

# LA NOSTRA GAMMA DI PRODOTTI VITI PER LEGNO





# **INDICE**

| INFORMAZIONI PRINCIPALI                                    |                                                  | ALTRE VITI                                      |          |
|------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|----------|
| Viti per legno per costruzioni                             |                                                  | Hobotec                                         |          |
| in legno personalizzate                                    | 4–5                                              | EcoTec                                          |          |
| La nostra gamma di prodotti                                | 6–7                                              | Vite per costruzioni LBS                        | 177–179  |
| Garanzia di qualità                                        | 8–11                                             | Vite per struttura composita legno-calcestruzzo |          |
| La struttura di una vite per legno                         | 12–13                                            | Vite per serramenti angolari                    | 184–189  |
| Materiali e rivestimenti                                   |                                                  | Vite ad alette per foratura                     |          |
| Distanze minime delle viti                                 |                                                  | Vite distanziale/Mini                           | 194–197  |
|                                                            |                                                  | Justitec                                        |          |
|                                                            |                                                  | OSB Fix                                         |          |
| PANELTWISTEC                                               |                                                  | Vite per ancoraggi da trasporto                 |          |
| Paneltwistec AG                                            | 30–41                                            | Vite per connessione su montanti                |          |
| Paneltwistec blu/gialla zincata                            |                                                  | 1                                               |          |
| Paneltwistec in acciaio inox temprata                      |                                                  |                                                 |          |
| Paneltwistec in acciaio inox A4/A2                         |                                                  | ACCESSORI                                       |          |
| Paneltwistec 1000                                          |                                                  | Limitatore di coppia                            | 204-205  |
| Paneltwistec TK AG Stronghead                              | 78–81                                            | Utensile di avvitamento                         |          |
| Tarion No. of Training Toda Time Training                  |                                                  |                                                 | 20 . 200 |
| BARRA FILETTATA BRUTUS                                     | 82–83                                            | SCAFFALE                                        | 206–207  |
| VITE A FILETTATURA INTERA KONSTRTUX KonstruX ST, zincata   | 88–91<br>92–100<br>101–119<br>120–127<br>128–133 |                                                 |          |
| SAWTEC                                                     | 140–144                                          |                                                 |          |
| VITI PER CASSERATURA  Paneltwistec, in acciaio blu zincata | 145–148<br>149                                   |                                                 |          |
| TOPDUO                                                     | 152–159                                          |                                                 |          |
| VITE PER SISTEMI BLUE POWER                                | 160–165                                          |                                                 |          |

# UNA VASTA GAMMA DI VITI PER LEGNO PER COSTRUZIONI IN LEGNO PERSONALIZZATE

Costruzioni in legno a regola d'arte hanno bisogno di soluzioni di fissaggio pregiate, in grado di soddisfare i requisiti più elevati sia in termini di qualità che di poliedricità. Ed è proprio qui che si delinea tutto il fascino delle viti per legno per progetti personalizzati dalla nostra vastissima gamma. L'ampia scelta di viti ci consente di offrire alla nostra clientela la soluzione ideale per ogni tipo di costruzione in legno – dalla costruzione di complessi edifici a più piani, case in legno, recinzioni, capannoni industriali, rivestimenti di soffitti o tetti.

Una caratteristica straordinaria delle viti per legno Eurotec è la vasta scelta di dimensioni e tipologie di viti, disponibili per diverse applicazioni nell'ambito delle costruzioni in legno. Indipendentemente se avete bisogno di viti per pannelli di truciolato da avvitare con precisione all'interno di pannelli in legno, viti a filettatura intera per un fissaggio potente e sicuro nei componenti oppure di speciali viti per tetti – in questo catalogo troverete la vite adatta al vostro progetto. Sono disponibili anche le viti per legno per casseratura. Le nostre viti si contraddistinguono grazie a diverse particolarità, che ne definiscono potenza e affidabilità. Tra le altre cose è disponibile una vasta gamma di dimensioni, forme della testa, punte della vite o tipologie di filettature. Per soddisfare i singoli requisiti dei progetti nell'ambito delle costruzioni in legno, le viti per legno sono disponibili con diverse varianti di durezza e rivestimenti superficiali.

Un altro aspetto importante è la certificazione ETA, di cui è dotata la maggior parte delle nostre viti. Questa certificazione attesta la conformità delle viti ai più elevati standard europei per i prodotti edilizi e garantisce prestazioni e sicurezza straordinarie.

Garantiamo massima qualità e soluzioni di fissaggio personalizzate per voi e i vostri progetti. Con i nostri prodotti mettiamo a vostra disposizione una vasta gamma affinché le vostre costruzioni siano sicure e stabili e durino a lungo utilizzando le viti per legno necessarie.







# LE NOSTRE POSSIBILITÀ DI PRODUZIONE

Non importa quali siano i vostri requisiti, da noi troverete tutto a portata di mano. La produzione avviene con diverse tecniche, per es. la punzonatura e la piegatura con punzoni, la deformazione a freddo, la pressofusione e la tecnica a estrusione. Le viti di lunghezza fino a 3000 mm sono prodotte da macchine completamente automatizzate.

### POSSIBILITÀ DI PRODUZIONE

- Viti da 40–4000 mm, con un diametro di 3–14 mm
- · Filettatura singola, doppia o ridotta
- · Punte fresate
- · Diversi materiali
- · Diversi rivestimenti
- · Esigenze della clientela personalizzate

#### PROCESSO SUPERFICIALE

Dalla zincatura alla zincatura blu per resistere a lungo in ambienti esposti alle intemperie (C4 – C5).

#### COSCIENZA ECOLOGICA

Nessuno spargimento di olio sul pavimento, nessuna emissione di gas di scarico nell'aria e produzione energetica sul proprio tetto. Il rispetto delle condizioni previste dalla legge e dalle autorità in ambito economico e la promozione di un modo di agire ecocompatibile è un dovere per noi.



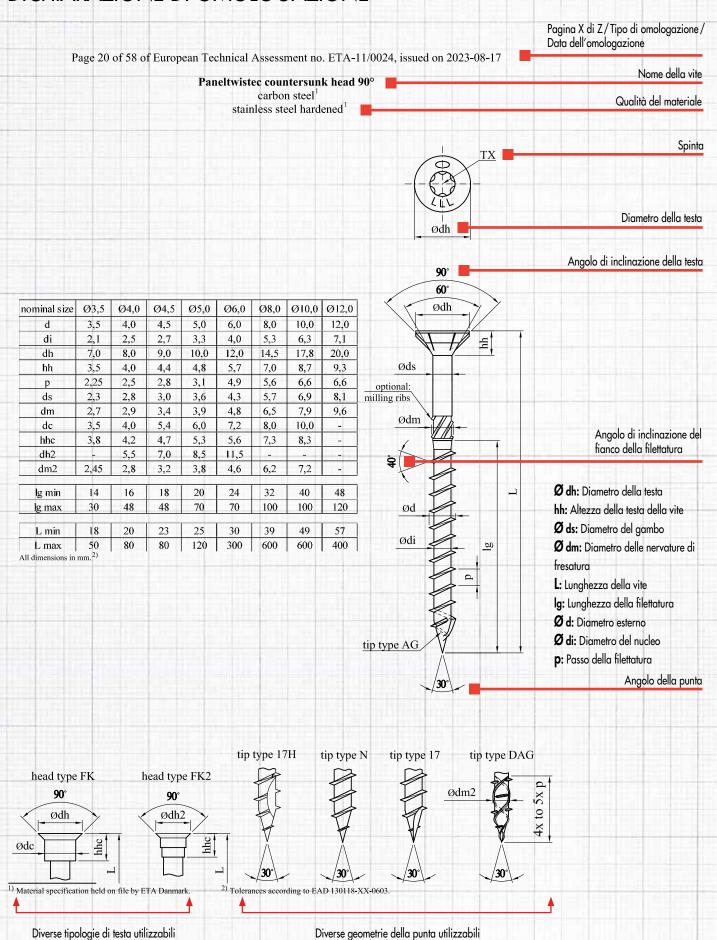




# GARANZIA DI QUALITÀ

La nostra priorità è offrire alla nostra clientela prodotti e prestazioni perfetti e garantire il rispetto dei termini al 100%. Da ogni singolo nostro collaboratore ci aspettiamo una propensione illimitata alla qualità. La formazione e l'aggiornamento delle esigenze della nostra clientela orientate alla qualità sono al primo posto. Il rispetto delle condizioni previste dalla legge e dalle autorità in ambito economico promuovendo un modo di agire ecocompatibile è un dovere per noi.

Siamo dunque orgogliosi di aver ottenuto la certificazione ETA per quasi tutti i nostri prodotti nel settore del legno, delle facciate e del calcestruzzo. Naturalmente il nostro reparto qualità verifica ogni giorno che i lotti prodotti rispondano a standard quali conformità al disegno, funzionalità, aspetto esteriore e rispetto delle disposizioni specifiche della clientela.


Solo in questo modo possiamo essere sicuri di offrire alla nostra clientela una qualità costantemente elevata, la stessa alla quale li abbiamo abituati.

LA QUALITÀ È ALLA BASE DI TUTTE LE NOSTRE ATTIVITÀ.





### DICHIARAZIONE DI OMOLOGAZIONE



### **CERTIFICAZIONI**

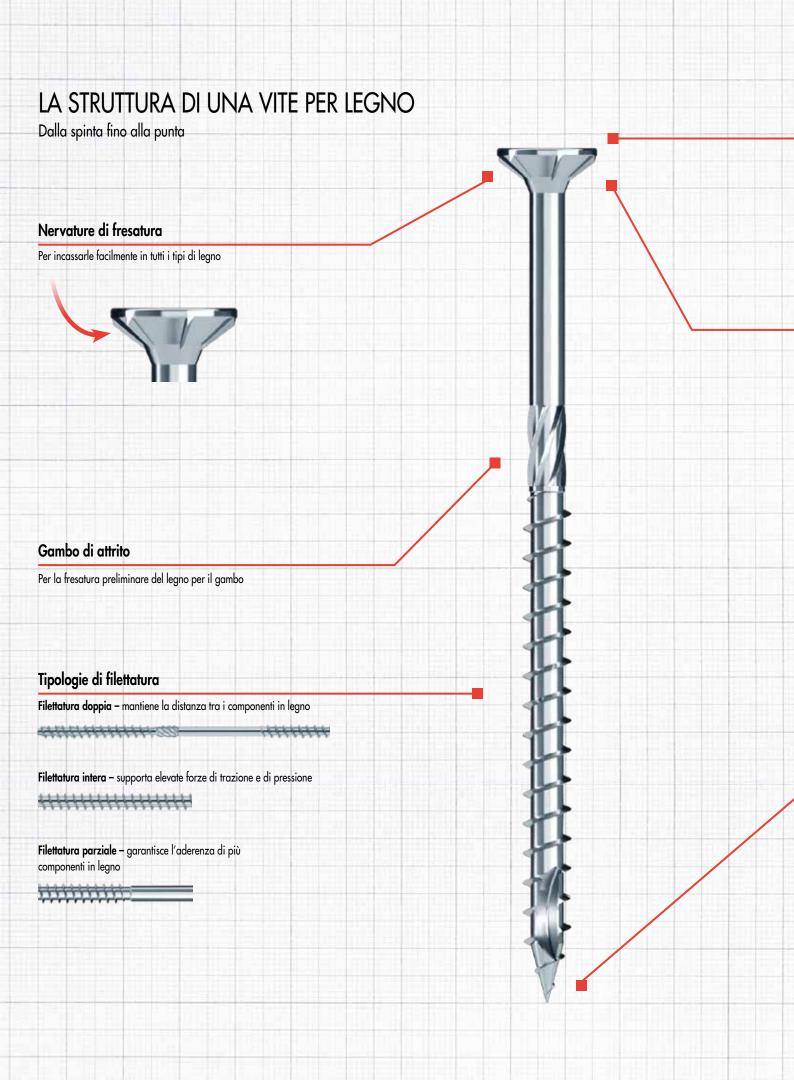
La Valutazione Tecnica Europea oppure ETA (in inglese European Technical Assessment) è una dimostrazione delle prestazioni di un prodotto, che gli consentono di ottenere il marchio CE e l'immissione sul mercato di prodotti in tutto lo Spazio Economico Europeo, in Svizzera e in Turchia. Spesso anche a livello globale.

Per ogni prodotto da costruzione, che non è coperto affatto oppure non è completamente coperto da una norma armonizzata, è possibile richiedere l'ETA. Rispetto alla norma armonizzata l'ETA è specifica del prodotto. Inoltre, all'interno dell'ETA si possono documentare anche caratteristiche relative alle prestazioni, che mancano nelle norme armonizzate già esistenti.

Contrariamente all'omologazione nazionale la maggiore portata che l'ETA ha nello spazio è più vantaggiosa. Tuttavia, in caso di certificazione ETA bisogna sempre compensare tra la prestazione comprovata e i requisiti dei fabbricati a livello nazionale.

### ETA-11/0024 – Viti per costruzioni in legno portanti

Viti a filettatura intera e parziale per le applicazioni legno-legno e acciaio-legno, fissaggio di sistemi di isolamento delle travi, ripiegature della trave, attacchi supporto principale/supporto secondario, rinforzi per la trazione e la pressione trasversale, ecc. in legno di conifera (legname da taglio, legno massiccio per costruzioni, legno lamellare, legno lamellare incrociato (CLT), legno lamellare impiallacciato), legno lamellare impiallacciato di faggio e diversi altri derivati del legno.




### ETA-16/0864 – Viti per strutture composite legno-calcestruzzo

Le viti per strutture composite legno-calcestruzzo TCC-II 7,3 e TCC-II 9 sono speciali viti a filettatura parziale, utilizzate per unire e rendere allo stesso tempo pieghevoli le strutture portanti delle piastre in calcestruzzo e le strutture portanti in legno provenienti da travi o pannelli. Le viti per strutture composite sono utilizzate per il risanamento delle coperture di travi in legno e la costruzione di strutture portanti ibride legno-calcestruzzo.







### Spinta TX



- · La vite non si pianta durante l'avvitamento
- · Elevata trasmissione della coppia

#### Forme della testa

#### Testa svasata



- · Scompare all'interno del legno
- · Va a filo con la superficie

#### Testa piatta



 Aumenta la superficie di appoggio, consentendo maggiori valori di resistenza di perforazione della testa

#### Testa decorativa



- · Testa piccola, che non si nota
- · Ideale per avvitamenti visibili

#### Testa cilindrica



- Scompare all'interno del legno
- La testa non si nota per le viti a filettatura doppia e le viti a filettatura intera

#### Testa esagonale



 Buona trasmissione della forza anche con elevata forza di serraggio

#### Punte della vite

#### Scanalatura autopulente



- Avvitamento rapido e semplice
- AG



- · Coppia di avvitamento ridotta
- · Effetto di fessurazione ridotto

#### DAG



- · Coppia di avvitamento ridotta
- · Effetto di fessurazione ridotto
- · La vite attecchisce meglio

#### Punta di foratura



- Coppia di avvitamentoridotta
- · Non è necessario preforare



### MATERIALI E RIVESTIMENTI

#### Panoramica

Eurotec utilizza materiali e rivestimenti superficiali di elevata qualità per garantire lunga durata e resistenza alla corrosione. Queste caratteristiche rivestono un'importanza decisiva, poiché prolungano la durata degli elementi di fissaggio e ne migliorano le prestazioni in diversi ambiti di utilizzo – per strutture composite durature di progetti di costruzione in legno fino a casi di applicazione all'interno delle industrie.



#### Acciaio al carbonio temprato + galvanico, zincato blu/giallo

- · Utilizzabile nelle classi 1 e 2 a norma DIN EN 1995 (Eurocode 5)
- · Buona resistenza alle sollecitazioni meccaniche
- · Non adatto per legni concianti



#### Acciaio al carbonio temprato + rivestimento speciale 1000 o Acciaio al carbonio indurito, rivestimento nero

- Utilizzabile nelle classi 1 e 2 a norma DIN EN 1995 (Eurocode 5)
- · Resiste fino a 1000 ore nel test in nebbia salina a norma DIN EN ISO 9227 NSS
- · Categoria di corrosività C4 lunga/C5-M lunga a norma DIN EN ISO 12944-6
- · Buona resistenza alle sollecitazioni meccaniche
- · Non adatto per legni concianti



#### Acciaio inox temprato

- · Acciaio inossidabile a norma DIN 10088 (magnetizzabile)
- Accidio inossidabile a norma DIN 10088 (magnetizzabile)
- Resistenza agli acidi limitata
- 10 anni di esperienza senza problemi di corrosione nei legni adatti
- · 50% in più di coppia di rottura rispetto ad A2 e A4
- · Utilizzabile nella classe 1, 2 e 3
- Non adatto per legni estremamente concianti quali cumarú, rovere, merbau, robinia, ecc.
- · Non adatto per atmosfere contenenti sale o cloro



#### Acciaio inox A2

- · Limitatamente adatto per atmosfere contenenti sale
- Resistenza agli acidi limitata
- · Non adatto per atmosfere contenenti cloro
- · Utilizzabile nella classe 1, 2 e 3
- · Limitatamente adatto per legni estremamente concianti



#### Acciaio inox A4

- · Adatto per legni concianti
- · Adatto per atmosfere contenenti sale
- · Resistente agli acidi
- · Utilizzabile nella classe 1, 2 e 3
- · Non adatto per atmosfere contenenti cloro







### SISTEMI DI RIVESTIMENTO PRATICI PER VITI PER LEGNO

La durata stimata della resistenza delle viti per legno nelle costruzioni per legno a fronte di un uso conforme è di 50 anni. Per le costruzioni progettate per una durata di utilizzo inferiore oppure per i componenti che si possono sostituire, in caso di utilizzo di rivestimenti alternativi, sono disponibili le categorie aggiuntive T3 (15) e C4 (15) per una durata prevista di 15 anni.

Per stabilire quando quale vite è quella giusta, i fattori da considerare sono tanti.

Il primo fattore è la classe di utilizzo, che descrive quale umidità del legno (umidità di compensazione) deve avere un componente in legno per un periodo più lungo in una determinata condizione ambientale (agenti atmosferici esterni, ambienti interni asciutti, ecc.).

#### CLASSI DI UTILIZZO



Il secondo fattore è la categoria C, che descrive la corrosività causata da diverse condizioni ambientali atmosferiche (città, campagna, industria, prossimità alla costa, ecc.). Per gli acciai inox si applicano le classi CRC (classi di resistenza alla corrosione) al posto della categoria C.

#### CATEGORIA C



Il terzo fattore è la categoria T, che descrive la corrosione causata dal legno (tipo di legno, trattamento con mezzi di protezione, ecc.).

#### CATEGORIA T





#### CLASSI DI UTILIZZO – A NORMA EUROCODE 5 EN 1995-1-1:2010-12

Le classi di utilizzo (NKL) indicano lo stato del componente in legno all'interno di una costruzione in riferimento alla sua possibile umidità oppure indicano quale umidità di compensazione si può creare all'interno del componente in legno nello stato in cui si trova su un periodo più lungo. L'umidità di compensazione prevista viene determinata da umidità dell'aria relativa, temperatura e durata dell'azione.

In base all'acciaio da cui è composta la vite (acciaio al carbonio rivestito oppure acciaio inox) una vite per legno si può utilizzare all'interno di costruzioni portanti solo nelle classi di utilizzo 1 – 2 oppure in tutte le tre classi di utilizzo. Nella maggior parte dei casi indichiamo la classe NKL 1 – 2, che significa che la vite si può utilizzare nelle prime classi di utilizzo, oppure la classe NKL 1 – 3, che significa che si possono utilizzare tutte le tre classi di utilizzo.

Con l'ausilio della tabella seguente potrete stabilire la classe di utilizzo corretta in base ai fattori indicati e scegliere così la vite giusta per ogni situazione.

| Classe di utilizzo | Luogo                       | Umidità dell'aria         |     | Umidità del legno |             |
|--------------------|-----------------------------|---------------------------|-----|-------------------|-------------|
|                    |                             | Media annuale Valore max. |     | Media annuale     | Valore max. |
| NKL 1              | Interno                     | 50%                       | 65% | 10%               | 12%         |
| NKL 2              | Esterno, struttura protetta | 75%                       | 85% | 16%               | 20%         |
| NKL 3              | Esterno senza protezione    | 85%                       | 95% | 18%               | 24%         |

#### CATEGORIE C – A NORMA DIN EN 14592:2022

La categoria C descrive la categoria di corrosione atmosferica per le viti con rivestimento zincato, rivestimento zincato a caldo e rivestimenti alternativi. Pertanto, è decisiva per quella parte della vite che non viene avvitata nel legno. Nella maggior parte dei casi si tratta della testa della vite. L'azione di corrosione dell'atmosfera dipende dall'umidità dell'aria relativa, dall'inquinamento dell'aria, dal contenuto di cloruro (contenuto di sale nell'aria) e dal fatto se la struttura composita è esposta alle intemperie o meno. Con l'ausilio della tabella seguente potrete stabilire la categoria C corretta in base ai fattori indicati e scegliere così la vite giusta per ogni situazione.

| Cate      | goria di atmosfere | Clima / Umidità dell'aria                                                    | Esposizione al cloruro                                                                                    |                                                     | Esposizione alle sostanze nocive                             |                                                     |
|-----------|--------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
|           |                    |                                                                              | Ambiente tipico                                                                                           | Velocità di separazione dei<br>cloruri [mg/m² x d]¹ | Ambiente tipico                                              | Grado di inquinamento -<br>Contenuto di SO2 [µg/m³] |
| Cl        | irrisorio          | Asciutto/umidità dell'aria minima                                            | Regioni molto lontane dalla linea costiera                                                                | ~ 0                                                 | Ambienti riscaldati                                          | ~0                                                  |
| <b>C2</b> | minimo             | Moderato/rara formazione di condensa                                         | > 10 km dalla linea costiera                                                                              | ≤3                                                  | Zone di campagna con inquina-<br>mento minimo, piccole città | <5                                                  |
| C3        | moderato           | Moderato/formazione di condensa occasionale                                  | 10 km — 3 km dalla linea costiera                                                                         | 3 – 60                                              | Città e zone industriali modera-<br>tamente inquinate        | 5 – 30                                              |
| <b>C4</b> | forte              | Moderato/formazione di condensa frequente                                    | $3\ km - 0,25\ km$ dalla linea costiera (senza nebulizzazione)                                            | 60 – 300                                            | Città e zone industriali fortemen-<br>te inquinate           | 30 – 90                                             |
| C5        | Molto forte        | Moderato, subtropicale/formazione di condensa con un'alta freguenza costante | < 0,25 km dalla linea costiera, nebulizzazione occasiona-<br>le, alta frequenza di formazione di condensa | 300 – 1500                                          | Ambiente con inquinamento industriale molto elevato          | 90 – 250                                            |

18

#### CATEGORIE CRC A NORMA DIN EN 1993-1-4:2015-10

La categoria CRC descrive la classe di resistenza alla corrosione atmosferica per l'acciaio inox. Pertanto, è decisiva per quella parte della vite che non viene avvitata nel legno. Nella maggior parte dei casi si tratta della testa della vite. Si basa sul fattore di resistenza alla corrosione CRF, che descrive il rischio di esposizione e, di conseguenza, la distanza rispetto alla linea costiera in base al livello di cloruro nell'atmosfera.

