	0,02	0,02

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -faktor · V; (V: einwirkende Querlast)

 $\delta_{V\infty} = \delta_{V\infty}$ -faktor · V;

Injektionssystem für Beton	
Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Leistungen Verschiebung (Betonstahl)	Anhang C 7

Dübelgröße Gewindesta	ngen			M 8	M 10	M 12	M 16	M 20	M 24
Stahlversagen					1				
Charakteristische Zugtrag	fähigkeit	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk.s}				NPA	
(Leistungskategorie C1) Charakteristische Zugtrag	fähigkeit	TRK,S,eq,C1	[KI4]		1,0	TAKK,S			
(Leistungskategorie Č2) Stahl, Festigkeitsklasse 8 Nichtrostender Stahl A4 u Festigkeitsklasse ≥70	.8	N _{Rk,s,eq,C2}	[kN]	NPA		1,0 • N _{Rk,s}		NPA	
Teilsicherheitsbeiwert Kombiniertes Versage	un durch Harausziah	γ _{Ms,N}	tonausbruc	h		Siehe Ta	belle C1		
					<u> </u>				
Charakteristische Verbund		1	[N/mm²]	2,30	2,25	2 30	2,20	NP	• Δ
Temperaturbereich I: 40°C/24°C	trockener und feuchter Beton und	τ _{Rk,eq,C1}	[N/mm²]		<u>2,25</u> PA	2,30 0,75	0,95	NP NP	
Temperaturbereich II:	wassergefülltes	τ _{Rk,eq,C2} τ _{Rk,eq,C1}	[N/mm²]	1,85	1,80	1,80	1,75	NP	
80°C/50°C	Bohrloch	τ _{Rk,eq,C2}	[N/mm²]		PA	0,60	0,75	NP	
Erhöhungsfaktor für Betor Ψε	ı	C25/30	bis C50/60			1,	0		
ψε Betonausbruch									
ungerissenen Beton		k _{ucr,N}	[-]			11	.0		
gerissenen Beton		k _{cr,N}	[-]			7,			
Randabstand		C _{cr,N}	[mm]			1,5			
Achsabstand		S _{cr,N}	[mm]			2 c	er,N		
Spalten									
	h/h _{ef} ≥ 2,0		-			1,0			
Randabstand	C _{cr,sp} [mm]		$2 \cdot h_{e\!f} \left(2,5 - rac{h}{h_{e\!f}} ight)$						
Achsabstand	h/h _{ef} ≤ 1,3		[mm]			2,4			
		S _{cr,sp}	[mm]			2 c	er,sp		
Montagebeiwert	n Datan	1							
für trockenen und feuchte für wassergefülltes Bohrlo		γinst γinst	[-] [-]			1, 1,			
Injektionssystem Eurotec Injektio Leistungen Charakteristische V	nsmörtel Classi							Anhang	g C 8

Dübelgröße Gewindestangen			M 8	M 10	M 12	M 16	M 20	M 24	
Stahlversagen ohne Hebelarm				1	l	1	<u>'</u>		
Charakteristische Quertragfähigkeit (Leistungskategorie C1)	V ⁰ _{Rk,s,eq,C1}	[kN]		0,7 •	$V^0_{RK,s}$		NP	A	
Charakteristische Quertragfähigkeit (Leistungskategorie C2) Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70	V ⁰ _{Rk,s,eq,C2}	[kN]	N	NPA 0,7 • V ⁰ _{RK,s}					
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			Siehe Ta	abelle C1			
Duktilitätsfaktor	k ₇	[-]			1	,0			
Stahlversagen mit Hebelarm	·								
Charakteristisches Biegemoment	M ⁰ _{Rk,s,eq,C1}	[Nm]		Le	istung nicht	bewertet (NF	PA)		
Charakteristisches Biegemoment	$M^0_{Rk,s,eq,C2}$	[-]		Le	istung nicht	bewertet (NF	PA)		
Betonausbruch auf der lastabgewand	ten Seite								
Faktor	k ₈ [-] 2,0								
Montagebeiwert	γinst	[-]	1,0						
Betonkantenbruch	1								
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 d _{nom})						
Außendurchmesser des Dübels	d _{nom}	[mm]	8 10 12 16 20 24						
Montagebeiwert	γinst	[-]	1,0						
Factor for annular gap	α_{gap}	[-]			0,5 ((1,0) ¹⁾			
der Verwendung der Verfüllschaeibe	gemais Aimang /	NO ISC HOLIW	Siraly.						

D"I I "0 O I I I			14.0	11.40	11.40	11.40	14.00	1404
Dübelgröße Gewindest	ange		M 8	M 10	M 12	M 16	M 20	M24
Gerissenen Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)								
Temperaturbereich I:	δ _{N0} -factor	[mm/(N/mm²)]	0,07	0,08	0,07	0,08	NPA	
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,13	0,11	0,11	0,10	NPA	
Temperaturbereich II:	δ _{N0} -factor	[mm/(N/mm²)]	0,09	0,08	0,07	0,09	NPA	
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,17	0,14	0,14	0,13	NPA	

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -faktor $\cdot \tau$; (τ : einwirkende Verbundspannung unter Zugbelastung)

 $\delta_{N\infty} = \delta_{N\infty}\text{-faktor }\cdot\tau;$

Tabelle C13: Verschiebung unter Querbeanspruchung²⁾ (Gewindestange)

Dübelgröße Gewindest	M 8	M 10	M 12	M 16	M 20	M 20 M24		
Gerissenen Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)								
Alle	δ _{V0} -factor	[mm/kN]	0,05	0,04	0,03	0,01	NP	'A
Temperaturbereiche	δ _{V∞} -factor	[mm/kN]	0,07	0,06	0,04	0,02	NP	'A

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -faktor · V; (V: einwirkende Querlast)

 $\delta_{V\infty} = \delta_{V\infty}$ -faktor · V;

Tabelle C14: Verschiebung unter Zugbeanspruchung (Gewindestange)

Dübelgröße Gewindestange			M 8	M 10	M 12	M 16	M 20	M24
Gerissenen Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C2)								
Alle	δN,eq(DLS)	[mm]	NF	PA	0,23	0,29	NF	PA
Temperaturbereiche	δN,eq(ULS)	[mm]	NF	PA	0,43	0,55	NF	PA

Tabelle C13: Verschiebung unter Querbeanspruchung (Gewindestange)

Dübelgröße Gewindest	M 8	M 10	M 12	M 16	M 20	M24		
Gerissenen Beton C2	oebenbelastung	(Leistung	skategorie	e C2)				
Alle	δv,eq(DLS)	[mm]	NPA		3,6	3,0	NPA	
Temperaturbereiche	δ V,eq(ULS)	[mm]	NF	PA	7,0	6,6	NP	'A

Injektionssystem für Beton Eurotec Injektionsmörtel Classic, Easy, Rapid, Tropic	
Leistungen Verschiebung unter Erdbebenbelastung (Leistungskategorie C1 + C2) (Gewindestange)	Anhang C 10