Oltre alla categoria CRC, le nostre viti in acciaio inox hanno ottenuto la categoria C, il che consente un confronto diretto tra le viti in acciaio inox e le viti rivestite. In questo caso si deve tener conto del valore C solo considerando il contenuto di cloruro. Dato che i nostri acciai inox si possono classificare nelle categorie CRC II e CRC III, ve le spiegheremo nella tabella seguente.

| Classe di resistenza alla corrosione CRC | Classe di resistenza alla corrosione CRC | Rischio di esposizione | Distanza dal mare |
|------------------------------------------|------------------------------------------|------------------------|-------------------|
| CRCI                                     | 1                                        | Ambienti interni       |                   |
| CRCII                                    | da 0 a -7                                | da bassa ad alta       | > 0,25 km         |
| CRC III                                  | da -7 a -15                              | da alta a molto alta   | ≤ 0,25 km         |
| CRC IV                                   | da -15 a -20                             | molto alta             | ≤ 0,25 km         |
| CRC V                                    | < - 20                                   | molto alta             | ≤ 0,25 km         |

#### ATMOSFERA DA PISCINA COPERTA

Il cloro nell'atmosfera in presenza di metalli può causare corrosione dovuta a cricche di tensione. Per evitare questo rischio, i componenti portanti devono essere solo ed esclusivamente in acciaio inox. Quale categoria CRC è quella giusta in base alla situazione lo si evince dalla tabella seguente:

| Componenti portanti in atmosfera da piscina coperta                       | Classe CRC necessaria |
|---------------------------------------------------------------------------|-----------------------|
| Componenti portanti, che vengono puliti regolarmente 1)                   | CRC III, CRC IV       |
| Componenti portanti, che non vengono puliti regolarmente                  | CRC V                 |
| Tutti gli elementi di fissaggio, di collegamento e i componenti filettati | CRC V                 |

<sup>1)</sup> Più frequente è la pulizia, maggiore è la durata. L'intervallo di tempo tra gli interventi di pulizia non deve essere maggiore di una settimana. Un piano di pulizia e controllo preciso deve essere sempre verificato da un esperto in base alla situazione. Una volta stabilita la data della pulizia, questa deve essere effettuata per tutti i componenti del fabbricato e non solo per quelli facilmente accessibili e ben visibili.

#### CATEGORIE T A NORMA DIN EN 14592:2022

La categoria T descrive la corrosione causata dal legno. Riguarda solo quella parte della vite che viene inserita all'interno del legno. L'azione corrosiva del legno dipende dall'umidità, dal tipo di legno, dal valore pH e dal trattamento con il mezzo di protezione. Le classi T vengono assegnate in base al valore di umidità più vicino alle classi di utilizzo. Nella maggior parte delle zone climatiche il tenore di umidità annuale medio nel legno dolce non supera i seguenti valori:

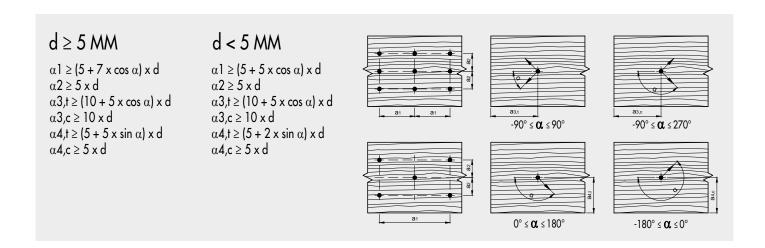
 $\omega = 10\%$  in zone riscaldate  $\rightarrow$  T1 è da attribuire alla classe di utilizzo 1

 $\omega = 16\%$  in zone non riscaldate, la cui struttura è protetta  $\rightarrow$  T2 è da attribuire alla classe di utilizzo 2

 $\omega = 20\%$  in zone esposte alle piogge, ma che non sono a contatto con i terreni  $\rightarrow$  T3 e T4 sono da attribuire alla classe di utilizzo 3

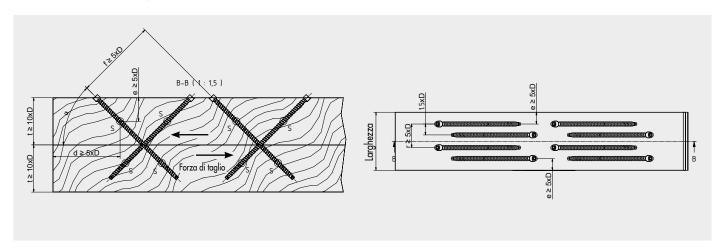
 $\omega$  > 20% T5 si applica a tutte le altre strutture, che sono da attribuire alla classe di utilizzo 3

La tabella seguente consente di determinare, in base ai fattori indicati, la categoria T adatta e, di conseguenza, scegliere la vite giusta per ogni situazione.


| Categoria del legno | Tenore di umidità annuale medio | Tipi di legno in base al valore pH | Esempi di tipi di legno                                 | Trattamento con mezzo di protezione |
|---------------------|---------------------------------|------------------------------------|---------------------------------------------------------|-------------------------------------|
| TI                  | ω < 10%                         | tutti                              | tutti                                                   | non trattato e trattato             |
| T2                  | $10 \le \omega \le 16\%$        | tutti                              | tutti                                                   | non trattato e trattato             |
| T3                  | 16 < ω ≤ 20%                    | pH > 4                             | Larice, pino, betulla, abete rosso, abete               | non trattato                        |
| T4                  | $16<\omega\leq 20\%$            | pH ≤ 4                             | rovere, castagno, cedro rosso, abete di Douglas, faggio | non trattato e trattato             |
| T5                  | sempreω > 20%                   | tutti                              | tutti                                                   | non trattato e trattato             |

### DISTANZE MINIME DELLE VITI

Le distanze minime delle viti contribuiscono a distribuire uniformemente il carico e impediscono che le viti siano posizionate troppo vicine le une alle altre, il che potrebbe compromettere l'integrità strutturale. Queste regole si possono stabilire per diversi standard costruttivi, normative edilizie o direttive edilizie. Il rispetto di queste regole riduce rischi, quali rotture, anomalie o deformazioni inaspettate, rendendo così la struttura edilizia più sicura e affidabile.


#### REGOLE PER LE DISTANZE MINIME PER LE SOLLECITAZIONI DI TAGLIO

Distanze minime e distanze dai bordi delle viti per carichi di taglio e carichi assiali. Le distanze minime di seguito indicate, a norma EN 1995-1-1, si riferiscono a viti non preforate con un carico laterale e con un diametro nominale ben definito per strutture composite legno-legno, per le quali il legno ha uno spessore caratteristico max. di 420 kg/m³. Nelle formule seguenti  $\alpha$  è l'angolo tra la forza e la direzione della fibra di legno. Nelle strutture composite di acciaio e legno le distanze minime  $\alpha_1$  e  $\alpha_2$  si possono ridurre di un fattore di moltiplicazione di 0,7.



#### REGOLE PER LE DISTANZE MINIME PER I CARICHI ASSIALI

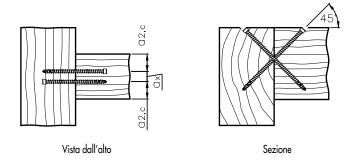
Solo per le viti Eurotec con carico assiale in fori preforati e per le viti con punta di foratura (tipo KonstruX ST) si applicano a norma ETA-11/0024 le seguenti distanze minime tenendo conto di uno spessore minimo del materiale t = 10 · d e di una larghezza minima w = max (8 · d; 60 mm). La distanza tra le viti a croce deve essere pari almeno a 1,5 d.



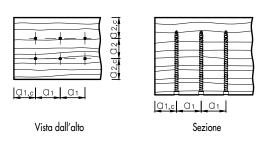
### DISTANZE MINIME PER I CARICHI DI TAGLIO IN FORI PREFORATI

|          |    |      |    |      | $\alpha = 0$ , attacco l | egno-legno  |     |    |     |      |     |
|----------|----|------|----|------|--------------------------|-------------|-----|----|-----|------|-----|
| Diametro | 3  | 3,5  | 4  | 4,5  | 5                        | 6           | 6,5 | 8  | 10  | 11,3 | 13  |
| al       | 15 | 17,5 | 20 | 22,5 | 25                       | 30          | 33  | 40 | 50  | 57   | 65  |
| α2       | 9  | 10,5 | 12 | 13,5 | 15                       | 18          | 20  | 24 | 30  | 34   | 39  |
| a3,t     | 36 | 42   | 48 | 54   | 60                       | 72          | 78  | 96 | 120 | 136  | 156 |
| a3,c     | 21 | 24,5 | 28 | 31,5 | 35                       | 42          | 46  | 56 | 70  | 79   | 91  |
| a4,t     | 9  | 10,5 | 12 | 13,5 | 15                       | 18          | 20  | 24 | 30  | 34   | 39  |
| a4,c     | 9  | 10,5 | 12 | 13,5 | 15                       | 18          | 20  | 24 | 30  | 34   | 39  |
|          |    |      |    |      |                          |             |     |    |     |      |     |
|          |    |      |    | (    | $\alpha = 90$ , attacco  | legno-legno |     |    |     |      |     |
| Diametro | 3  | 3,5  | 4  | 4,5  | 5                        | 6           | 6,5 | 8  | 10  | 11,3 | 13  |
| al       | 12 | 14   | 16 | 18   | 20                       | 24          | 26  | 32 | 40  | 45   | 52  |
| α2       | 12 | 14   | 16 | 18   | 20                       | 24          | 26  | 32 | 40  | 45   | 52  |
| a3,t     | 21 | 24,5 | 28 | 31,5 | 35                       | 42          | 46  | 56 | 70  | 79   | 91  |
| a3,c     | 21 | 24,5 | 28 | 31,5 | 35                       | 42          | 46  | 56 | 70  | 79   | 91  |
| a4,t     | 15 | 17,5 | 20 | 22,5 | 35                       | 42          | 46  | 56 | 70  | 79   | 91  |
| a4,c     | •  | 10.5 | 10 | 19.5 | 15                       | 18          | 20  | 24 | 30  | 34   | 39  |
| u4,t     | 9  | 10,5 | 12 | 13,5 | 13                       | 10          | 20  | 24 | 30  | 34   | 37  |

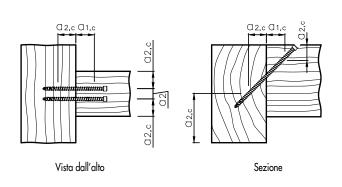
### DISTANZE MINIME PER I CARICHI DI TAGLIO <u>SENZA</u> FORI PREFORATI


|                               |    |      |    |      | $\alpha = 0$ , attacco  | legno-legno |     |     |     |      |     |
|-------------------------------|----|------|----|------|-------------------------|-------------|-----|-----|-----|------|-----|
| Diametro                      | 3  | 3,5  | 4  | 4,5  | 5                       | 6           | 6,5 | 8   | 10  | 11,3 | 13  |
| $\mathfrak{a}_{l}$            | 30 | 35   | 40 | 45   | 60                      | 72          | 78  | 96  | 120 | 136  | 156 |
| $\mathfrak{a}_2$              | 15 | 17,5 | 20 | 22,5 | 25                      | 30          | 33  | 40  | 50  | 57   | 65  |
| <b>a</b> <sub>3,t</sub>       | 45 | 52,5 | 60 | 67,5 | 75                      | 90          | 98  | 120 | 150 | 170  | 195 |
| <b>a</b> <sub>3,c</sub>       | 30 | 35   | 40 | 45   | 50                      | 60          | 65  | 80  | 100 | 113  | 130 |
| $\mathfrak{a}_{4,t}$          | 15 | 17,5 | 20 | 22,5 | 25                      | 30          | 33  | 40  | 50  | 57   | 65  |
| α <sub>4,c</sub>              | 15 | 17,5 | 20 | 22,5 | 25                      | 30          | 33  | 40  | 50  | 57   | 65  |
|                               |    |      |    |      |                         |             |     |     |     |      |     |
|                               |    |      |    |      | $\alpha = 90$ , attacco | legno-legno |     |     |     |      |     |
| Diametro                      | 3  | 3,5  | 4  | 4,5  | 5                       | 6           | 6,5 | 8   | 10  | 11,3 | 13  |
| $\mathfrak{a}_{\mathfrak{l}}$ | 15 | 17,5 | 20 | 22,5 | 25                      | 30          | 33  | 40  | 50  | 57   | 65  |
| a <sub>2</sub>                | 15 | 17,5 | 20 | 22,5 | 25                      | 30          | 33  | 40  | 50  | 57   | 65  |
| <b>a</b> <sub>3,t</sub>       | 30 | 35   | 40 | 45   | 50                      | 60          | 65  | 80  | 100 | 113  | 130 |
| α <sub>3,c</sub>              | 30 | 35   | 40 | 45   | 50                      | 60          | 65  | 80  | 100 | 113  | 130 |
| <b>a</b> <sub>4,t</sub>       | 21 | 24,5 | 28 | 31,5 | 50                      | 60          | 65  | 80  | 100 | 113  | 130 |
| <b>Q</b> <sub>4</sub> ,       | 15 | 17,5 | 20 | 22,5 | 25                      | 30          | 33  | 40  | 50  | 57   | 65  |

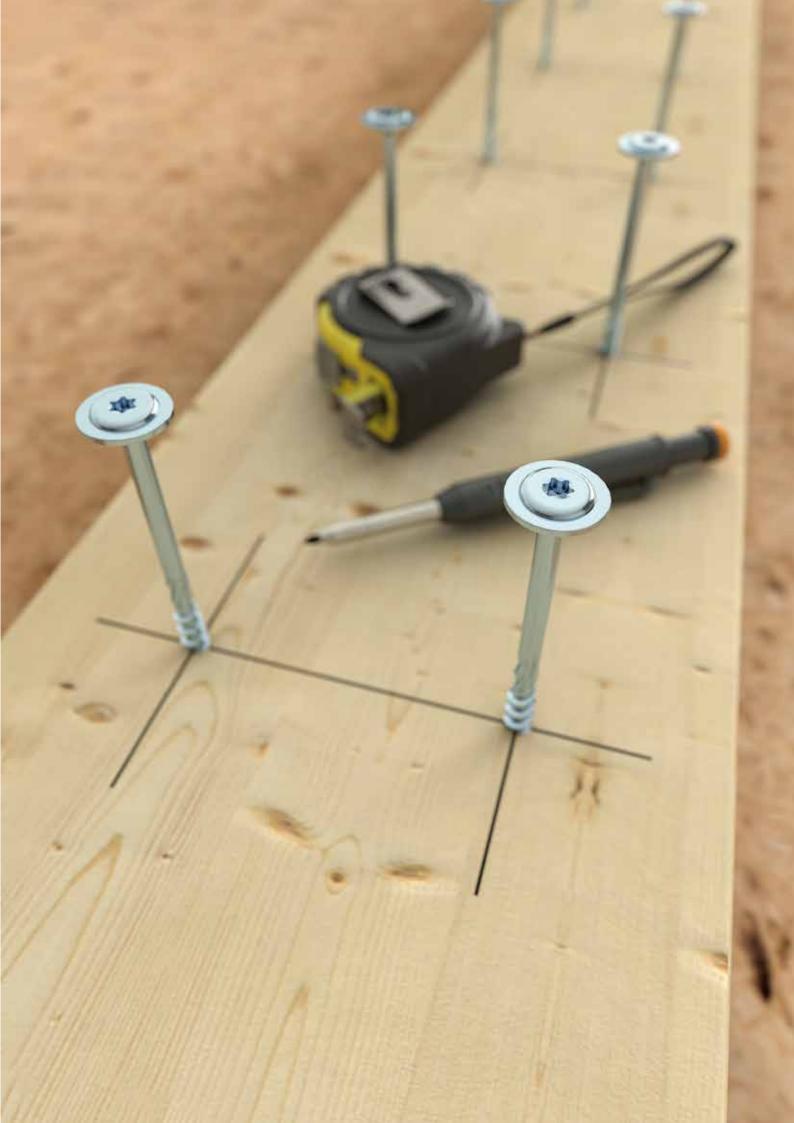
Nota: Per un attacco acciaio-legno basta solo moltiplicare i valori per 0,7.


#### DISTANZE MINIME PER I CARICHI ASSIALI

|                              | Punta di foratura          |     |    |                         |                       | Punta AG |    |                       |      |     |  |
|------------------------------|----------------------------|-----|----|-------------------------|-----------------------|----------|----|-----------------------|------|-----|--|
|                              | Con e senza fori preforati |     |    | Fori preforati Senza fo |                       |          |    | enza fori preforat    | i    |     |  |
| Ø [mm]                       | Regole di<br>distanza      | 6,5 | 8  | 10                      | Regole di<br>distanza | 11,3     | 13 | Regole di<br>distanza | 11,3 | 13  |  |
| $\mathfrak{a}_1$             | 5 · d                      | 33  | 40 | 50                      | 5 · d                 | 57       | 65 | 5 · d                 | 57   | 65  |  |
| $\mathfrak{a}_2$             | 5 · d                      | 33  | 40 | 50                      | 5 · d                 | 57       | 65 | 5 · d                 | 57   | 65  |  |
| $\mathbf{q}_{2\mathrm{red}}$ | 2,5 · d                    | 16  | 20 | 25                      | 2,5 · d               | 29       | 33 | 2,5 · d               | 29   | 33  |  |
| $\mathfrak{a}_{l,c}$         | 5 · d                      | 33  | 40 | 50                      | 5 · d                 | 57       | 65 | 5 · d                 | 113  | 130 |  |
| <b>a</b> <sub>2,c</sub>      | $3\cdot d$                 | 20  | 24 | 30                      | $3\cdot d$            | 34       | 39 | $3\cdot d$            | 46   | 52  |  |
| $\mathfrak{a}_{\mathrm{lx}}$ | 1,5 · d                    | 10  | 12 | 15                      | 1,5 · d               | 17       | 20 | 1,5 · d               | 17   | 20  |  |


#### VITI DISPOSTE A CROCE CON CARICO ALLA TRAZIONE




# VITI POSIZIONATE IN VERTICALE RISPETTO ALLA VENATURA DEL LEGNO

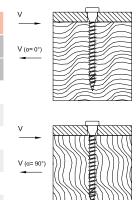


#### VITI IN DIAGONALE RISPETTO ALLA DIREZIONE DELLE VENATURE DEL LEGNO CON CARICO ALLA TRAZIONE POSIZIONATE A UN ANGOLO lpha







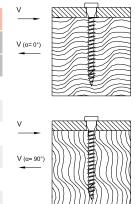

### CASI PARTICOLARI

#### CHIODI DI ANCORAGGIO

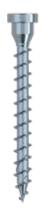


| ST                             | Chiodi | $\alpha = 0^{\circ}$ |               |  |    |
|--------------------------------|--------|----------------------|---------------|--|----|
| ρ <b>k</b> ≤ <b>420 kg/m</b> ³ | Pref   | orato                | Non preforato |  |    |
| ρκ ≤ 420 kg/III <sup>2</sup>   | x d    | 4                    | x d           |  | 4  |
| aı                             | 3,5    | 14                   | 7             |  | 28 |
| $\mathfrak{a}_2$               | 2,1    | 9                    | 3,5           |  | 14 |
| a <sub>3,t</sub>               | 12     | 48                   | 15            |  | 60 |
| <b>a</b> <sub>3,c</sub>        | 7      | 7 28                 |               |  | 40 |
| a <sub>4,t</sub>               | 3 12   |                      | 5             |  | 20 |
| <b>a</b> <sub>4,c</sub>        | 3      | 12                   | 5             |  | 20 |

| ST                                    | Chiodi | di ancoragg | io            | α = <b>90°</b> |  |
|---------------------------------------|--------|-------------|---------------|----------------|--|
| ale < 400 len/m³                      | Prefe  | orato       | Non preforato |                |  |
| $\rho$ k $\leq$ 420 kg/m <sup>3</sup> | x d    | 4           | х             | 4              |  |
| aı                                    | 2,8    | 11          | 3,5           | 14             |  |
| $\mathfrak{a}_2$                      | 2,8    | 11          | 3,5           | 14             |  |
| <b>a</b> <sub>3,t</sub>               | 7      | 28          | 10            | 40             |  |
| <b>a</b> <sub>3,c</sub>               | 7      | 28          | 10            | 40             |  |
| a <sub>4,t</sub>                      | 5      | 20          | 7             | 28             |  |
| $\mathfrak{a}_{4,\mathfrak{c}}$       | 3      | 12          | 5             | 20             |  |

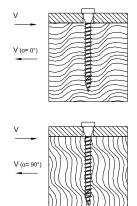



#### VITE PER SERRAMENTI ANGOLARI




| ST                                    | WBS   |       |               | $\alpha = 0^{\circ}$ |  |
|---------------------------------------|-------|-------|---------------|----------------------|--|
| ale < 420 lea /m³                     | Prefe | orato | Non preforato |                      |  |
| $\rho$ k $\leq$ 420 kg/m <sup>3</sup> | x d   | 5     | x d           | 5                    |  |
| $\mathfrak{a}_{\mathfrak{l}}$         | 3,5   | 18    | 8,4           | 42                   |  |
| a <sub>2</sub>                        | 2,1   | 11    | 3,5           | 18                   |  |
| <b>a</b> <sub>3,†</sub>               | 12    | 60    | 15            | 75                   |  |
| <b>a</b> <sub>3,c</sub>               | 7     | 35    | 10            | 50                   |  |
| <b>Q</b> <sub>4,†</sub>               | 3     | 15    | 5             | 25                   |  |
| <b>a</b> <sub>4,c</sub>               | 3     | 15    | 5             | 25                   |  |

| 67                                    |      | Wine  |     |                       | 000    |  |  |
|---------------------------------------|------|-------|-----|-----------------------|--------|--|--|
| ST                                    |      | WBS   |     | $\alpha = 90^{\circ}$ |        |  |  |
| ale < 420 len /m³                     | Pref | orato | No  | n pre                 | forato |  |  |
| $\rho$ k $\leq$ 420 kg/m <sup>3</sup> | x d  | 5     | х   | ł                     | 5      |  |  |
| $\mathfrak{a}_{\mathfrak{l}}$         | 2,8  | 14    | 3,5 |                       | 18     |  |  |
| a <sub>2</sub>                        | 2,8  | 14    | 3,5 |                       | 18     |  |  |
| $\mathfrak{a}_{3,t}$                  | 7    | 35    | 10  |                       | 50     |  |  |
| <b>a</b> <sub>3,c</sub>               | 7    | 35    | 10  |                       | 50     |  |  |
| <b>a</b> <sub>4,t</sub>               | 7    | 35    | 10  |                       | 50     |  |  |
| a <sub>4,c</sub>                      | 3    | 15    | 5   |                       | 25     |  |  |

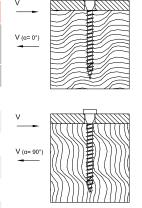


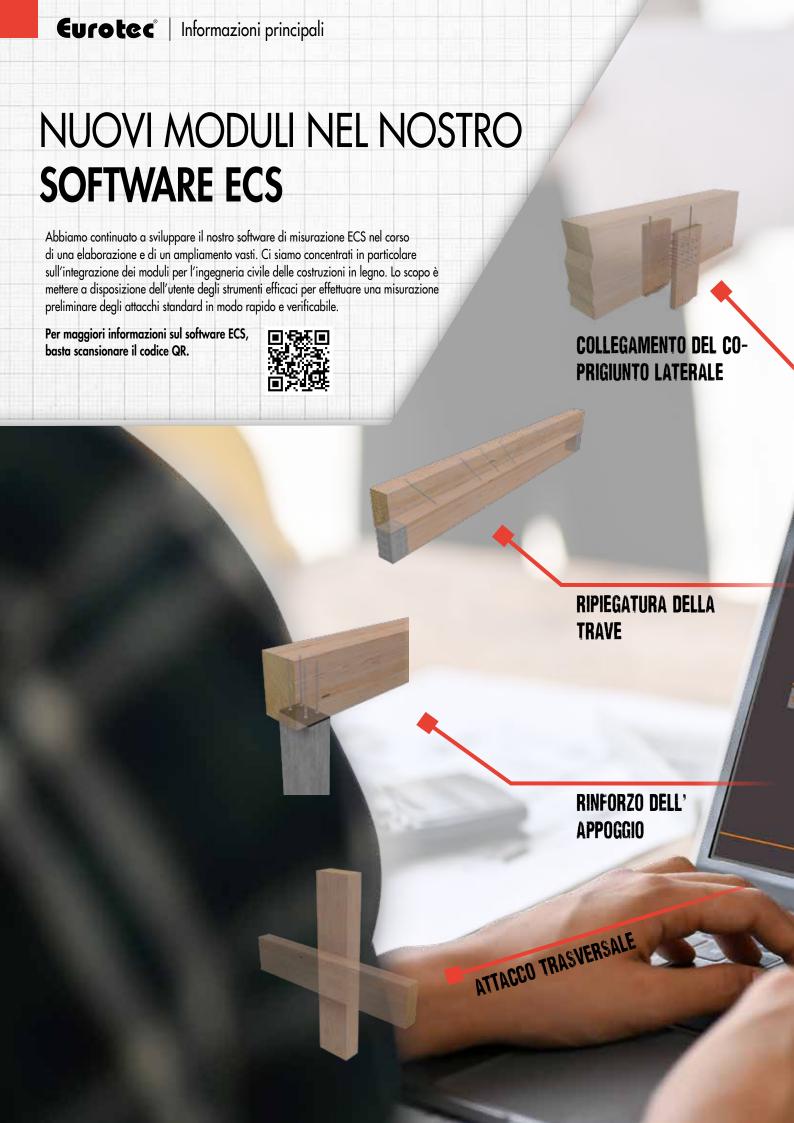

#### VITE PER SERRAMENTI ANGOLARI STRONG

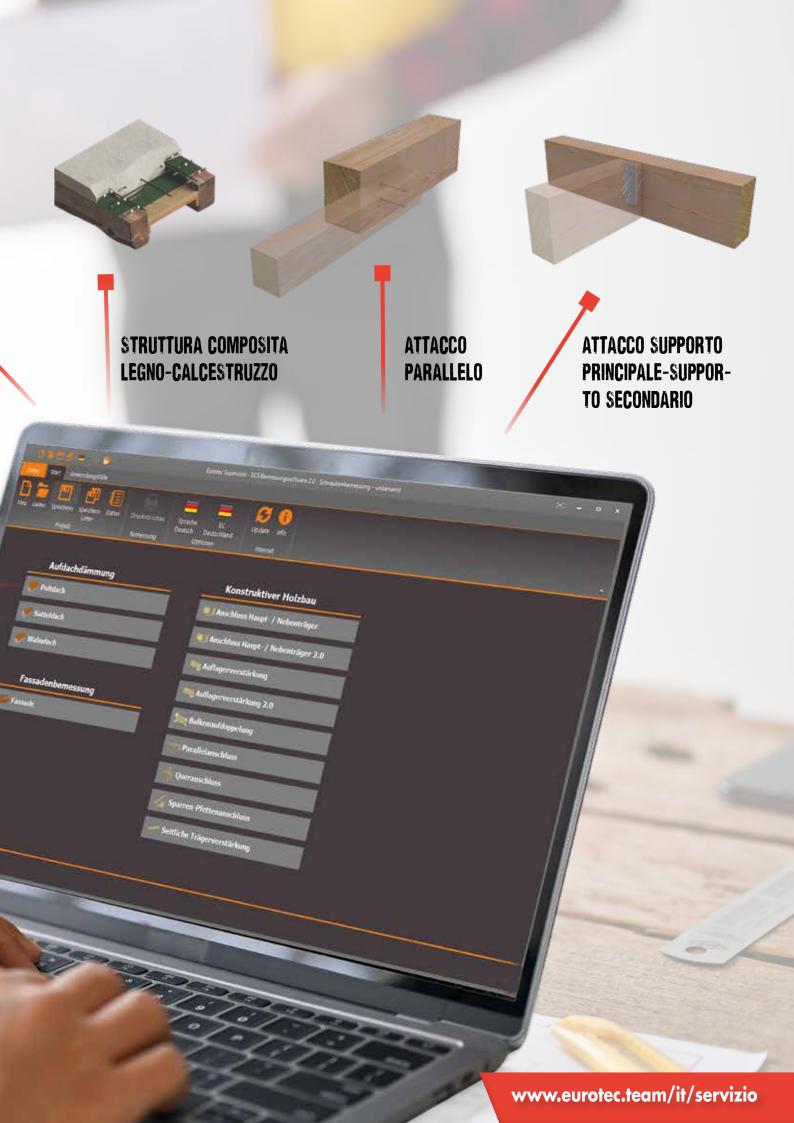


| ST                                    |     | WBS     | $\alpha = 0^{\circ}$ |     |          |           |  |  |
|---------------------------------------|-----|---------|----------------------|-----|----------|-----------|--|--|
| - l 400 l. /3                         | P   | reforat | 0                    | Nor | n prefor | preforato |  |  |
| $\rho$ k $\leq$ 420 kg/m <sup>3</sup> | x d | 8       | 10                   | x d | 8        | 10        |  |  |
| aı                                    | 3,5 | 28      | 35                   | 8,4 | 67       | 84        |  |  |
| $\mathfrak{a}_2$                      | 2,1 | 17      | 21                   | 3,5 | 28       | 35        |  |  |
| a <sub>3,t</sub>                      | 12  | 96      | 120                  | 15  | 120      | 150       |  |  |
| <b>a</b> <sub>3,c</sub>               | 7   | 56      | 70                   | 10  | 80       | 100       |  |  |
| <b>a</b> <sub>4,t</sub>               | 3   | 24      | 30                   | 5   | 40       | 50        |  |  |
| <b>a</b> <sub>4,c</sub>               | 3   | 24      | 30                   | 5   | 40       | 50        |  |  |

| ST                                    |     | WBS S   | α = <b>90°</b> |               |    |     |  |
|---------------------------------------|-----|---------|----------------|---------------|----|-----|--|
| - l 400 l. /3                         | P   | reforat | 0              | Non preforato |    |     |  |
| $\rho$ k $\leq$ 420 kg/m <sup>3</sup> | x d | 8       | 10             | x d           | 8  | 10  |  |
| aı                                    | 2,8 | 22      | 28             | 3,5           | 28 | 35  |  |
| $\mathfrak{a}_2$                      | 2,8 | 22      | 28             | 3,5           | 28 | 35  |  |
| <b>a</b> <sub>3,t</sub>               | 7   | 56      | 70             | 10            | 80 | 100 |  |
| <b>a</b> <sub>3,c</sub>               | 7   | 56      | 70             | 10            | 80 | 100 |  |
| <b>a</b> <sub>4,†</sub>               | 7   | 56      | 70             | 10            | 80 | 100 |  |
| <b>a</b> <sub>4,c</sub>               | 3   | 24      | 30             | 5             | 40 | 50  |  |



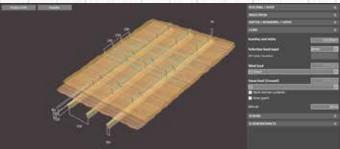


#### VITE PER SERRAMENTI ANGOLARI ZK HARDWOOD



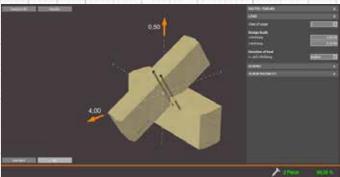

| ST                      |      | WBS ZK I | $\alpha = 0^{\circ}$ |                |                                |     |  |
|-------------------------|------|----------|----------------------|----------------|--------------------------------|-----|--|
| ρ <b>k</b>              | Pref | orato    |                      | eforato<br>420 | Non preforato $\rho k \le 500$ |     |  |
| [ kg/m <sup>3</sup> ]   | x d  | 5,6      | x d                  | 5,6            | x d                            | 5,6 |  |
| aı                      | 3,5  | 20       | 8,4                  | 47             | 10,5                           | 59  |  |
| $\mathfrak{a}_2$        | 2,1  | 12       | 3,5                  | 20             | 4,9                            | 27  |  |
| <b>a</b> <sub>3,t</sub> | 12   | 67       | 15                   | 84             | 20                             | 112 |  |
| <b>a</b> <sub>3,c</sub> | 7    | 39       | 10                   | 56             | 15                             | 84  |  |
| <b>a</b> <sub>4,t</sub> | 3    | 17       | 5                    | 28             | 7                              | 39  |  |
| <b>a</b> <sub>4,c</sub> | 3    | 17       | 5                    | 28             | 7                              | 39  |  |

| ST                      |     | WBS ZK H | α = <b>90°</b> |                |                                                                        |     |  |
|-------------------------|-----|----------|----------------|----------------|------------------------------------------------------------------------|-----|--|
| ρ <b>k</b>              |     | orato    |                | eforato<br>420 | $\begin{array}{c} \text{Non preforato} \\ \rho k \leq 500 \end{array}$ |     |  |
| [ kg/m³]                | x d | 5,6      | x d            | 5,6            | x d                                                                    | 5,6 |  |
| aı                      | 2,8 | 16       | 3,5            | 20             | 4,9                                                                    | 27  |  |
| a <sub>2</sub>          | 2,8 | 16       | 3,5            | 20             | 4,9                                                                    | 27  |  |
| <b>a</b> <sub>3,t</sub> | 7   | 39       | 10             | 56             | 15                                                                     | 84  |  |
| <b>a</b> <sub>3,c</sub> | 7   | 39       | 10             | 56             | 15                                                                     | 84  |  |
| <b>a</b> <sub>4,t</sub> | 7   | 39       | 10             | 56             | 12                                                                     | 67  |  |
| <b>a</b> <sub>4,c</sub> | 3   | 17       | 5              | 28             | 7                                                                      | 39  |  |

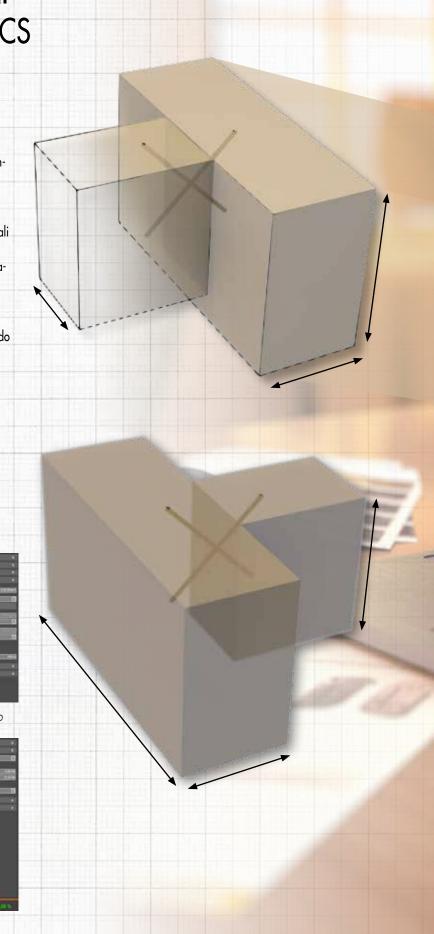








# MAGGIORI INFORMAZIONI SUL NOSTRO SOFTWARE ECS

Il software ECS è un software gratuito e facile da usare per la misurazione preliminare delle viti per legno Eurotec. I moduli comprendono collegamenti fra strutture portanti principali e secondarie, rinforzi con trazione e pressione trasversale, collegamenti fra il travetto inclinato e l'arcareccio, fissaggi di sistemi di isolamento a tetto e sulla facciata nonché numerose altre funzioni.

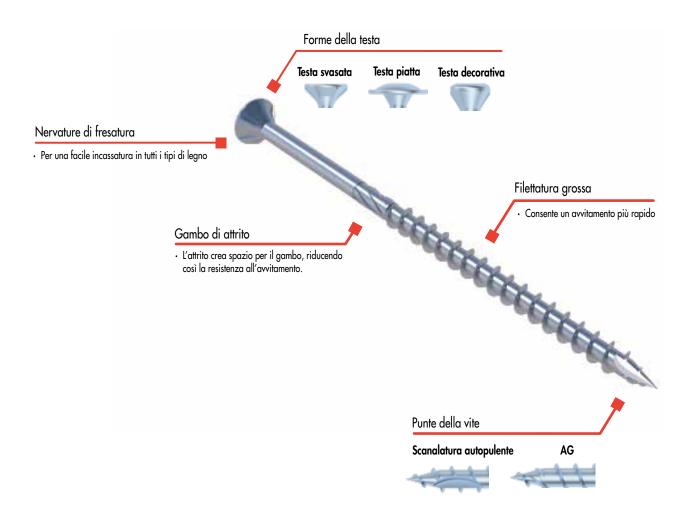

- → Il programma offre la possibilità di adattare completamente le vostre applicazioni di collegamento, modificando parametri quali geometrie, tipo di materiale (per es. BSH e legno massiccio in diverse classi di resistenza), dimensione del carico (carichi variabili e permanenti), classe di sollecitazione e molto altro in base alle vostre esigenze.
- Inoltre, consente di ottimizzare le soluzioni di fissaggio adattando il diametro e la lunghezza della vite e verificando il fattore di resistenza, che viene visualizzato nell'angolo in basso a destra dello schermo.
- Una volta scelta la soluzione di collegamento avete a disposizione un report di calcolo a norma ETA-11/0024 ed EN 1995 (Eurocode 5), compresi i relativi disegni in formato PDF.



Modulo per il fissaggio di materiali isolanti su travetto inclinato con Topduo

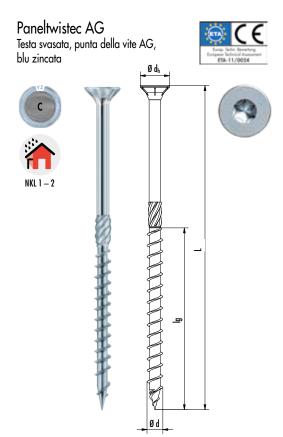


Modulo per il collegamento di travetto inclinato e arcareccio con Paneltwistec e KonstruX



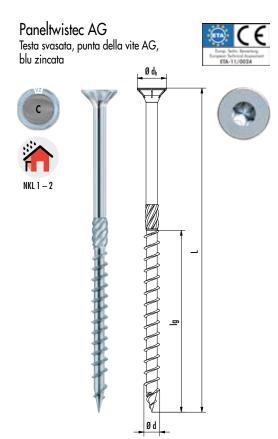



### **PANELTWISTEC**




Paneltwistec è una vite per legno dotata di punta speciale e nervature di fresatura sopra la filettatura. L'incisione di taglio sulla punta della vite garantisce una presa rapida e un effetto di fessurazione ridotto in fase di avvitamento. Paneltwistec AG, invece, è dotata di un passo della filettatura ribaltato, che riduce la resistenza all'avvitamento. Le viti per legno Paneltwistec sono disponibili nella variante a testa svasata, con testa decorativa e a testa piatta, in acciaio al carbonio rivestito e in numerosi acciai inox.






# PANELTWISTEC AG, TESTA SVASATA



|                        | w 15 3     |          | # H F 3      |          |                  | 2 / /       |
|------------------------|------------|----------|--------------|----------|------------------|-------------|
| N. art.                | Ø d [mm]   | L[mm]    | Ø dh [mm]    | lg [mm]  | Spinta           | Pz./conf.   |
| 945436                 | 3,5        | 30       | 7,0          | 18       | TX15 •           | 1000        |
| 945838                 | 3,5        | 35       | 7,0          | 21       | TX15 •           | 1000        |
| 945437                 | 3,5        | 40       | 7,0          | 24       | TX15 •           | 1000<br>500 |
| 945490<br>945491       | 3,5        | 50<br>30 | 7,0<br>8,0   | 30<br>18 | TX15 ●<br>TX20 ● | 1000        |
| 945836                 | 4,0<br>4,0 | 35       | 8,0          | 21       | TX20 •           | 1000        |
| 945492                 | 4,0        | 40       | 8,0          | 24       | TX20 •           | 1000        |
| 945493                 | 4,0        | 45       | 8,0          | 27       | TX20 •           | 500         |
| 945494                 | 4,0        | 50       | 8,0          | 30       | TX20 •           | 500         |
| 945495                 | 4,0        | 60       | 8,0          | 36       | TX20 •           | 200         |
| 945496                 | 4,0        | 70       | 8,0          | 42       | TX20 •           | 200         |
| 945497                 | 4,0        | 80       | 8,0          | 48       | TX20 •           | 200         |
| 945498                 | 4,5        | 40       | 9,0          | 24       | TX25 •           | 500         |
| 945588                 | 4,5        | 45       | 9,0          | 27       | TX25 •           | 500         |
| 945499                 | 4,5        | 50       | 9,0          | 30       | TX25 •           | 500         |
| 945567                 | 4,5        | 60       | 9,0          | 36       | TX25 •           | 200         |
| 945568                 | 4,5        | 70       | 9,0          | 42       | TX25 •           | 200         |
| 945569                 | 4,5        | 80       | 9,0          | 48       | TX25 •           | 200         |
| 945574                 | 5,0        | 40       | 10,0         | 24       | TX25 •           | 200         |
| 945574-TX40*           | 5,0        | 40       | 9,5          | 24       | TX40 •           | 200         |
| 945837                 | 5,0        | 45       | 10,0         | 27       | TX25 •           | 200         |
| 945575                 | 5,0        | 50       | 10,0         | 30       | TX25 •           | 200         |
| 945575-TX40*           | 5,0        | 50       | 9,5          | 30       | TX40 •           | 200         |
| 945576                 | 5,0        | 60       | 10,0         | 36       | TX25 •           | 200         |
| 945576-TX40*           | 5,0        | 60       | 9,5          | 36       | TX40 •           | 200         |
| 945577<br>945577-TX40* | 5,0        | 70       | 10,0         | 42       | TX25 •           | 200         |
| 945578                 | 5,0        | 70<br>80 | 9,5          | 42<br>48 | TX40 •           | 200<br>200  |
| 945578-TX40*           | 5,0<br>5,0 | 80       | 10,0<br>9,5  | 48       | TX25 ●<br>TX40 ● | 200         |
| 945579                 | 5,0        | 90       | 10,0         | 54       | TX25 •           | 200         |
| 945579-TX40*           | 5,0        | 90       | 9,5          | 54       | TX40 •           | 200         |
| 945580                 | 5,0        | 100      | 10,0         | 60       | TX25 •           | 200         |
| 945580-TX40*           | 5,0        | 100      | 9,5          | 60       | TX40 •           | 200         |
| 945581                 | 5,0        | 120      | 10,0         | 70       | TX25 •           | 200         |
| 945600                 | 5,0        | 50       | 10,0         | 30       | TX30 •           | 200°        |
| 945601                 | 5,0        | 60       | 10,0         | 36       | TX30 •           | 200°        |
| 945602                 | 5,0        | 70       | 10,0         | 42       | TX30 •           | 200°        |
| 945603                 | 5,0        | 80       | 10,0         | 48       | TX30 •           | 200°        |
| 945604                 | 5,0        | 90       | 10,0         | 54       | TX30 •           | 200*        |
| 945605                 | 5,0        | 100      | 10,0         | 60       | TX30 •           | 200*        |
| 945607                 | 5,0        | 120      | 10,0         | 70       | TX30 •           | 200*        |
| 945581-TX40*           | 5,0        | 120      | 9,5          | 70       | TX40 •           | 200         |
| 945583                 | 6,0        | 60       | 12,0         | 36       | TX30 •           | 200         |
| 945584                 | 6,0        | 70       | 12,0         | 42       | TX30 •           | 200         |
| 945632<br>945633       | 6,0<br>6,0 | 80<br>90 | 12,0<br>12,0 | 48<br>54 | TX30 •           | 200<br>100  |
| 945634                 |            | 100      | 12,0         | 60       | TX30 ●<br>TX30 ● | 100         |
| 945635                 | 6,0<br>6,0 | 110      | 12,0         | 70       | TX30 •           | 100         |
| 945636                 | 6,0        | 120      | 12,0         | 70       | TX30 •           | 100         |
| 945637                 | 6,0        | 130      | 12,0         | 70       | TX30 •           | 100         |
| 945638                 | 6,0        | 140      | 12,0         | 70       | TX30 •           | 100         |
| 945639                 | 6,0        | 150      | 12,0         | 70       | TX30 •           | 100         |
| 945640                 | 6,0        | 160      | 12,0         | 70       | TX30 •           | 100         |
| 945641                 | 6,0        | 180      | 12,0         | 70       | TX30 •           | 100         |
| 945642                 | 6,0        | 200      | 12,0         | 70       | TX30 •           | 100         |
| 945643                 | 6,0        | 220      | 12,0         | 70       | TX30 •           | 100         |
| 945644                 | 6,0        | 240      | 12,0         | 70       | TX30 •           | 100         |
| 945645                 | 6,0        | 260      | 12,0         | 70       | TX30 •           | 100         |
| 945646                 | 6,0        | 280      | 12,0         | 70       | TX30 •           | 100         |
| 945647                 | 6,0        | 300      | 12,0         | 70       | TX30 •           | 100         |

 $<sup>^{</sup>st}$  La testa può differire dall'immagine



| N. art.          | Ø d [mm]     | L[mm]      | Ø dh [mm]    | lg [mm]  | Spinta           | Pz./conf. |
|------------------|--------------|------------|--------------|----------|------------------|-----------|
| 945630-TX40*     | 6,0          | 60         | 12,0         | 36       | TX40 •           | 200       |
| 945631-TX40*     | 6,0          | 70         | 12,0         | 42       | TX40 •           | 200       |
| 945632-TX40*     | 6,0          | 80         | 12,0         | 48       | TX40 •           | 200       |
| 945633-TX40*     | 6,0          | 90         | 12,0         | 54       | TX40 •           | 200       |
| 945634-TX40*     | 6,0          | 100        | 12,0         | 60       | TX40 •           | 100       |
| 945636-TX40*     | 6,0          | 120        | 12,0         | 70       | TX40 •           | 100       |
| 945638-TX40*     | 6,0          | 140        | 12,0         | 70       | TX40 •           | 100       |
| 945640-TX40*     | 6,0          | 160        | 12,0         | 70       | TX40 •           | 100       |
| 945641-TX40*     | 6,0          | 180        | 12,0         | 70       | TX40 •           | 100       |
| 945642-TX40*     | 6,0          | 200        | 12,0         | 70       | TX40 •           | 100       |
| 945643-TX40*     | 6,0          | 220        | 12,0         | 70       | TX40 •           | 100       |
| 945644-TX40*     | 6,0          | 240        | 12,0         | 70       | TX40 •           | 100       |
| 945645-TX40*     | 6,0          | 260        | 12,0         | 70       | TX40 •           | 100       |
| 945646-TX40*     | 6,0          | 280        | 12,0         | 70       | TX40 •           | 100       |
| 945647-TX40*     | 6,0          | 300        | 12,0         | 70       | TX40 •           | 100       |
| 945648           | 6,0          | 320        | 12,0         | 70       | TX30 •           | 100       |
| 945649           | 6,0          | 340        | 12,0         | 70       | TX30 •           | 100       |
| 945650           | 6,0          | 360        | 12,0         | 70       | TX30 •           | 100       |
| 945651           | 6,0          | 380        | 12,0         | 70       | TX30 •           | 100       |
| 945652<br>944715 | 6,0          | 400<br>80  | 12,0         | 70<br>48 | TX30 •           | 100<br>50 |
| 944716           | 8,0<br>8,0   | 100        | 14,5<br>14,5 | 60       | TX40 ●<br>TX40 ● | 50        |
| 944717           | 8,0          | 120        | 14,5         | 66       | TX40 •           | 50        |
| 944718           | 8,0          | 140        | 14,5         | 95       | TX40 •           | 50        |
| 944719           | 8,0          | 160        | 14,5         | 95       | TX40 •           | 50        |
| 944720           | 8,0          | 180        | 14,5         | 95       | TX40 •           | 50        |
| 944721           | 8,0          | 200        | 14,5         | 95       | TX40 •           | 50        |
| 944722           | 8,0          | 220        | 14,5         | 95       | TX40 •           | 50        |
| 944723           | 8,0          | 240        | 14,5         | 95       | TX40 •           | 50        |
| 944724           | 8,0          | 260        | 14,5         | 95       | TX40 •           | 50        |
| 944725           | 8,0          | 280        | 14,5         | 95       | TX40 •           | 50        |
| 944726           | 8,0          | 300        | 14,5         | 95       | TX40 •           | 50        |
| 944727           | 8,0          | 320        | 14,5         | 95       | TX40 •           | 50        |
| 944728           | 8,0          | 340        | 14,5         | 95       | TX40 •           | 50        |
| 944729           | 8,0          | 360        | 14,5         | 95       | TX40 •           | 50        |
| 944730           | 8,0          | 380        | 14,5         | 95       | TX40 •           | 50        |
| 944731           | 8,0          | 400        | 14,5         | 95       | TX40 •           | 50        |
| 944732           | 8,0          | 420        | 14,5         | 95       | TX40 •           | 50        |
| 944733           | 8,0          | 440        | 14,5         | 95       | TX40 •           | 50        |
| 944734           | 8,0          | 460        | 14,5         | 95       | TX40 •           | 25        |
| 944735           | 8,0          | 480        | 14,5         | 95       | TX40 •           | 25        |
| 944736           | 8,0          | 500        | 14,5         | 95       | TX40 •           | 25        |
| 944737           | 8,0          | 550        | 14,5         | 95       | TX40 •           | 25        |
| 944739           | 8,0          | 600        | 14,5         | 95       | TX40 •           | 25        |
| 945687           | 10,0         | 100        | 17,8         | 60       | TX50 ●           | 50        |
| 945688           | 10,0         | 120        | 17,8         | 70       | TX50 ●           | 50        |
| 945689<br>945690 | 10,0<br>10,0 | 140<br>160 | 17,8         | 80<br>90 | TX50 ◆           | 50<br>50  |
| 945691           | 10,0         | 180        | 17,8<br>17,8 | 100      | TX50 ◆           | 50        |
| 945692           | 10,0         | 200        | 17,8         | 100      | TX50 ●<br>TX50 ● | 50        |
| 945693           | 10,0         | 220        | 17,8         | 100      | TX50 ◆           | 50        |
| 945694           | 10,0         | 240        | 17,8         | 100      | TX50 ◆           | 50        |
| 945695           | 10,0         | 260        | 17,8         | 100      | TX50 ◆           | 50        |
| 945696           | 10,0         | 280        | 17,8         | 100      | TX50 ◆           | 50        |
| 945697           | 10,0         | 300        | 17,8         | 100      | TX50 ◆           | 50        |
| 945698           | 10,0         | 320        | 17,8         | 100      | TX50 ●           | 50        |
| 945699           | 10,0         | 340        | 17,8         | 100      | TX50 ●           | 50        |
| 945703           | 10,0         | 360        | 17,8         | 100      | TX50 ●           | 50        |
| 945709           | 10,0         | 380        | 17,8         | 100      | TX50 ●           | 50        |
| 945711           | 10,0         | 400        | 17,8         | 100      | TX50 ●           | 50        |
| 100036           | 10,0         | 420        | 17,8         | 100      | TX50 ●           | 25        |
| 100037           | 10,0         | 440        | 17,8         | 100      | TX50 ●           | 25        |
| 100038           | 10,0         | 460        | 17,8         | 100      | TX50 ●           | 25        |
| 100039           | 10,0         | 480        | 17,8         | 100      | TX50 ●           | 25        |
| 100040           | 10,0         | 500        | 17,8         | 100      | TX50 ●           | 25        |
| 100041           | 10,0         | 550        | 17,8         | 100      | TX50 ●           | 25        |
| 100042           | 10,0         | 600        | 17,8         | 100      | TX50 ◆           | 25        |

 $<sup>^{*}</sup>$  La testa può differire dall'immagine

### INFORMAZIONI TECNICHE PANELTWISTEC AG, TESTA SVASATA, BLU ZINCATA

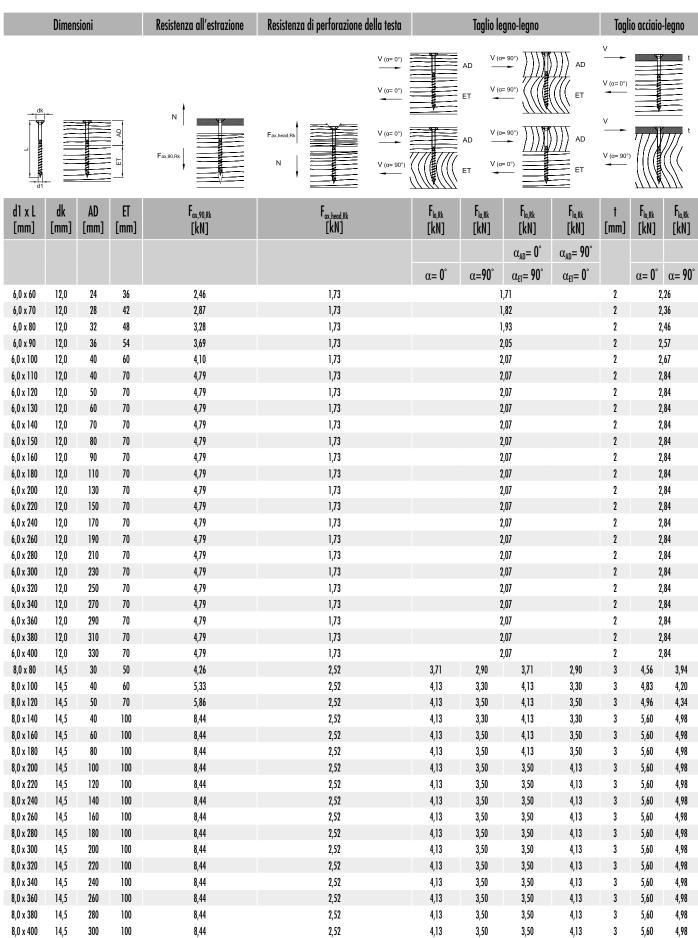


|                | Dimens     | ioni       |            | Resistenza all'estrazione     | Resistenza di perforazione della testa Taglio legno-le |                                             |                            | jno-legno                                  |                                                      |                              | Taglio acciaio-legno  |                            |                            |
|----------------|------------|------------|------------|-------------------------------|--------------------------------------------------------|---------------------------------------------|----------------------------|--------------------------------------------|------------------------------------------------------|------------------------------|-----------------------|----------------------------|----------------------------|
| dk             |            |            | ET AD      | N Fax,90,Rk                   | Fax.head.Rk                                            | V (α= 0°)  V (α= 0°)  V (α= 0°)  V (α= 90°) | AD ET                      | V (a= 90°  V (a= 90°  V (a= 90°  V (a= 0°) |                                                      | AD ET ET                     | V (α= 0°)  V (α= 90°) |                            | t                          |
| d1 x L<br>[mm] | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]                        |                                             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]                 | F <sub>la,Rk</sub><br>[kN]                           | F <sub>la,Rk</sub><br>[kN]   | t<br>[mm]             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
| LIIIII         | [IIIIII]   | נוווווון   | LIIIIII    | [KII]                         | [KN]                                                   |                                             | [KN]                       | [KII]                                      | $\alpha_{AD} = 0^{\circ}$                            | $\alpha_{AD} = 90^{\circ}$   | [!!!!!]               | [KN]                       | [KII]                      |
|                |            |            |            |                               |                                                        |                                             | α= <b>0</b> °              | α= <b>90</b> °                             | $\alpha_{\rm AD} = 0$ $\alpha_{\rm ET} = 90^{\circ}$ | $\alpha_{\rm H} = 0^{\circ}$ |                       | α= 0°                      | α= <b>90</b> °             |
| 3,5 x 30       | 7,0        | 12         | 18         | 0,84                          | 0,59                                                   |                                             | u- <b>v</b>                | 0,62                                       | ω <sub>El</sub> - 70                                 | ∞ <sub>El</sub> − •          | 1                     |                            | ),86                       |
| 3,5 x 35       | 7,0        | 14         | 21         | 0,98                          | 0,59                                                   |                                             |                            | 0,67                                       |                                                      |                              | 1                     |                            | ),92                       |
| 3,5 x 40       | 7,0        | 16         | 24         | 1,12                          | 0,59                                                   |                                             |                            | 0,70                                       |                                                      |                              | 1                     | 0,72                       |                            |
| 3,5 x 45       | 7,0        | 18         | 27         | 1,26                          | 0,59                                                   |                                             |                            | 0,74                                       |                                                      |                              | 1                     |                            | ),99                       |
| 3,5 x 50       | 7,0        | 20         | 30         | 1,40                          | 0,59                                                   |                                             |                            | 0,78                                       |                                                      |                              | 1                     |                            | 1,02                       |
| 4,0 x 30       | 8,0        | 12         | 18         | 0,93                          | 0,77                                                   |                                             |                            | 0,71                                       |                                                      |                              | 2                     |                            | ),91                       |
| 4,0 x 35       | 8,0        | 14         | 21         | 1,08                          | 0,77                                                   |                                             |                            | 0,80                                       |                                                      |                              | 2                     |                            | ,<br>1,07                  |
| 4,0 x 40       | 8,0        | 16         | 24         | 1,24                          | 0,77                                                   |                                             |                            | 0,84                                       |                                                      |                              | 2                     |                            | 1,15                       |
| 4,0 x 45       | 8,0        | 18         | 27         | 1,39                          | 0,77                                                   |                                             |                            | 0,88                                       |                                                      |                              | 2                     |                            | ,19                        |
| 4,0 x 50       | 8,0        | 20         | 30         | 1,55                          | 0,77                                                   |                                             |                            | 0,92                                       |                                                      |                              | 2                     |                            | ,23                        |
| 4,0 x 60       | 8,0        | 24         | 36         | 1,86                          | 0,77                                                   |                                             |                            | 1,01                                       |                                                      |                              | 2                     |                            | ,31                        |
| 4,0 x 70       | 8,0        | 28         | 42         | 2,17                          | 0,77                                                   |                                             |                            | 1,03                                       |                                                      |                              | 2                     |                            | 1,38                       |
| 4,0 x 80       | 8,0        | 32         | 48         | 2,48                          | 0,77                                                   |                                             |                            | 1,03                                       |                                                      |                              | 2                     |                            | ,46                        |
| 4,5 x 40       | 9,0        | 16         | 24         | 1,35                          | 0,97                                                   |                                             |                            | 1,00                                       |                                                      |                              | 2                     |                            | 1,34                       |
| 4,5 x 45       | 9,0        | 18         | 27         | 1,52                          | 0,97                                                   |                                             |                            | 1,03                                       |                                                      |                              | 2                     | 1                          | 1,40                       |
| 4,5 x 50       | 9,0        | 20         | 30         | 1,69                          | 0,97                                                   |                                             |                            | 1,08                                       |                                                      |                              | 2                     | 1                          | 1,44                       |
| 4,5 x 60       | 9,0        | 24         | 36         | 2,03                          | 0,97                                                   |                                             |                            | 1,17                                       |                                                      |                              | 2                     | 1                          | 1,53                       |
| 4,5 x 70       | 9,0        | 28         | 42         | 2,36                          | 0,97                                                   |                                             |                            | 1,26                                       |                                                      |                              | 2                     | 1                          | 1,61                       |
| 4,5 x 80       | 9,0        | 32         | 48         | 2,70                          | 0,97                                                   |                                             |                            | 1,26                                       |                                                      |                              | 2                     | 1                          | ,70                        |
| 5,0 x 40       | 10,0       | 16         | 24         | 1,45                          | 1,20                                                   |                                             |                            | 1,11                                       |                                                      |                              | 2                     | 1                          | 1,44                       |
| 5,0 x 45       | 10,0       | 18         | 27         | 1,63                          | 1,20                                                   |                                             |                            | 1,20                                       |                                                      |                              | 2                     |                            | ,62                        |
| 5,0 x 50       | 10,0       | 20         | 30         | 1,82                          | 1,20                                                   |                                             |                            | 1,24                                       |                                                      |                              | 2                     |                            | ,67                        |
| 5,0 x 60       | 10,0       | 24         | 36         | 2,18                          | 1,20                                                   |                                             |                            | 1,34                                       |                                                      |                              | 2                     |                            | ,76                        |
| 5,0 x 70       | 10,0       | 28         | 42         | 2,54                          | 1,20                                                   |                                             |                            | 1,44                                       |                                                      |                              | 2                     |                            | 1,85                       |
| 5,0 x 80       | 10,0       | 32         | 48         | 2,90                          | 1,20                                                   |                                             |                            | 1,52                                       |                                                      |                              | 2                     |                            | ,94                        |
| 5,0 x 90       | 10,0       | 36         | 54         | 3,27                          | 1,20                                                   |                                             |                            | 1,52                                       |                                                      |                              | 2                     |                            | 2,03                       |
| 5,0 x 100      | 10,0       | 40         | 60         | 3,63                          | 1,20                                                   |                                             |                            | 1,52                                       |                                                      |                              | 2                     |                            | 2,12                       |
| 5,0 x 120      | 10,0       | 50         | 70         | 4,24                          | 1,20                                                   |                                             |                            | 1,52                                       |                                                      |                              | 2                     | 2                          | 2,27                       |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{M_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio


Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. peso della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_{Ni}$ = 1,3.

 $La\ capacità\ di\ carico\ del\ collegamento\ si\ applica\ così\ come\ dimostrato,\ se\ R_d \geq E_d. \ \longrightarrow\ min\ R_k = \ R_d \cdot \gamma_M\ /\ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kM}}{1,3/0,9} \rightarrow \text{Allineamento con i valori della tabella}$ 

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

 $<sup>\</sup>longrightarrow$  Valore di misurazione dell'effetto  $E_{d}{=}$  2,00  $\cdot$  1,35 + 3,00  $\cdot$  1,5=  $\underline{7,20~kN}.$ 



Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico R<sub>k</sub> non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico R<sub>k</sub> devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione R<sub>d</sub>: R<sub>d</sub>= R<sub>k</sub> · k<sub>mod</sub> / γ<sub>M</sub>. I valori di misurazione della capacità di carico R<sub>d</sub> devono essere contrapposti ai valori di misurazione degli effetti E<sub>d</sub> (R<sub>d</sub> ≥ E<sub>d</sub>).

### INFORMAZIONI TECNICHE PANELTWISTEC AG, TESTA SVASATA, BLU ZINCATA



|                          | Dimen        | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione d    | Taglio legno-legno                          |                            |                            |                            | Taglio acciaio-legno             |                      |                            |                            |
|--------------------------|--------------|------------|------------|-------------------------------|---------------------------------|---------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|----------------------|----------------------------|----------------------------|
| dk Marinining            |              |            | ET AD      | N Fax,90,Rk                   | Fax,head,Rk                     | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 90°) |                            | AD V (0                    | = 90°)<br>= 90°)           | AD ET                            | V (α= 0°) V (α= 90°) | 77/                        | t t                        |
| d1 x L<br>[mm]           | dk<br>[mm]   | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN] |                                             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                          |              |            |            |                               |                                 |                                             |                            |                            | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$       |                      |                            |                            |
|                          |              |            |            |                               |                                 |                                             | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{EI}}$ = 90° | $\alpha_{\text{ET}} = 0^{\circ}$ |                      | α= <b>0</b> °              | α= <b>90</b> °             |
| 8,0 x 420                | 14,5         | 300        | 95         | 8,44                          | 2,52                            |                                             | 4,13                       | 3,50                       | 3,50                       | 4,13                             | 3                    | 5,60                       | 4,98                       |
| 8,0 x 440                | 14,5         | 300        | 95         | 8,44                          | 2,52                            |                                             | 4,13                       | 3,50                       | 3,50                       | 4,13                             | 3                    | 5,60                       | 4,98                       |
| 8,0 x 460                | 14,5         | 300        | 95         | 8,44                          | 2,52                            |                                             | 4,13                       | 3,50                       | 3,50                       | 4,13                             | 3                    | 5,60                       | 4,98                       |
| 8,0 x 480                | 14,5         | 300        | 95         | 8,44                          | 2,52                            |                                             | 4,13                       | 3,50                       | 3,50                       | 4,13                             | 3                    | 5,60                       | 4,98                       |
| 8,0 x 500<br>8,0 x 550   | 14,5<br>14,5 | 300<br>300 | 95<br>95   | 8,44<br>8,44                  | 2,52<br>2,52                    |                                             | 4,13<br>4,13               | 3,50<br>3,50               | 3,50<br>3,50               | 4,13<br>4,13                     | 3                    | 5,60<br>5,60               | 4,98<br>4,98               |
| 8,0 x 600                | 14,5         | 300        | 95         | 8,44                          | 2,52                            |                                             | 4,13                       | 3,50                       | 3,50                       | 4,13                             | 3                    | 5,60                       | 4,98                       |
| 10,0 x 100               | 17,8         | 40         | 60         | 6,48                          | 3,63                            |                                             | 5,73                       | 4,37                       | 5,73                       | 4,37                             | 3                    | 6,78                       | 5,81                       |
| 10,0 x 120               | 17,8         | 50         | 70         | 7,13                          | 3,63                            |                                             | 6,07                       | 4,87                       | 6,07                       | 4,87                             | 3                    | 6,94                       | 5,97                       |
| 10,0 x 140               | 17,8         | 40         | 80         | 10,26                         | 3,63                            |                                             | 5,73                       | 4,37                       | 5,73                       | 4,37                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 160               | 17,8         | 60         | 90         | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 6,07                       | 5,10                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 180               | 17,8         | 80         | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 6,07                       | 5,10                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 200               | 17,8         | 100        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 220               | 17,8         | 120        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 240<br>10,0 x 260 | 17,8<br>17,8 | 140<br>160 | 100<br>100 | 10,26<br>10,26                | 3,63<br>3,63                    |                                             | 6,07<br>6,07               | 5,10<br>5,10               | 5,10<br>5,10               | 6,07<br>6,07                     | 3                    | 7,72<br>7,72               | 6,76<br>6,76               |
| 10,0 x 280               | 17,8         | 180        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 300               | 17,8         | 200        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 320               | 17,8         | 220        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 340               | 17,8         | 240        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 360               | 17,8         | 260        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 380               | 17,8         | 280        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 400               | 17,8         | 300        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 420               | 17,8         | 320        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 440               | 17,8         | 340        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 460               | 17,8         | 360        | 100        | 10,26                         | 3,63                            |                                             | 6,07<br>4.07               | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 480<br>10,0 x 500 | 17,8<br>17,8 | 380<br>400 | 100<br>100 | 10,26<br>10,26                | 3,63<br>3,63                    |                                             | 6,07<br>6,07               | 5,10<br>5,10               | 5,10<br>5,10               | 6,07<br>6,07                     | 3                    | 7,72<br>7,72               | 6,76<br>6,76               |
| 10,0 x 500<br>10,0 x 550 | 17,0         | 420        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |
| 10,0 x 600               | 17,8         | 440        | 100        | 10,26                         | 3,63                            |                                             | 6,07                       | 5,10                       | 5,10                       | 6,07                             | 3                    | 7,72                       | 6,76                       |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

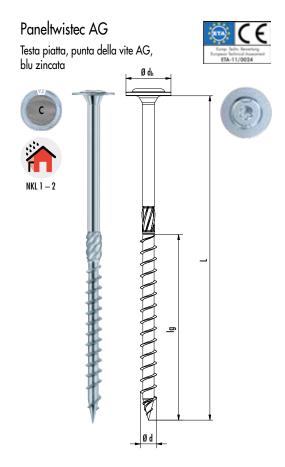
Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

 $Valore \ \ tipico \ di \ un \ effetto \ costante \ (carico \ strutturale) \ G_k = 2,00 \ kN. \ ed \ effetto \ variabile \ (per \ es. \ carico \ della \ neve) \ Q_k = 3,00 \ kN. \ k_{mod} = 0,9. \ \gamma_{kl} = 1,3.$ 

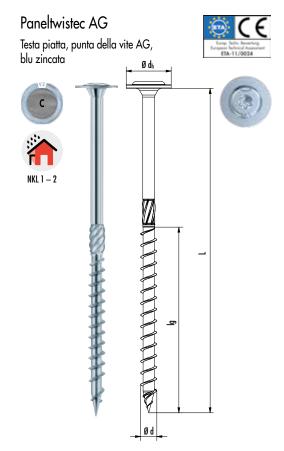
 $\longrightarrow$  Valore di misurazione dell'effetto  $E_{d}{=}$  2,00  $\cdot$  1,35 + 3,00  $\cdot$  1,5=  $\underline{7,20~kN.}$ 


 $La\ capacità\ di\ carico\ del\ collegamento\ si\ applica\ così\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = \ R_d \cdot \gamma_M \ / \ k_{med}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \frac{1}{\gamma_M} / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

## PANELTWISTEC AG, TESTA PIATTA


Blu zincata



| N. art.     | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|-------------|----------|-------|-----------|---------|--------|-----------|
| 946158      | 4,0      | 40    | 10,0      | 24      | TX20 - | 500       |
| 946159      | 4,0      | 50    | 10,0      | 30      | TX20 - | 500       |
| 946160      | 4,0      | 60    | 10,0      | 36      | TX20 - | 500       |
| 946161      | 4,5      | 50    | 11,0      | 30      | TX20 - | 200       |
| 946162      | 4,5      | 60    | 11,0      | 36      | TX20 - | 200       |
| 946163      | 4,5      | 70    | 11,0      | 42      | TX20 - | 200       |
| 946037      | 5,0      | 50    | 12,0      | 30      | TX25 • | 200       |
| 946038      | 5,0      | 60    | 12,0      | 36      | TX25 • | 200       |
| 946039      | 5,0      | 70    | 12,0      | 42      | TX25 • | 200       |
| 946040      | 5,0      | 80    | 12,0      | 48      | TX25 • | 200       |
| 946042      | 5,0      | 100   | 12,0      | 60      | TX25 • | 200       |
| 945947      | 6,0      | 30    | 14,0      | 30      | TX30 • | 100       |
| 945948      | 6,0      | 40    | 14,0      | 40      | TX30 • | 100       |
| 945712      | 6,0      | 50    | 14,0      | 30      | TX30 • | 100       |
| 945713      | 6,0      | 60    | 14,0      | 36      | TX30 • | 100       |
| 945713-TX40 | 6,0      | 60    | 15,0      | 36      | TX40 • | 100       |
| 945716      | 6,0      | 70    | 14,0      | 42      | TX30 • | 100       |
| 945717      | 6,0      | 80    | 14,0      | 48      | TX30 • | 100       |
| 945717-TX40 | 6,0      | 80    | 15,0      | 48      | TX40 • | 100       |
| 945718      | 6,0      | 90    | 14,0      | 54      | TX30 • | 100       |
| 945719      | 6,0      | 100   | 14,0      | 60      | TX30 • | 100       |
| 945719-TX40 | 6,0      | 100   | 15,0      | 60      | TX40 • | 100       |
| 945720      | 6,0      | 110   | 14,0      | 70      | TX30 • | 100       |
| 945721      | 6,0      | 120   | 14,0      | 70      | TX30 • | 100       |
| 945721-TX40 | 6,0      | 120   | 15,0      | 70      | TX40 • | 100       |
| 945722      | 6,0      | 130   | 14,0      | 70      | TX30 • | 100       |
| 945723      | 6,0      | 140   | 14,0      | 70      | TX30 • | 100       |
| 945723-TX40 | 6,0      | 140   | 15,0      | 70      | TX40 • | 100       |
| 945724      | 6,0      | 150   | 14,0      | 70      | TX30 • | 100       |
| 945725      | 6,0      | 160   | 14,0      | 70      | TX30 • | 100       |
| 945725-TX40 | 6,0      | 160   | 15,0      | 70      | TX40 • | 100       |
| 945726      | 6,0      | 180   | 14,0      | 70      | TX30 • | 100       |
| 945726-TX40 | 6,0      | 180   | 15,0      | 70      | TX40 • | 100       |
| 945727      | 6,0      | 200   | 14,0      | 70      | TX30 • | 100       |
| 945727-TX40 | 6,0      | 200   | 15,0      | 70      | TX40 • | 100       |
| 945728      | 6,0      | 220   | 14,0      | 70      | TX30 • | 100       |
| 945728-TX40 | 6,0      | 220   | 15,0      | 70      | TX40 • | 100       |
| 945729      | 6,0      | 240   | 14,0      | 70      | TX30 • | 100       |
| 945729-TX40 | 6,0      | 240   | 15,0      | 70      | TX40 • | 100       |
| 945730      | 6,0      | 260   | 14,0      | 70      | TX30 • | 100       |
| 945731      | 6,0      | 280   | 14,0      | 70      | TX30 • | 100       |
| 945732      | 6,0      | 300   | 14,0      | 70      | TX30 • | 100       |
| 945733      | 6,0      | 320   | 12,0      | 70      | TX30 • | 100       |
| 945734      | 6,0      | 340   | 12,0      | 70      | TX30 • | 100       |
| 945735      | 6,0      | 360   | 12,0      | 70      | TX30 • | 100       |
| 945736      | 6,0      | 380   | 12,0      | 70      | TX30 • | 100       |
| 945737      | 6,0      | 400   | 12,0      | 70      | TX30 • | 100       |
| 945806      | 8,0      | 60    | 22,0      | 48      | TX40 • | 50        |
| 944588      | 8,0      | 80    | 22,0      | 48      | TX40 • | 50        |
| 944589      | 8,0      | 100   | 22,0      | 60      | TX40 • | 50        |
| 944590      | 8,0      | 120   | 22,0      | 66      | TX40 • | 50        |
| 944591      | 8,0      | 140   | 22,0      | 95      | TX40 • | 50        |
| 944592      | 8,0      | 160   | 22,0      | 95      | TX40 • | 50        |
| 944593      | 8,0      | 180   | 22,0      | 95      | TX40 • | 50        |



## PANELTWISTEC AG, TESTA PIATTA



100025

| ArtNr. | Ød[mm] | L[mm] | Ø dh [mm] | lg [mm] | Antrieb       | Pz./conf. |
|--------|--------|-------|-----------|---------|---------------|-----------|
| 944594 | 8,0    | 200   | 22,0      | 95      | TX40 •        | 50        |
| 944595 | 8,0    | 220   | 22,0      | 95      | TX40 •        | 50        |
| 944596 | 8,0    | 240   | 22,0      | 95      | TX40 •        | 50        |
| 944597 | 8,0    | 260   | 22,0      | 95      | TX40 •        | 50        |
| 944598 | 8,0    | 280   | 22,0      | 95      | TX40 •        | 50        |
| 944599 | 8,0    | 300   | 22,0      | 95      | TX40 •        | 50        |
| 944600 | 8,0    | 320   | 22,0      | 95      | TX40 •        | 50        |
| 944601 | 8,0    | 340   | 22,0      | 95      | TX40 •        | 50        |
| 944602 | 8,0    | 360   | 22,0      | 95      | TX40 •        | 50        |
| 944603 | 8,0    | 380   | 22,0      | 95      | TX40 •        | 50        |
| 944603 | 8,0    | 380   | 22,0      | 95      | TX40 •        | 50        |
| 944604 | 8,0    | 400   | 22,0      | 95      | TX40 •        | 50        |
| 944605 | 8,0    | 420   | 22,0      | 95      | TX40 •        | 25        |
| 944606 | 8,0    | 440   | 22,0      | 95      | TX40 •        | 25        |
| 944607 | 8,0    | 460   | 22,0      | 95      | TX40 •        | 25        |
| 944608 | 8,0    | 480   | 22,0      | 95      | TX40 •        | 25        |
| 944609 | 8,0    | 500   | 22,0      | 95      | TX40 •        | 25        |
| 944610 | 8,0    | 550   | 22,0      | 95      | TX40 •        | 25        |
| 944611 | 8,0    | 600   | 22,0      | 95      | TX40 •        | 25        |
| 945750 | 10,0   | 80    | 25,0      | 50      | TX50 ●        | 50        |
| 945751 | 10,0   | 100   | 25,0      | 60      | TX50 <b>●</b> | 50        |
| 945752 | 10,0   | 120   | 25,0      | 70      | TX50 ●        | 50        |
| 945753 | 10,0   | 140   | 25,0      | 80      | TX50 ●        | 50        |
| 945754 | 10,0   | 160   | 25,0      | 90      | TX50 <b>●</b> | 50        |
| 945755 | 10,0   | 180   | 25,0      | 100     | TX50 <b>●</b> | 50        |
| 945756 | 10,0   | 200   | 25,0      | 100     | TX50 <b>●</b> | 50        |
| 945757 | 10,0   | 220   | 25,0      | 100     | TX50 ●        | 50        |
| 945758 | 10,0   | 240   | 25,0      | 100     | TX50 ●        | 50        |
| 945759 | 10,0   | 260   | 25,0      | 100     | TX50 ●        | 50        |
| 945760 | 10,0   | 280   | 25,0      | 100     | TX50 ●        | 50        |
| 945761 | 10,0   | 300   | 25,0      | 100     | TX50 ●        | 50        |
| 945762 | 10,0   | 320   | 25,0      | 100     | TX50 ●        | 50        |
| 945763 | 10,0   | 340   | 25,0      | 100     | TX50 ●        | 50        |
| 945764 | 10,0   | 360   | 25,0      | 100     | TX50 ●        | 25        |
| 945765 | 10,0   | 380   | 25,0      | 100     | TX50 <b>●</b> | 25        |
| 945766 | 10,0   | 400   | 25,0      | 100     | TX50 •        | 25        |
| 100019 | 10,0   | 420   | 17,8      | 100     | TX50 •        | 25        |
| 100020 | 10,0   | 440   | 17,8      | 100     | TX50 ●        | 25        |
| 100020 | 10,0   | 460   | 17,8      | 100     | TX50 ●        | 25        |
| 100021 | 10,0   | 480   | 17,8      | 100     | TX50 ●        | 25        |
| 100022 | 10,0   | 500   | 17,8      | 100     | TX50 •        | 25        |
|        |        |       |           |         |               |           |
| 100024 | 10,0   | 550   | 17,8      | 100     | TX50 ●        | 25        |

TX50 ●

## INFORMAZIONI TECNICHE PANELTWISTEC AG, TESTA PIATTA, BLU ZINCATA



|                                                    | Dimensioni Resistenza all'estrazione Resistenza di perforazione della testa Taglio legno-legno |            |            |                               |                                 |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                           | Tagli                      | o acciaio                        | -legno                            |                            |                            |
|----------------------------------------------------|------------------------------------------------------------------------------------------------|------------|------------|-------------------------------|---------------------------------|--------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|-----------------------------------|----------------------------|----------------------------|
| dk annum we de |                                                                                                |            | ET AD      | N Fax.90.Rk                   | Fax,head,Rk                     | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 0°) | A A                        | V (α= \$\frac{1}{2}                                                                                                                                                                                                                                                                                                                                                  \qua | 90°)                       | AD ET ET                         | V (\alpha = 0°)  V (\alpha = 90°) |                            | t                          |
| d1 x L<br>[mm]                                     | dk<br>[mm]                                                                                     | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN] |                                            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]                                                                                                                                                                                                                                                                                                                                                | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]                         | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                                                    |                                                                                                |            |            |                               |                                 |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                           | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$       |                                   |                            |                            |
|                                                    |                                                                                                |            |            |                               |                                 |                                            | α= <b>0</b> °              | α= <b>90</b> °                                                                                                                                                                                                                                                                                                                                                            | $\alpha_{\text{EI}}$ = 90° | $\alpha_{\text{ET}} = 0^{\circ}$ |                                   | α= <b>0</b> °              | α= <b>90</b> °             |
| 4,0 x 40                                           | 10,0                                                                                           | 16         | 24         | 1,24                          | 1,20                            |                                            |                            | 0,9                                                                                                                                                                                                                                                                                                                                                                       |                            |                                  | 2                                 | 1                          | ,15                        |
| 4,0 x 50                                           | 10,0                                                                                           | 20         | 30         | 1,55                          | 1,20                            |                                            |                            | 1,0                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 1                          | ,23                        |
| 4,0 x 60                                           | 10,0                                                                                           | 24         | 36         | 1,86                          | 1,20                            |                                            |                            | 1,1                                                                                                                                                                                                                                                                                                                                                                       | 2                          |                                  | 2                                 | 1                          | ,31                        |
| 4,5 x 50                                           | 11,0                                                                                           | 20         | 30         | 1,69                          | 1,45                            |                                            |                            | 1,2                                                                                                                                                                                                                                                                                                                                                                       | 0                          |                                  | 2                                 | 1                          | ,44                        |
| 4,5 x 60                                           | 11,0                                                                                           | 24         | 36         | 2,03<br>2,36                  | 1,45                            |                                            |                            | 1,2                                                                                                                                                                                                                                                                                                                                                                       | 9                          |                                  | 2                                 | 1                          | ,53                        |
| 4,5 x 70                                           | 11,0                                                                                           | 28<br>20   | 42         | Z,30                          | 1,45<br>1,73                    |                                            |                            | 1,3<br>1,3                                                                                                                                                                                                                                                                                                                                                                | ð<br>7                     |                                  | 2                                 |                            | ,61                        |
| 5,0 x 50<br>5,0 x 60                               | 12,0<br>12,0                                                                                   | 24         | 30<br>36   | 1,82<br>2,18                  | 1,73                            |                                            |                            | 1,3                                                                                                                                                                                                                                                                                                                                                                       | <i>i</i><br>7              |                                  | 2                                 | 1                          | ,67<br>,76                 |
| 5,0 x 00                                           | 12,0                                                                                           | 28         | 42         | 2,54                          | 1,73                            |                                            |                            | 1,5                                                                                                                                                                                                                                                                                                                                                                       | 7                          |                                  | 2                                 | 1                          | ,85                        |
| 5,0 x 80                                           | 12,0                                                                                           | 32         | 48         | 2,90                          | 1,73                            |                                            |                            | 1,6                                                                                                                                                                                                                                                                                                                                                                       | ,<br>5                     |                                  | 2                                 | 1                          | ,94                        |
| 5,0 x 100                                          | 12,0                                                                                           | 40         | 60         | 3,63                          | 1,73                            |                                            |                            | 1,6                                                                                                                                                                                                                                                                                                                                                                       | 5                          |                                  | 2                                 | 2                          | ,12                        |
| 6,0 x 30                                           | 14,0                                                                                           | 6          | 24         | 1,64                          | 2,35                            |                                            |                            | 0,6                                                                                                                                                                                                                                                                                                                                                                       | 5                          |                                  | 2                                 | 1                          | ,20                        |
| 6,0 x 40                                           | 14,0                                                                                           | 16         | 24         | 1,64                          | 2,35                            |                                            |                            | 1,3                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 1                          | ,63                        |
| 6,0 x 50                                           | 14,0                                                                                           | 20         | 30         | 2,05                          | 2,35                            |                                            |                            | 1,6                                                                                                                                                                                                                                                                                                                                                                       |                            |                                  | 2                                 |                            | ,06                        |
| 6,0 x 60                                           | 14,0                                                                                           | 24         | 36         | 2,46                          | 2,35                            |                                            |                            | 1,8                                                                                                                                                                                                                                                                                                                                                                       | 7                          |                                  | 2                                 | 2                          | ,26                        |
| 6,0 x 70                                           | 14,0                                                                                           | 28         | 42         | 2,87                          | 2,35                            |                                            |                            | 1,9                                                                                                                                                                                                                                                                                                                                                                       | 1                          |                                  | 2                                 | 2                          | .,36                       |
| 6,0 x 80<br>6,0 x 90                               | 14,0<br>14,0                                                                                   | 32<br>36   | 48<br>54   | 3,28<br>3,69                  | 2,35<br>2,35                    |                                            |                            | 2,0<br>2,2                                                                                                                                                                                                                                                                                                                                                                | y<br>1                     |                                  | 2                                 | 2                          | 2,46<br>2,57               |
| 6,0 x 100                                          | 14,0                                                                                           | 40         | 60         | 4,10                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       |                            |                                  | 2                                 | 2                          | .,67                       |
| 6,0 x 110                                          | 14,0                                                                                           | 44         | 66         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | 2,77                       |
| 6,0 x 120                                          | 14,0                                                                                           | 50         | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,84                        |
| 6,0 x 130                                          | 14,0                                                                                           | 60         | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,84                        |
| 6,0 x 140                                          | 14,0                                                                                           | 70         | 70         | 4,79                          | 2,35<br>2,35                    |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,84                        |
| 6,0 x 150                                          | 14,0                                                                                           | 80         | 70         | 4,79                          |                                 |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       |                            |                                  | 2                                 |                            | ,84                        |
| 6,0 x 160                                          | 14,0                                                                                           | 90         | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,84                        |
| 6,0 x 180                                          | 14,0                                                                                           | 110        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 |                            | ,84                        |
| 6,0 x 200                                          | 14,0                                                                                           | 130        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,84                        |
| 6,0 x 220                                          | 14,0                                                                                           | 150        | 70         | 4,79<br>4.70                  | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | ა<br>ე                     |                                  | 2                                 |                            | ,84                        |
| 6,0 x 240<br>6,0 x 260                             | 14,0<br>14,0                                                                                   | 170<br>190 | 70<br>70   | 4,79<br>4,79                  | 2,35<br>2,35                    |                                            |                            | 2,2<br>2,2                                                                                                                                                                                                                                                                                                                                                                | ว                          |                                  | 2                                 | 2                          | ,84<br>,84                 |
| 6,0 x 280                                          | 14,0                                                                                           | 210        | 70         | 4,79<br>4,79                  | 2,35<br>2,35                    |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,04<br>,84                 |
| 6,0 x 300                                          | 14,0                                                                                           | 230        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 |                            | ,84                        |
| 6,0 x 320                                          | 12,0                                                                                           | 250        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 |                            | ,84                        |
| 6,0 x 340                                          | 12,0                                                                                           | 270        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,84                        |
| 6,0 x 360                                          | 12,0                                                                                           | 290        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 |                            | ,84                        |
| 6,0 x 380                                          | 12,0                                                                                           | 310        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 | 2                          | ,84                        |
| 6,0 x 400                                          | 12,0                                                                                           | 330        | 70         | 4,79                          | 2,35                            |                                            |                            | 2,2                                                                                                                                                                                                                                                                                                                                                                       | 3                          |                                  | 2                                 |                            | ,84                        |

disurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m<sup>2</sup>. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{M} = 1,3$ .

 $\longrightarrow$  Valore di misurazione dell'effetto Ed= 2,00  $\cdot$  1,35 + 3,00  $\cdot$  1,5=  $\underline{7,20~kN}.$ 

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$ 

Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella.}$ 

## INFORMAZIONI TECNICHE PANELTWISTEC AG, TESTA PIATTA, BLU ZINCATA



|                        | Dimens       | sioni      |            | Resistenza all'estrazione     | one Resistenza di perforazione della testa Taglio legno-legno |                                            |                            |                            | Tagl                              | io acciaio-                      | legno             |                            |                            |
|------------------------|--------------|------------|------------|-------------------------------|---------------------------------------------------------------|--------------------------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|-------------------|----------------------------|----------------------------|
| dk di                  | G Q Fax,90.  |            |            | N Fax,90,Rk                   | Fax.head.Rik                                                  | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 0°) |                            | ET V(c                     | (= 90°)<br>(= 90°)<br>(= 90°)     | AD ET                            | V (α= 90 V (α= 90 |                            | t t                        |
| d1 x L<br>[mm]         | dk<br>[mm]   | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,heod,Rk</sub><br>[kN]                               |                                            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]         | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                        |              |            |            |                               |                                                               |                                            |                            |                            | $\alpha_{AD} = 0^{\circ}$         | $\alpha_{AD} = 90^{\circ}$       |                   |                            |                            |
|                        |              |            |            |                               |                                                               |                                            | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{ET}} = 90^{\circ}$ | $\alpha_{\text{ET}} = 0^{\circ}$ |                   | α= <b>0</b> °              | $\alpha = 90^{\circ}$      |
| 8,0 x 60               | 22,0         | 24         | 36         | 3,20                          | 5,81                                                          |                                            | 3,53                       | 2,80                       | 3,53                              | 2,80                             | 3                 | 4,29                       | 3,54                       |
| 8,0 x 80               | 22,0         | 30         | 50         | 4,26                          | 5,81                                                          |                                            | 4,14                       | 3,34                       | 4,14                              | 3,34                             | 3                 | 4,56                       | 3,94                       |
| 8,0 x 100              | 22,0         | 40         | 60         | 5,33                          | 5,81                                                          |                                            | 4,83                       | 4,01                       | 4,83                              | 4,01                             | 3                 | 4,83                       | 4,20                       |
| 8,0 x 120              | 22,0         | 50         | 70         | 5,86                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,95                              | 4,32                             | 3                 | 4,96                       | 4,34                       |
| 8,0 x 140              | 22,0         | 40         | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,13                       | 4,95                              | 4,13                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 160              | 22,0         | 60         | 100<br>100 | 8,44                          | 5,81<br>5,81                                                  |                                            | 4,95                       | 4,32                       | 4,95                              | 4,32                             | 3                 | 5,60<br>5,60               | 4,98                       |
| 8,0 x 180<br>8,0 x 200 | 22,0         | 80<br>100  | 100        | 8,44<br>8,44                  | 5,81                                                          |                                            | 4,95<br>4,95               | 4,32<br>4,32               | 4,95<br>4,32                      | 4,32<br>4,95                     | 3                 | 5,60                       | 4,98<br>4,98               |
| 8,0 x 220              | 22,0<br>22,0 | 120        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,70                       |
| 8,0 x 240              | 22,0         | 140        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 260              | 22,0         | 160        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 280              | 22,0         | 180        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 300              | 22,0         | 200        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 320              | 22,0         | 220        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 340              | 22,0         | 240        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 360              | 22,0         | 260        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 380              | 22,0         | 280        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 400              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 420              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 440              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 460              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 480              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 500              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 550              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |
| 8,0 x 600              | 22,0         | 300        | 100        | 8,44                          | 5,81                                                          |                                            | 4,95                       | 4,32                       | 4,32                              | 4,95                             | 3                 | 5,60                       | 4,98                       |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

 $Valore \ \ tipico \ di \ un \ effetto \ costante \ (carico \ strutturale) \ G_k=2,00 \ kN \ ed \ effetto \ variabile \ (per \ es. \ carico \ della \ neve) \ Q_k=3,00 \ kN. \ k_{mod}=0,9. \ \gamma_{ik}=1,3.$ 

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $La\ capacit\`{a}\ di\ carico\ del\ collegamento\ si\ applica\ cos\`{a}\ come\ dimostrato,\ se\ R_d \geq E_d. \ \longrightarrow\ min\ R_k = \ R_d \cdot \gamma_M\ /\ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## INFORMAZIONI TECNICHE PANELTWISTEC AG, TESTA PIATTA, BLU ZINCATA



|                 | Dimen      | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione della testa                                                                             | testa Taglio legno-legno   |                                                                                                                             |                                   |                            | Taglio acciaio-legno  |                            |                            |  |
|-----------------|------------|------------|------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|-----------------------|----------------------------|----------------------------|--|
| dl x L dk AD ET |            |            |            | N Fax.90.Rk                   | $V (\alpha=0^{\circ})$ $V (\alpha=0^{\circ})$ $V (\alpha=0^{\circ})$ $V (\alpha=0^{\circ})$ $V (\alpha=0^{\circ})$ |                            | AD $\frac{V(\alpha =}{\alpha}$ ET $\frac{V(\alpha =}{\alpha}$ AD $\frac{V(\alpha =}{\alpha}$ ET $\frac{V(\alpha =}{\alpha}$ | 90°)                              | AD ET ET                   | V (α= 0°)  V (α= 90°) |                            | t                          |  |
| d1 x L<br>[mm]  | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]                                                                                    | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]                                                                                                  | F <sub>la,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN] | †<br>[mm]             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |  |
|                 |            |            |            |                               |                                                                                                                    |                            |                                                                                                                             | $\alpha_{AD} = 0^{\circ}$         | $\alpha_{AD} = 90^{\circ}$ |                       |                            |                            |  |
|                 |            |            |            |                               |                                                                                                                    | α= <b>0</b> °              | α= <b>90</b> °                                                                                                              | $\alpha_{\text{ET}} = 90^{\circ}$ | $\alpha_{\rm H}$ = 0°      |                       | α= <b>0</b> °              | α= <b>90</b> °             |  |
| 10,0 x 80       | 25,0       | 30         | 50         | 5,40                          | 7,50                                                                                                               | 5,44                       | 4,40                                                                                                                        | 5,44                              | 4,40                       | 3                     | 6,51                       | 5,54                       |  |
| 10,0 x 100      | 25,0       | 40         | 60         | 6,48                          | 7,50                                                                                                               | 6,44                       | 5,08                                                                                                                        | 6,44                              | 5,08                       | 3                     | 6,78                       | 5,81                       |  |
| 10,0 x 120      | 25,0       | 50         | 70         | 7,13                          | 7,50                                                                                                               | 6,94                       | 5,74                                                                                                                        | 6,94                              | 5,74                       | 3                     | 6,94                       | 5,97                       |  |
| 10,0 x 140      | 25,0       | 40         | 100        | 10,26                         | 7,50                                                                                                               | 6,70                       | 5,34                                                                                                                        | 6,70                              | 5,34                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 160      | 25,0       | 60         | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 7,03                              | 6,07                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 180      | 25,0       | 80         | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 7,03                              | 6,07                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 200      | 25,0       | 100        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 220      | 25,0       | 120        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 240      | 25,0       | 140        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 260      | 25,0       | 160        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 280      | 25,0       | 180        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 300      | 25,0       | 200        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 320      | 25,0       | 220        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 340      | 25,0       | 240        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 360      | 25,0       | 260        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 380      | 25,0       | 280        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 400      | 25,0       | 300        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 420      | 17,8       | 320        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 440      | 17,8       | 340        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 460      | 17,8       | 360        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 480      | 17,8       | 380        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 500      | 17,8       | 400        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 550      | 17,8       | 450        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |
| 10,0 x 600      | 17,8       | 500        | 100        | 10,26                         | 7,50                                                                                                               | 7,03                       | 6,07                                                                                                                        | 6,07                              | 7,03                       | 3                     | 7,72                       | 6,76                       |  |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_i$ = 350 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

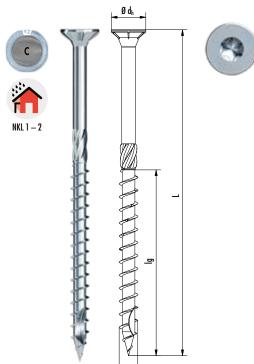
#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

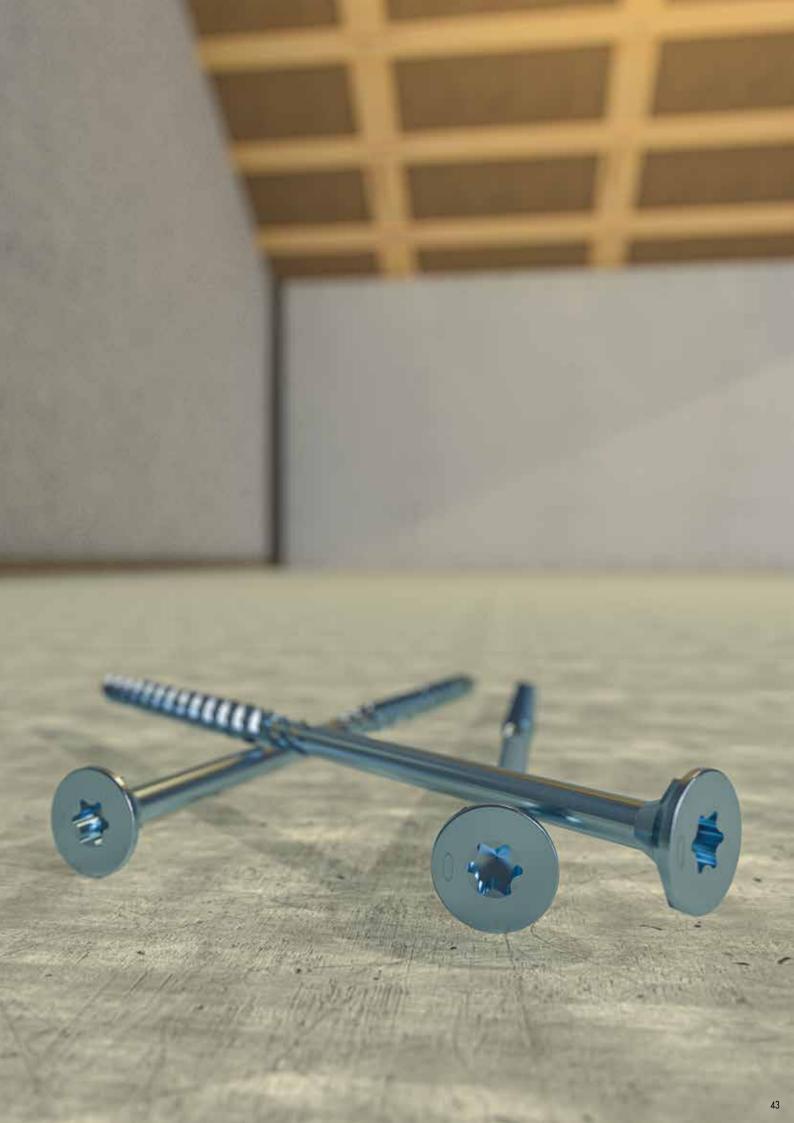
 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$ 

Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 


## **PANELTWISTEC**

## Acciaio blu zincato

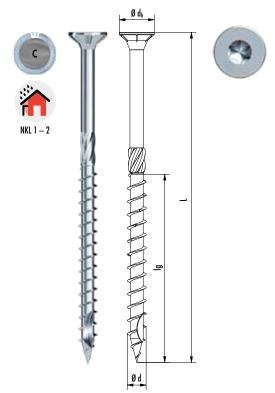
#### Paneltwistec


Testa svasata, punta della vite con scanalatura autopulente, acciaio blu zincato





| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| B903045 | 3,5      | 30    | 7,0       | 18      | TX15 ● | 1000      |
| B903044 | 3,5      | 35    | 7,0       | 21      | TX15 • | 1000      |
| B903001 | 3,5      | 40    | 7,0       | 24      | TX15 • | 1000      |
| B903002 | 3,5      | 50    | 7,0       | 30      | TX15 • | 500       |
| B903003 | 4,0      | 30    | 8,0       | 18      | TX20 - | 1000      |
| B903603 | 4,0      | 35    | 8,0       | 21      | TX20 - | 1000      |
| B903004 | 4,0      | 40    | 8,0       | 24      | TX20 - | 1000      |
| B902089 | 4,0      | 45    | 8,0       | 27      | TX20 - | 500       |
| B903005 | 4,0      | 50    | 8,0       | 30      | TX20 - | 500       |
| B903006 | 4,0      | 60    | 8,0       | 36      | TX20 - | 200       |
| B903007 | 4,0      | 70    | 8,0       | 42      | TX20 - | 200       |
| B903008 | 4,0      | 80    | 8,0       | 48      | TX20 - | 200       |
| B903009 | 4,5      | 40    | 9,0       | 24      | TX25 • | 500       |
| B903087 | 4,5      | 45    | 9,0       | 27      | TX25 • | 500       |
| B903010 | 4,5      | 50    | 9,0       | 30      | TX25 • | 500       |
| B903088 | 4,5      | 55    | 9,0       | 36      | TX25 • | 500       |
| B903011 | 4,5      | 60    | 9,0       | 36      | TX25 • | 200       |
| B903012 | 4,5      | 70    | 9,0       | 42      | TX25 • | 200       |
| B903013 | 4,5      | 80    | 9,0       | 48      | TX25 • | 200       |
| B903014 | 5,0      | 40    | 10,0      | 24      | TX25 • | 200       |
| B903015 | 5,0      | 50    | 10,0      | 30      | TX25 • | 200       |
| B903016 | 5,0      | 60    | 10,0      | 36      | TX25 • | 200       |
| B903017 | 5,0      | 70    | 10,0      | 42      | TX25 • | 200       |
| B903018 | 5,0      | 80    | 10,0      | 48      | TX25 • | 200       |
| B903578 | 5,0      | 90    | 10,0      | 54      | TX25 • | 200       |
| B903019 | 5,0      | 100   | 10,0      | 60      | TX25 • | 200       |
| B903020 | 5,0      | 120   | 10,0      | 70      | TX25 • | 200       |
| B903021 | 6,0      | 60    | 12,0      | 36      | TX30 • | 200       |
| B903022 | 6,0      | 70    | 12,0      | 42      | TX30 • | 200       |
| B903023 | 6,0      | 80    | 12,0      | 48      | TX30 • | 200       |
| B903163 | 6,0      | 90    | 12,0      | 54      | TX30 • | 100       |
| B903024 | 6,0      | 100   | 12,0      | 60      | TX30 • | 100       |
| B903025 | 6,0      | 120   | 12,0      | 70      | TX30 • | 100       |
| B903026 | 6,0      | 130   | 12,0      | 70      | TX30 • | 100       |
| B903027 | 6,0      | 140   | 12,0      | 70      | TX30 • | 100       |
| B903030 | 6,0      | 150   | 12,0      | 70      | TX30 • | 100       |
| B903029 | 6,0      | 160   | 12,0      | 70      | TX30 • | 100       |
| B903031 | 6,0      | 180   | 12,0      | 70      | TX30 • | 100       |
| B903032 | 6,0      | 200   | 12,0      | 70      | TX30 • | 100       |
| B903033 | 6,0      | 220   | 12,0      | 70      | TX30 • | 100       |
| B903034 | 6,0      | 240   | 12,0      | 70      | TX30 • | 100       |
| B903035 | 6,0      | 260   | 12,0      | 70      | TX30 • | 100       |
| B903036 | 6,0      | 280   | 12,0      | 70      | TX30 • | 100       |
| B903037 | 6,0      | 300   | 12,0      | 70      | TX30 • | 100       |


Altre dimensioni alla pagina seguente



## **Eurotec**® | Paneltwistec

Paneltwistec Testa svasata, punta della vite con scanalatura autopulente, acciaio blu zincato





| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 903443  | 8,0      | 80    | 14,5      | 48      | TX40 • | 1000      |
| 903435  | 8,0      | 100   | 14,5      | 60      | TX40 • | 1000      |
| 903419  | 8,0      | 120   | 14,5      | 66      | TX40 • | 1000      |
| 903420  | 8,0      | 140   | 14,5      | 95      | TX40 • | 500       |
| 903421  | 8,0      | 160   | 14,5      | 95      | TX40 • | 1000      |
| 903422  | 8,0      | 180   | 14,5      | 95      | TX40 • | 1000      |
| 903423  | 8,0      | 200   | 14,5      | 95      | TX40 • | 1000      |
| 903424  | 8,0      | 220   | 14,5      | 95      | TX40 • | 500       |
| 903425  | 8,0      | 240   | 14,5      | 95      | TX40 • | 1000      |
| 903426  | 8,0      | 260   | 14,5      | 95      | TX40 • | 200       |
| 903427  | 8,0      | 280   | 14,5      | 95      | TX40 • | 200       |
| 903428  | 8,0      | 300   | 14,5      | 95      | TX40 • | 200       |
| 903429  | 8,0      | 320   | 14,5      | 95      | TX40 • | 500       |
| 903430  | 8,0      | 340   | 14,5      | 95      | TX40 • | 500       |
| 903431  | 8,0      | 360   | 14,5      | 95      | TX40 • | 500       |
| 903432  | 8,0      | 380   | 14,5      | 95      | TX40 • | 500       |
| 903433  | 8,0      | 400   | 14,5      | 95      | TX40 • | 200       |
| 975780  | 12,0     | 120   | 20,0      | 80      | TX50 ● | 25        |
| 975781  | 12,0     | 140   | 20,0      | 80      | TX50 ● | 25        |
| 975782  | 12,0     | 160   | 20,0      | 80      | TX50 ● | 25        |
| 975783  | 12,0     | 180   | 20,0      | 80      | TX50 ● | 25        |
| 975784  | 12,0     | 200   | 20,0      | 80      | TX50 ● | 25        |
| 975785  | 12,0     | 220   | 20,0      | 100     | TX50 ● | 25        |
| 975786  | 12,0     | 240   | 20,0      | 100     | TX50 ● | 25        |
| 975787  | 12,0     | 260   | 20,0      | 100     | TX50 ● | 25        |
| 975788  | 12,0     | 280   | 20,0      | 100     | TX50 ● | 25        |
| 975789  | 12,0     | 300   | 20,0      | 100     | TX50 ● | 25        |
| 975790  | 12,0     | 320   | 20,0      | 100     | TX50 ● | 25        |
| 975791  | 12,0     | 340   | 20,0      | 120     | TX50 ● | 25        |
| 975792  | 12,0     | 360   | 20,0      | 120     | TX50 ● | 25        |
| 975793  | 12,0     | 380   | 20,0      | 120     | TX50 ● | 25        |
| 975794  | 12,0     | 400   | 20,0      | 120     | TX50 ● | 25        |
| 975795  | 12,0     | 500   | 20,0      | 120     | TX50 ● | 25        |
| 975796  | 12,0     | 600   | 20,0      | 120     | TX50 ● | 25        |

## INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO BLU ZINCATO



|                      | Dimen      | sioni      |            | Resistenza all'estrazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Resistenza di perforazione della testa |                            |                            | Tagl                                       | io acciaio-                                 | legno     |                            |                            |
|----------------------|------------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|----------------------------|--------------------------------------------|---------------------------------------------|-----------|----------------------------|----------------------------|
| dt dt                |            |            | ET AD      | $V\left(\alpha=0^{\circ}\right) \qquad \qquad AD \qquad V\left(\alpha=90^{\circ}\right) \qquad \qquad AD \qquad V\left(\alpha=90^{\circ}\right) \qquad \qquad ET \qquad V\left(\alpha=90^{\circ}\right) \qquad \qquad ET \qquad \qquad AD \qquad V\left(\alpha=90^{\circ}\right) \qquad \qquad AD \qquad AD \qquad AD \qquad AD \qquad \qquad$ |                                        |                            |                            | V (a= 0)                                   | 777                                         | t         |                            |                            |
| dl x L<br>[mm]       | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F <sub>ox,head,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | $F_{la,Rk}$ [kN] $\alpha_{AD} = 0^{\circ}$ | $F_{la,Rk}$ [kN] $\alpha_{AD} = 90^{\circ}$ | t<br>[mm] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                      |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | 00                         | 000                        |                                            |                                             |           | ٥٥                         | 000                        |
|                      |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{ET}} = 90^{\circ}$          | $\alpha_{\rm H}$ = 0°                       |           | α= <b>0</b> °              | α= <b>90</b> °             |
| 3,5 x 30             | 7,0        | 12         | 18         | 0,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,59                                   |                            | 0,62                       |                                            |                                             | 1         | 0,8                        |                            |
| 3,5 x 35             | 7,0        | 14         | 21         | 0,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,59                                   |                            | 0,67                       |                                            |                                             | 1         | 0,9                        |                            |
| 3,5 x 40             | 7,0        | 16         | 24         | 1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,59                                   |                            | 0,70                       |                                            |                                             | 1         | 0,9                        |                            |
| 3,5 x 45             | 7,0        | 18         | 27         | 1,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,59                                   |                            | 0,74                       |                                            |                                             | 1         | 0,9                        |                            |
| 3,5 x 50<br>4,0 x 30 | 7,0        | 20<br>12   | 30         | 1,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,59                                   |                            | 0,78                       |                                            |                                             | ]         | 1,0                        |                            |
|                      | 8,0        | 14         | 18<br>21   | 0,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,77<br>0,77                           |                            | 0,71<br>0,80               |                                            |                                             | 2         | 0,9                        |                            |
| 4,0 x 35<br>4,0 x 40 | 8,0<br>8,0 | 16         | 24         | 1,08<br>1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,77                                   |                            | 0,84                       |                                            |                                             | 2         | 1,0                        |                            |
| 4,0 x 40<br>4,0 x 45 | 8,0        | 18         | 27         | 1,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,77                                   |                            | 0,88                       |                                            |                                             | 2         | 1,                         |                            |
| 4,0 x 45             | 8,0        | 20         | 30         | 1,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,77                                   |                            | 0,00                       |                                            |                                             | 2         | 1,:                        |                            |
| 4,0 x 50             | 8,0        | 24         | 36         | 1,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,77                                   |                            | 1,01                       |                                            |                                             | 2         | 1,:                        |                            |
| 4,0 x 70             | 8,0        | 28         | 42         | 2,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,77                                   |                            | 1,01                       |                                            |                                             | 2         | 1,:                        |                            |
| 4,0 x 80             | 8,0        | 32         | 48         | 2,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,77                                   |                            | 1,03                       |                                            |                                             | 2         | 1,                         |                            |
| 4,5 x 40             | 9,0        | 16         | 24         | 1,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,97                                   |                            | 1,00                       |                                            |                                             | 2         | 1,:                        |                            |
| 4,5 x 45             | 9,0        | 18         | 27         | 1,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,97                                   |                            | 1,03                       |                                            |                                             | 2         | 1,4                        |                            |
| 4,5 x 50             | 9,0        | 20         | 30         | 1,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,97                                   |                            | 1,08                       |                                            |                                             | 2         | 1,                         |                            |
| 4,5 x 55             | 9,0        | 19         | 36         | 2,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,97                                   |                            | 1,05                       |                                            |                                             | 2         | 1,:                        |                            |
| 4,5 x 60             | 9,0        | 24         | 36         | 2,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,97                                   |                            | 1,17                       |                                            |                                             | 2         | 1,                         |                            |
| 4,5 x 70             | 9,0        | 28         | 42         | 2,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,97                                   |                            | 1,26                       |                                            |                                             | 2         | 1,0                        |                            |
| 4,5 x 80             | 9,0        | 32         | 48         | 2,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,97                                   |                            | 1,26                       |                                            |                                             | 2         | 1,7                        |                            |
| 5,0 x 40             | 10,0       | 16         | 24         | 1,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,11                       |                                            |                                             | 2         | 1,4                        |                            |
| 5,0 x 50             | 10,0       | 20         | 30         | 1,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,24                       |                                            |                                             | 2         | 1,0                        |                            |
| 5,0 x 60             | 10,0       | 24         | 36         | 2,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,34                       |                                            |                                             | 2         | 1,7                        |                            |
| 5,0 x 70             | 10,0       | 28         | 42         | 2,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,44                       |                                            |                                             | 2         | 1,8                        |                            |
| 5,0 x 80             | 10,0       | 32         | 48         | 2,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,52                       | !                                          |                                             | 2         | 1,9                        | 94                         |
| 5,0 x 90             | 10,0       | 36         | 54         | 3,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,52                       | !                                          |                                             | 2         | 2,                         | 03                         |
| 5,0 x 100            | 10,0       | 40         | 60         | 3,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,52                       |                                            |                                             | 2         | 2,                         |                            |
| 5,0 x 120            | 10,0       | 50         | 70         | 4,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,20                                   |                            | 1,52                       | !                                          |                                             | 2         | 2,                         | 27                         |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{Mr}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{N} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d=2,00\cdot1,35+3,00\cdot1,5=7,20$  kN.

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella.}$ 

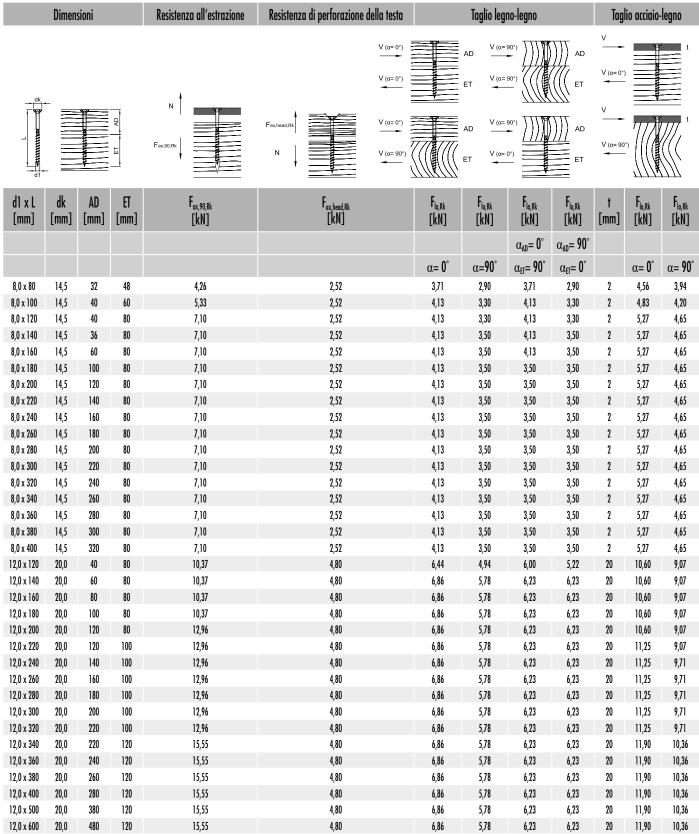
## INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO BLU ZINCATO



|                | Dimensioni Resistenza all'estrazion |            |            |                               | Resistenza di perforazione del | la testa                        | a Taglio legno-legno       |                            |                                     |                                   |                       | Taglio acciaio-legno       |                            |  |
|----------------|-------------------------------------|------------|------------|-------------------------------|--------------------------------|---------------------------------|----------------------------|----------------------------|-------------------------------------|-----------------------------------|-----------------------|----------------------------|----------------------------|--|
| dk grunning di | -                                   |            | ET AD      | N Fax,90,Rik                  | Fax.head.Rx                    | V (α= 0°)  V (α= 0°)  V (α= 0°) |                            | AD                         | = 90°)<br>= 90°)<br>= 90°)<br>= 0°) | AD ET ET                          | V (α= 0°)  V (α= 90°) |                            | t t                        |  |
| d1 x L<br>[mm] | dk<br>[mm]                          | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | $F_{\alpha_{X,head,Rk}}$ [kN]  |                                 | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]          | F <sub>la,Rk</sub><br>[kN]        | t<br>[mm]             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |  |
|                |                                     |            |            |                               |                                |                                 |                            |                            | $\alpha_{AD} = 0^{\circ}$           | $\alpha_{\text{AD}} = 90^{\circ}$ |                       |                            |                            |  |
|                |                                     |            |            |                               |                                |                                 | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{ET}} = 90^{\circ}$   | $\alpha_{\text{ET}} = 0^{\circ}$  |                       | $\alpha$ = 0°              | α= <b>90</b> °             |  |
| 6,0 x 60       | 12,0                                | 24         | 36         | 2,46                          | 1,73                           |                                 |                            | 1                          | ,71                                 |                                   | 2                     | 2                          | ,26                        |  |
| 6,0 x 70       | 12,0                                | 28         | 42         | 2,87                          | 1,73                           |                                 |                            |                            | ,82                                 |                                   | 2                     |                            | 2,36                       |  |
| 6,0 x 80       | 12,0                                | 32         | 48         | 3,28                          | 1,73                           |                                 |                            | 1                          | ,93                                 |                                   | 2                     | 2                          | ,46                        |  |
| 6,0 x 90       | 12,0                                | 36         | 54         | 3,69                          | 1,73                           |                                 |                            | 2                          | 2,05                                |                                   |                       |                            | 2,57                       |  |
| 6,0 x 100      | 12,0                                | 40         | 60         | 4,10                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | ,67                        |  |
| 6,0 x 110      | 12,0                                | 40         | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | 2,84                       |  |
| 6,0 x 120      | 12,0                                | 50         | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | ,84                        |  |
| 6,0 x 130      | 12,0                                | 60         | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | 2,84                       |  |
| 6,0 x 140      | 12,0                                | 70         | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | ,84                        |  |
| 6,0 x 150      | 12,0                                | 80         | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | 2,84                       |  |
| 6,0 x 160      | 12,0                                | 90         | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | ,84                        |  |
| 6,0 x 180      | 12,0                                | 110        | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | 2,84                       |  |
| 6,0 x 200      | 12,0                                | 130        | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | 2,84                       |  |
| 6,0 x 220      | 12,0                                | 150        | 70         | 4,79                          | 1,73                           |                                 | 2,07                       |                            |                                     |                                   | 2                     | 2                          | 2,84                       |  |
| 6,0 x 240      | 12,0                                | 170        | 70         | 4,79                          | 1,73                           |                                 | 2,07                       |                            |                                     |                                   | 2                     |                            |                            |  |
| 6,0 x 260      | 12,0                                | 190        | 70         | 4,79                          | 1,73                           |                                 | 2,07                       |                            |                                     |                                   | 2                     | 2                          | 2,84                       |  |
| 6,0 x 280      | 12,0                                | 210        | 70         | 4,79                          | 1,73                           |                                 | 2,07                       |                            |                                     |                                   | 2                     | 2                          | ,84                        |  |
| 6,0 x 300      | 12,0                                | 230        | 70         | 4,79                          | 1,73                           |                                 |                            | 2                          | 2,07                                |                                   | 2                     | 2                          | 2,84                       |  |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{dk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).


#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 



Misurazione a norma ETA-11/0024. Spessore grezzo  $ho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

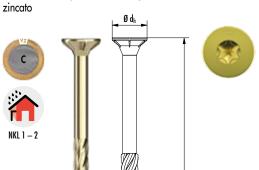
#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_{M}$ = 1,3.

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 


## **PANELTWISTEC**

## Acciaio giallo zincato

#### **Paneltwistec**

Testa svasata, punta della vite con scanalatura autopulente, acciaio giallo





| . art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta           | Pz./conf. |
|--------|----------|-------|-----------|---------|------------------|-----------|
| )3000  | 3,5      | 30    | 7,0       | 18      | TX20 -           | 1000      |
| )3044  | 3,5      | 35    | 7,0       | 21      | TX20 -           | 1000      |
| 3001   | 3,5      | 40    | 7,0       | 24      | TX20 -           | 1000      |
| 3002   | 3,5      | 50    | 7,0       | 30      | TX20 -           | 500       |
| )3003  | 4,0      | 30    | 8,0       | 18      | TX20 -           | 1000      |
| 3603   | 4,0      | 35    | 8,0       | 21      | TX20 -           | 1000      |
| )3004  | 4,0      | 40    | 8,0       | 24      | TX20 -           | 1000      |
| )2089  | 4,0      | 45    | 8,0       | 27      | TX20 -           | 500       |
| 3005   | 4,0      | 50    | 8,0       | 30      | TX20 -           | 500       |
| 03006  | 4,0      | 60    | 8,0       | 36      | TX20 •           | 200       |
| 3007   | 4,0      | 70    | 8,0       | 42      | TX20 •           | 200       |
| )3008  | 4,0      | 80    | 8,0       | 48      | TX20 •           | 200       |
| )3046  | 4,5      | 35    | 9,0       | 24      | TX20 -           | 500       |
| 3009   | 4,5      | 40    | 9,0       | 27      | TX20 -           | 500       |
| 3087   | 4,5      | 45    | 9,0       | 30      | TX20 -           | 500       |
| 3010   | 4,5      | 50    | 9,0       | 36      | TX20 -           | 500       |
| 03011  | 4,5      | 60    | 9,0       | 42      | TX20 -           | 200       |
| 03012  | 4,5      | 70    | 9,0       | 48      | TX20 -           | 200       |
| 03012  | 4,5      | 80    | 9,0       | 24      | TX20 -           | 200       |
| 03014  | 5,0      | 40    | 10,0      | 27      | TX20 -           | 200       |
| 3015   | 5,0      | 50    | 10,0      | 30      | TX20 -           | 200       |
| 3016   | 5,0      | 60    | 10,0      | 36      | TX20 -           | 200       |
| )3017  | 5,0      | 70    | 10,0      | 42      | TX20 •           | 200       |
| 3018   | 5,0      | 80    | 10,0      | 48      | TX20 •           | 200       |
| )3578  |          | 90    |           | 54      |                  | 200       |
| )3019  | 5,0      | 100   | 10,0      |         | TX20 -<br>TX20 - | 200       |
| )3020  | 5,0      |       | 10,0      | 60      |                  |           |
|        | 5,0      | 120   | 10,0      | 70      | TX20 •           | 200       |
| 03071  | 5,0      | 40    | 10,0      | 24      | TX25 •           | 200       |
| 03072  | 5,0      | 50    | 10,0      | 30      | TX25 •           | 200       |
| 03073  | 5,0      | 60    | 10,0      | 36      | TX25 •           | 200       |
| 03074  | 5,0      | 70    | 10,0      | 42      | TX25 •           | 200       |
| 03075  | 5,0      | 80    | 10,0      | 48      | TX25 •           | 200       |
| 3582   | 5,0      | 90    | 10,0      | 54      | TX25 •           | 200       |
| 03076  | 5,0      | 100   | 10,0      | 60      | TX25 •           | 200       |
| 03077  | 5,0      | 120   | 10,0      | 70      | TX25 ●           | 200       |
| 03021  | 6,0      | 60    | 12,0      | 36      | TX30 •           | 200       |
| 03022  | 6,0      | 70    | 12,0      | 42      | TX30 •           | 200       |
| 03023  | 6,0      | 80    | 12,0      | 48      | TX30 •           | 200       |
| 03163  | 6,0      | 90    | 12,0      | 54      | TX30 •           | 100       |
| 03024  | 6,0      | 100   | 12,0      | 60      | TX30 •           | 100       |
| 03039  | 6,0      | 110   | 12,0      | 70      | TX30 •           | 100       |
| 03025  | 6,0      | 120   | 12,0      | 70      | TX30 •           | 100       |
| 03026  | 6,0      | 130   | 12,0      | 70      | TX30 •           | 100       |
| )3027  | 6,0      | 140   | 12,0      | 70      | TX30 •           | 100       |
| 03028  | 6,0      | 150   | 12,0      | 70      | TX30 •           | 100       |
| )3029  | 6,0      | 160   | 12,0      | 70      | TX30 •           | 100       |
| 03031  | 6,0      | 180   | 12,0      | 70      | TX30 •           | 100       |
| )3032  | 6,0      | 200   | 12,0      | 70      | TX30 •           | 100       |
| )3033  | 6,0      | 220   | 12,0      | 70      | TX30 •           | 100       |
| 03034  | 6,0      | 240   | 12,0      | 70      | TX30 •           | 100       |
| 03035  | 6,0      | 260   | 12,0      | 70      | TX30 •           | 100       |
| )3036  | 6,0      | 280   | 12,0      | 70      | TX30 •           | 100       |
| )3037  | 6,0      | 300   | 12,0      | 70      | TX30 •           | 100       |
| 03550  | 8,0      | 80    | 14,5      | 48      | TX40 •           | 50        |
| )3551  | 8,0      | 100   | 14,5      | 60      | TX40 •           | 50        |
| )2920  | 8,0      | 120   | 14,5      | 80      | TX40 •           | 50        |
|        |          |       |           |         |                  |           |
| )2919  | 8,0      | 140   | 14,5      | 80      | TX40 •           | 50        |



## **Eurotec**® | Paneltwistec

# Paneltwistec Testa svasata, punta della vite con scanalatura autopulente, acciaio giallo zincato NKL 1 – 2

| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta        | Pz./conf. |
|---------|----------|-------|-----------|---------|---------------|-----------|
| 902922  | 8,0      | 180   | 14,5      | 80      | TX40 •        | 50        |
| 902923  | 8,0      | 200   | 14,5      | 80      | TX40 •        | 50        |
| 902924  | 8,0      | 220   | 14,5      | 80      | TX40 •        | 50        |
| 902925  | 8,0      | 240   | 14,5      | 80      | TX40 •        | 50        |
| 902926  | 8,0      | 260   | 14,5      | 80      | TX40 •        | 50        |
| 902928  | 8,0      | 300   | 14,5      | 80      | TX40 •        | 50        |
| 902929  | 8,0      | 320   | 14,5      | 80      | TX40 •        | 50        |
| 902930  | 8,0      | 340   | 14,5      | 80      | TX40 •        | 50        |
| 902931  | 8,0      | 360   | 14,5      | 80      | TX40 •        | 50        |
| 902932  | 8,0      | 380   | 14,5      | 80      | TX40 •        | 50        |
| 903030  | 8,0      | 400   | 14,5      | 80      | TX40 •        | 50        |
| 903513  | 10,0     | 100   | 17,4      | 60      | TX50 ●        | 50        |
| 903491  | 10,0     | 120   | 17,4      | 90      | TX50 ●        | 50        |
| 903492  | 10,0     | 140   | 17,4      | 90      | TX50 <b>●</b> | 50        |
| 903493  | 10,0     | 160   | 17,4      | 90      | TX50 ●        | 50        |
| 903494  | 10,0     | 180   | 17,4      | 90      | TX50 ●        | 50        |
| 903495  | 10,0     | 200   | 17,4      | 90      | TX50 ●        | 50        |
| 903496  | 10,0     | 220   | 17,4      | 90      | TX50 ●        | 50        |
| 903497  | 10,0     | 240   | 17,4      | 90      | TX50 <b>●</b> | 50        |
| 903498  | 10,0     | 260   | 17,4      | 90      | TX50 ●        | 50        |
| 903499  | 10,0     | 280   | 17,4      | 90      | TX50 ●        | 50        |
| 903500  | 10,0     | 300   | 17,4      | 90      | TX50 ●        | 50        |
| 903501  | 10,0     | 320   | 17,4      | 90      | TX50 <b>●</b> | 50        |
| 903502  | 10,0     | 340   | 17,4      | 90      | TX50 ●        | 50        |
| 903503  | 10,0     | 360   | 17,4      | 90      | TX50 ●        | 50        |
| 903504  | 10,0     | 380   | 17,4      | 90      | TX50 ●        | 50        |
| 903505  | 10,0     | 400   | 17,4      | 90      | TX50 ●        | 50        |



Avvitamento facile di una struttura a intelaiatura lignea tamponata con le nostre Paneltwistec a testa svasata

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO GIALLO ZINCATO

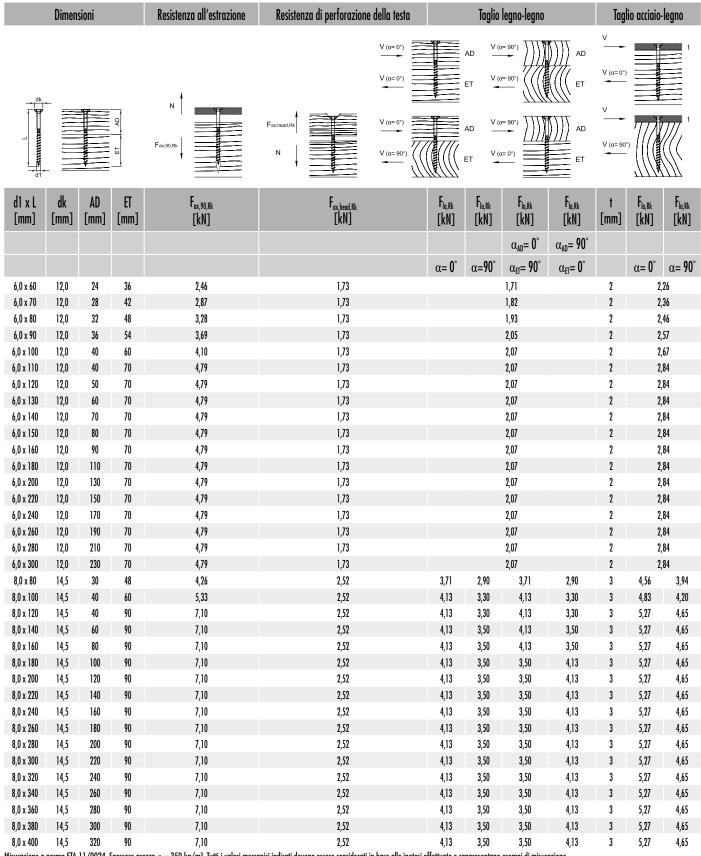


|                      | Dimen      | ensioni Resistenza all'estrazione Resistenza di perforazione della testa |            |                               |                                 |                                           |                            |                            | gno-legno                  |                            | Tagl               | io acciaio                 | ·legno                     |
|----------------------|------------|--------------------------------------------------------------------------|------------|-------------------------------|---------------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------|----------------------------|----------------------------|
| dk di                |            |                                                                          | ET AD      | N Fax,90,Rk                   | V Fax.head.Rk V                 | (a= 0°)<br>(a= 0°)<br>(a= 0°)<br>(a= 90°) |                            | AD                         | i= 90°) i= 90°) i= 90°)    | AD ET                      | V (a= 0°) V (a= 90 | 77/                        | t                          |
| dl x L<br>[mm]       | dk<br>[mm] | AD<br>[mm]                                                               | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN] |                                           | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | t<br>[mm]          | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                      | []         | Liiiii                                                                   |            | [m]                           | [,,,,]                          |                                           | [KII]                      | [KII]                      |                            |                            | []                 | [KII]                      | LWI                        |
|                      |            |                                                                          |            |                               |                                 |                                           | ۸۰                         | 000                        | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$ |                    | ۸۰                         | 000                        |
|                      |            |                                                                          |            |                               |                                 |                                           | $\alpha = 0^{\circ}$       | α= <b>90</b> °             | $\alpha_{\rm H}$ = 90°     | $\alpha_{\rm EI}$ = 0°     |                    | α= <b>0</b> °              | α= <b>90</b> °             |
| 3,5 x 30             | 7,0        | 12                                                                       | 18         | 0,84                          | 0,59                            |                                           |                            |                            | ),62                       |                            | 1                  |                            | 86                         |
| 3,5 x 35             | 7,0        | 14                                                                       | 21         | 0,98                          | 0,59                            |                                           |                            |                            | ),67                       |                            | 1                  |                            | 92                         |
| 3,5 x 40             | 7,0        | 16                                                                       | 24         | 1,12                          | 0,59                            |                                           |                            |                            | ),70                       |                            | 1                  |                            | 95                         |
| 3,5 x 45             | 7,0        | 18                                                                       | 27         | 1,26                          | 0,59                            |                                           |                            |                            | ),74                       |                            | 1                  |                            | 99                         |
| 3,5 x 50             | 7,0        | 20                                                                       | 30         | 1,40                          | 0,59                            |                                           |                            |                            | ),78                       |                            | 1                  |                            | 02                         |
| 4,0 x 30             | 8,0        | 12                                                                       | 18         | 0,93                          | 0,77                            |                                           |                            |                            | ),71                       |                            | 2                  |                            | 91                         |
| 4,0 x 35             | 8,0        | 14                                                                       | 21         | 1,08                          | 0,77                            |                                           |                            |                            | ),80<br>),84               |                            | 2                  |                            | 07                         |
| 4,0 x 40<br>4,0 x 45 | 8,0<br>8,0 | 16<br>18                                                                 | 24<br>27   | 1,24<br>1,39                  | 0,77<br>0,77                    |                                           |                            |                            | ),88                       |                            | 2                  |                            | 15<br>19                   |
| 4,0 x 45<br>4,0 x 50 | 8,0        | 20                                                                       | 30         | 1,55                          | 0,77                            |                                           |                            |                            | ),92                       |                            | 2                  |                            | 23                         |
| 4,0 x 50<br>4,0 x 60 | 8,0        | 24                                                                       | 36         | 1,86                          | 0,77                            |                                           |                            |                            | ,,72<br>1,01               |                            | 2                  |                            | 31                         |
| 4,0 x 70             | 8,0        | 28                                                                       | 42         | 2,17                          | 0,77                            |                                           |                            |                            | ,03                        |                            | 2                  |                            | 38                         |
| 4,0 x 80             | 8,0        | 32                                                                       | 48         | 2,48                          | 0,77                            |                                           |                            |                            | ,03                        |                            | 2                  |                            | 46                         |
| 4,5 x 35             | 9,0        | 14                                                                       | 21         | 1,18                          | 0,97                            |                                           |                            |                            | ),90                       |                            | 2                  |                            | 32                         |
| 4,5 x 40             | 9,0        | 16                                                                       | 24         | 1,35                          | 0,97                            |                                           |                            |                            | ,,00                       |                            | 2                  |                            | 34                         |
| 4,5 x 45             | 9,0        | 18                                                                       | 27         | 1,52                          | 0,97                            |                                           |                            |                            | 1,03                       |                            | 2                  |                            | 40                         |
| 4,5 x 50             | 9,0        | 20                                                                       | 30         | 1,69                          | 0,97                            |                                           |                            |                            | ,08                        |                            | 2                  |                            | 44                         |
| 4,5 x 60             | 9,0        | 24                                                                       | 36         | 2,03                          | 0,97                            |                                           |                            |                            | ,17                        |                            | 2                  |                            | 53                         |
| 4,5 x 70             | 9,0        | 28                                                                       | 42         | 2,36                          | 0,97                            |                                           |                            |                            | ,26                        |                            | 2                  |                            | 61                         |
| 4,5 x 80             | 9,0        | 32                                                                       | 48         | 2,70                          | 0,97                            |                                           |                            |                            | ,26                        |                            | 2                  |                            | 70                         |
| 5,0 x 40*            | 10,0       | 16                                                                       | 24         | 1,45                          | 1,20                            |                                           |                            |                            | ,<br>1,11                  |                            | 2                  |                            | 44                         |
| 5,0 x 50*            | 10,0       | 20                                                                       | 30         | 1,82                          | 1,20                            |                                           |                            |                            | ,24                        |                            | 2                  |                            | 67                         |
| 5,0 x 60*            | 10,0       | 24                                                                       | 36         | 2,18                          | 1,20                            |                                           |                            |                            | ,<br>,34                   |                            | 2                  |                            | 76                         |
| 5,0 x 70*            | 10,0       | 28                                                                       | 42         | 2,54                          | 1,20                            |                                           |                            |                            | ,<br>1,44                  |                            | 2                  |                            | 85                         |
| 5,0 x 80*            | 10,0       | 32                                                                       | 48         | 2,90                          | 1,20                            |                                           |                            |                            | ,52                        |                            | 2                  |                            | 94                         |
| 5,0 x 90*            | 10,0       | 36                                                                       | 54         | 3,27                          | 1,20                            |                                           |                            |                            | ,52                        |                            | 2                  |                            | 03                         |
| 5,0 x 100*           | 10,0       | 40                                                                       | 60         | 3,63                          | 1,20                            |                                           |                            |                            | ,52                        |                            | 2                  | 2,                         | 12                         |
| 5,0 x 120*           | 10,0       | 50                                                                       | 70         | 4,24                          | 1,20                            |                                           |                            |                            | ,52                        |                            | 2                  | 2,                         | .27                        |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:


Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{Nl} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d$ = 2,00 · 1,35 + 3,00 · 1,5=  $\overline{7,20 \text{ kN}}$ .

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min R<sub>L</sub>= R<sub>d</sub>·  $\gamma_M$  /  $k_{mod}$   $\rightarrow$  R<sub>L</sub>= 7,20 kN · 1,3/0,9=  $\underline{10,40 \text{ kN}}$   $\rightarrow$  Allineamento con i valori della tabella.

## **Eurotec** Paneltwistec



Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } \textit{R}_{\textit{d}} \geq \textit{E}_{\textit{d}}. \longrightarrow \text{min } \textit{R}_{\textit{k}} = \textit{R}_{\textit{d}} \cdot \gamma_{\textit{M}} \: / \: k_{\textit{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

 $<sup>\</sup>rightarrow$  Valore di misurazione dell'effetto  $E_d$ = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO GIALLO ZINCATO



|                | Dimens     | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione della testa     |                            | Taglio legno-legno         |                            |                               | Taglio acciaio-legno |                            |                            |
|----------------|------------|------------|------------|-------------------------------|--------------------------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|----------------------|----------------------------|----------------------------|
| dk             |            |            | ET AD      | N Fax,90,Rk                   | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 0°) |                            | ET V(                      | = 90°)<br>= 90°)           | AD ET                         | V (α= 0°  V (α= 90°  |                            | 1                          |
| d1 x L<br>[mm] | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]    | t<br>[mm]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                |            |            |            |                               |                                            |                            |                            | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$    |                      |                            |                            |
|                |            |            |            |                               |                                            | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\rm EI}$ = 90°    | $\alpha_{\rm EI} = 0^{\circ}$ |                      | α= <b>0</b> °              | α= <b>90</b> °             |
| 10,0 x 100     | 17,4       | 40         | 60         | 6,48                          | 3,63                                       | 5,73                       | 4,37                       | 5,73                       | 4,37                          | 3                    | 6,78                       | 5,81                       |
| 10,0 x 120     | 17,4       | 20         | 90         | 9,72                          | 3,63                                       | 4,44                       | 3,67                       | 3,71                       | 3,67                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 140     | 17,4       | 40         | 90         | 9,72                          | 3,63                                       | 5,73                       | 4,37                       | 5,73                       | 4,37                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 160     | 17,4       | 60         | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 6,07                       | 5,10                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 180     | 17,4       | 80         | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 6,07                       | 5,10                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 200     | 17,4       | 100        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 220     | 17,4       | 120        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 240     | 17,4       | 140        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 260     | 17,4       | 160        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 280     | 17,4       | 180        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 300     | 17,4       | 200        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 320     | 17,4       | 220        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 340     | 17,4       | 240        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 360     | 17,4       | 260        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 380     | 17,4       | 280        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |
| 10,0 x 400     | 17,4       | 300        | 90         | 9,72                          | 3,63                                       | 6,07                       | 5,10                       | 5,10                       | 6,07                          | 3                    | 7,59                       | 6,62                       |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

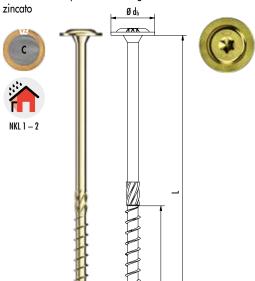
I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{Mr}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{M} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

 $La\ capacità\ di\ carico\ del\ collegamento\ si\ applica\ così\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = \ R_d \cdot \gamma_M\ /\ k_{mod}$ 


Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## **Eurotec**\* | Paneltwistec

## Paneltwistec

Testa piatta, punta della vite con scanalatura autopulente, acciaio giallo zincato





| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| G903204 | 8,0      | 80    | 22,0      | 48      | TX40 ● | 50        |
| G903205 | 8,0      | 100   | 22,0      | 60      | TX40 • | 50        |
| G903466 | 8,0      | 120   | 22,0      | 80      | TX40 • | 50        |
| G903467 | 8,0      | 140   | 22,0      | 80      | TX40 • | 50        |
| G903468 | 8,0      | 160   | 22,0      | 80      | TX40 • | 50        |
| G903469 | 8,0      | 180   | 22,0      | 80      | TX40 • | 50        |
| G903470 | 8,0      | 200   | 22,0      | 80      | TX40 • | 50        |
| G903471 | 8,0      | 220   | 22,0      | 80      | TX40 • | 50        |
| G903472 | 8,0      | 240   | 22,0      | 80      | TX40 • | 50        |
| G903473 | 8,0      | 260   | 22,0      | 80      | TX40 • | 50        |
| G903474 | 8,0      | 280   | 22,0      | 80      | TX40 • | 50        |
| G903475 | 8,0      | 300   | 22,0      | 80      | TX40 • | 50        |
| G903476 | 8,0      | 320   | 22,0      | 80      | TX40 • | 50        |
| G903477 | 8,0      | 340   | 22,0      | 80      | TX40 • | 50        |
| G903478 | 8,0      | 360   | 22,0      | 80      | TX40 • | 50        |
| G904625 | 8,0      | 380   | 22,0      | 80      | TX40 • | 50        |
| G904626 | 8,0      | 400   | 22,0      | 80      | TX40 • | 50        |



Awitamento facile di strutture a intelaiatura lignea tamponata con le nostre Paneltwistec a testa piatta

## INFORMAZIONI TECNICHE PANELTWISTEC, TESTA PIATTA, ACCIAIO GIALLO ZINCATO



|                | Dimensioni |            |            | Resistenza all'estrazione     | Resistenza di perforazione della testa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Taglio le                  | gno-legno                  |                                  | Tagl                                                | io acciaio-                | legno                      |
|----------------|------------|------------|------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|-----------------------------------------------------|----------------------------|----------------------------|
| dk QV          |            |            |            | N Fax.90.Rk                   | $\begin{array}{c c} V \ (\alpha=0^{\circ}) \\ \hline \\ V \ (\alpha=0^{\circ}) \\ \hline$ |                            | ET V(c                     | = 90°)<br>= 90°)<br>= 90°) | AD AD ET                         | V (α= 1 V (α= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -<br>-<br>-<br>-           | t                          |
| d1 x L<br>[mm] | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]                                           | F <sub>la,Rk</sub><br>[kN] | F <sub>lα,Rk</sub><br>[kN] |
|                |            |            |            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                            | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$       |                                                     |                            |                            |
|                |            |            |            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{EI}}$ = 90° | $\alpha_{\text{ET}} = 0^{\circ}$ |                                                     | α= <b>0</b> °              | α= <b>90</b> °             |
| 8,0 x 80       | 22,0       | 30         | 50         | 4,26                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,27                       | 3,41                       | 4,27                       | 3,41                             | 3                                                   | 4,56                       | 3,94                       |
| 8,0 x 100      | 22,0       | 40         | 60         | 5,33                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,83                       | 4,01                       | 4,83                       | 4,01                             | 3                                                   | 4,83                       | 4,20                       |
| 8,0 x 120      | 22,0       | 40         | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,13                       | 4,95                       | 4,13                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 140      | 22,0       | 60         | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,95                       | 4,32                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 160      | 22,0       | 80         | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,95                       | 4,32                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 180      | 22,0       | 100        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 200      | 22,0       | 120        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 220      | 22,0       | 140        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 240      | 22,0       | 160        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 260      | 22,0       | 180        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 280      | 22,0       | 200        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 300      | 22,0       | 220        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 320      | 22,0       | 240        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 340      | 22,0       | 260        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 360      | 22,0       | 280        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 380      | 22,0       | 300        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |
| 8,0 x 400      | 22,0       | 320        | 80         | 7,10                          | 5,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,95                       | 4,32                       | 4,32                       | 4,95                             | 3                                                   | 5,27                       | 4,65                       |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

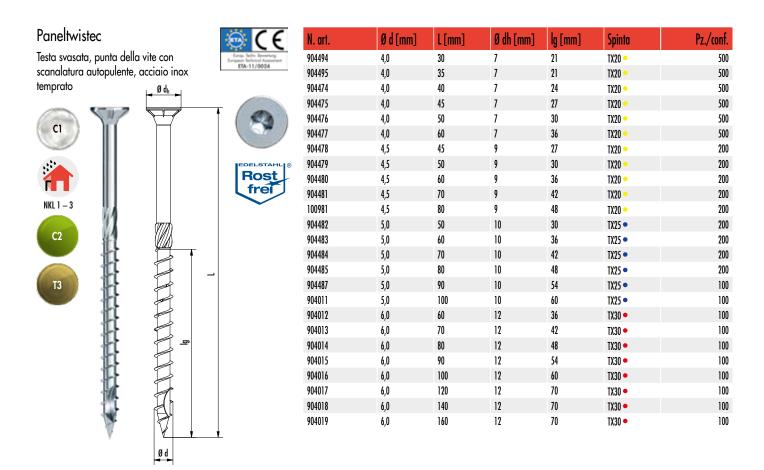
Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

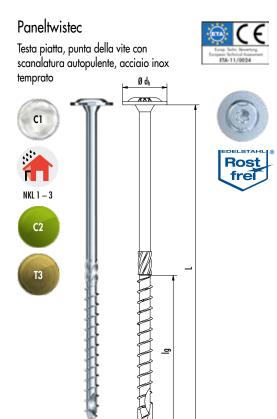
I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{M_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

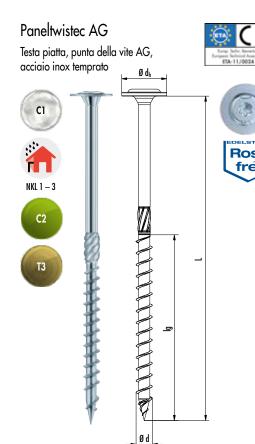
Valore tipico di un efftto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_{N}$ = 1,3.

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d$ = 2,00  $\cdot$  1,35 + 3,00  $\cdot$  1,5=  $\overline{7,20~kN}$ .


La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 


Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 




## PANELTWISTEC, PANELTWISTEC AG

Acciaio inox temprato





| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 945278  | 8,0      | 80    | 16        | 48      | TX40 • | 50        |
| 945270  | 8,0      | 100   | 16        | 60      | TX40 • | 50        |
| 945271  | 8,0      | 120   | 16        | 80      | TX40 • | 50        |
| 945272  | 8,0      | 140   | 16        | 80      | TX40 • | 50        |
| 945364  | 8,0      | 160   | 16        | 80      | TX40 • | 50        |
| 945365  | 8,0      | 180   | 16        | 80      | TX40 • | 50        |
| 945366  | 8,0      | 200   | 16        | 80      | TX40 • | 50        |
| 945367  | 8,0      | 220   | 16        | 80      | TX40 • | 50        |
| 945368  | 8,0      | 240   | 16        | 80      | TX40 • | 50        |
| 945369  | 8,0      | 260   | 16        | 80      | TX40 • | 50        |
| 945370  | 8,0      | 280   | 16        | 80      | TX40 • | 50        |
| 945371  | 8,0      | 300   | 16        | 80      | TX40 • | 50        |
| 945372  | 8,0      | 320   | 16        | 80      | TX40 • | 50        |
| 945373  | 8,0      | 340   | 16        | 80      | TX40 • | 50        |
| 945374  | 8,0      | 360   | 16        | 80      | TX40 • | 50        |
| 945375  | 8,0      | 380   | 16        | 80      | TX40 • | 50        |
| 945376  | 8,0      | 400   | 16        | 80      | TX40 • | 50        |



|         |          |       |           | _       |        |           |
|---------|----------|-------|-----------|---------|--------|-----------|
| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
| 975771  | 6,0      | 40    | 14,0      | 24      | TX30 • | 100       |
| 975772  | 6,0      | 60    | 14,0      | 36      | TX30 • | 100       |
| 975773  | 6,0      | 80    | 14,0      | 48      | TX30 • | 100       |
| 975774  | 6,0      | 100   | 14,0      | 60      | TX30 • | 100       |
| 975775  | 6,0      | 120   | 14,0      | 70      | TX30 • | 100       |
| 975776  | 6,0      | 140   | 14,0      | 70      | TX30 • | 100       |
| 975777  | 6,0      | 160   | 14,0      | 70      | TX30 • | 100       |

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO INOX TEMPRATO



| Dimensioni Resistenzo |            |            |            | Resistenza all'estrazione     | Resistenza di perforazione      | della testa                                 |                            | Taglio la                  | egno-legno                    |                              | Tagl                  | io acciaio-                | legno                      |
|-----------------------|------------|------------|------------|-------------------------------|---------------------------------|---------------------------------------------|----------------------------|----------------------------|-------------------------------|------------------------------|-----------------------|----------------------------|----------------------------|
| dk minimus di         | -          |            | ET AD      | N Fax,90,Rik                  | Fax.head.Rx                     | V (α= 0°)  V (α= 0°)  V (α= 0°)  V (α= 90°) |                            | ET V(a                     | = 90°)<br>= 90°)<br>= 90°)    | AD ET                        | V (a= 0°)  V (a= 90°) | 77/1                       | t                          |
| d1 x L<br>[mm]        | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN] |                                             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]    | F <sub>la,Rk</sub><br>[kN]   | †<br>[mm]             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                       | <u>.</u>   | L3         | L          |                               | 22                              |                                             | []                         | []                         | $\alpha_{AD} = 0^{\circ}$     | $\alpha_{AD} = 90^{\circ}$   | L                     | []                         | []                         |
|                       |            |            |            |                               |                                 |                                             | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\rm H} = 90^{\circ}$ | $\alpha_{\rm H} = 0^{\circ}$ |                       | α= <b>0</b> °              | α= <b>90</b> °             |
| 4,0 x 30              | 8,0        | 12         | 18         | 0,93                          | 0,77                            |                                             | w- <b>v</b>                |                            | 0,71                          | oti− o                       | 2                     |                            | 91                         |
| 4,0 x 35              | 8,0        | 14         | 21         | 1,08                          | 0,77                            |                                             |                            |                            | 0,80                          |                              | 2                     |                            | 07                         |
| 4,0 x 40              | 8,0        | 16         | 24         | 1,24                          | 0,77                            |                                             |                            |                            | 0,84                          |                              | 2                     |                            | 15                         |
| 4,0 x 45              | 8,0        | 18         | 27         | 1,39                          | 0,77                            |                                             |                            |                            | 0,88                          |                              | 2                     |                            | 19                         |
| 4,0 x 50              | 8,0        | 20         | 30         | 1,55                          | 0,77                            |                                             |                            |                            | 0,92                          |                              | 2                     |                            | 23                         |
| 4,0 x 60              | 8,0        | 24         | 36         | 1,86                          | 0,77                            |                                             |                            |                            | 1,01                          |                              | 2                     |                            | 31                         |
| 4,5 x 45              | 9,0        | 18         | 27         | 1,52                          | 0,97                            |                                             |                            |                            | 1,00                          |                              | 2                     |                            | 37                         |
| 4,5 x 50              | 9,0        | 20         | 30         | 1,69                          | 0,97                            |                                             |                            |                            | 1,08                          |                              | 2                     |                            | 44                         |
| 4,5 x 60              | 9,0        | 24         | 36         | 2,03                          | 0,97                            |                                             |                            |                            | 1,17                          |                              | 2                     | 1,                         | 53                         |
| 4,5 x 70              | 9,0        | 28         | 42         | 2,36                          | 0,97                            |                                             |                            |                            | 1,23                          |                              | 2                     |                            | 61                         |
| 4,5 x 80              | 9,0        | 32         | 48         | 2,70                          | 0,97                            |                                             |                            |                            | 1,23                          |                              | 2                     | 1,                         | 75                         |
| 5,0 x 50              | 10,0       | 20         | 30         | 1,82                          | 1,20                            |                                             |                            |                            | 1,24                          |                              | 2                     |                            | 67                         |
| 5,0 x 60              | 10,0       | 24         | 36         | 2,18                          | 1,20                            |                                             |                            |                            | 1,34                          |                              | 2                     | 1,                         | 76                         |
| 5,0 x 70              | 10,0       | 28         | 42         | 2,54                          | 1,20                            |                                             |                            |                            | 1,44                          |                              | 2                     |                            | 85                         |
| 5,0 x 80              | 10,0       | 32         | 48         | 2,90                          | 1,20                            |                                             |                            |                            | 1,52                          |                              | 2                     |                            | 94                         |
| 5,0 x 90              | 10,0       | 36         | 54         | 3,27                          | 1,20                            |                                             |                            |                            | 1,52                          |                              | 2                     |                            | 03                         |
| 5,0 x 100             | 10,0       | 40         | 60         | 3,63                          | 1,20                            |                                             |                            |                            | 1,52                          |                              | 2                     |                            | 12                         |
| 6,0 x 60              | 12,0       | 24         | 36         | 2,46                          | 1,73                            |                                             |                            |                            | 1,65                          |                              | 2                     |                            | 21                         |
| 6,0 x 70              | 12,0       | 28         | 42         | 2,87                          | 1,73                            |                                             |                            |                            | 1,75                          |                              | 2                     |                            | 31                         |
| 6,0 x 80              | 12,0       | 32         | 48         | 3,28                          | 1,73                            |                                             |                            |                            | 1,85                          |                              | 2                     |                            | 41                         |
| 6,0 x 90              | 12,0       | 36         | 54         | 3,69                          | 1,73                            |                                             |                            |                            | 1,96                          |                              | 2                     |                            | 51                         |
| 6,0 x 100             | 12,0       | 40         | 60         | 4,10                          | 1,73                            |                                             |                            |                            | 2,02                          |                              | 2                     |                            | 62                         |
| 6,0 x 120             | 12,0       | 50         | 70         | 4,79                          | 1,73                            |                                             |                            |                            | 1,60                          |                              | 2                     |                            | 35                         |
| 6,0 x 140             | 12,0       | 70         | 70         | 4,79                          | 1,73                            |                                             |                            |                            | 2,02                          |                              | 2                     |                            | 80                         |
| 6,0 x 160             | 12,0       | 90         | 70         | 4,79                          | 1,73                            |                                             |                            |                            | 2,02                          |                              | 2                     | 2,                         | 80                         |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Fremnio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d=2,00\cdot 1,35+3,00\cdot 1,5=7,20$  kN.

 $La~capacit\`a~di~carico~del~collegamento~si~applica~cos\`i~come~dimostrato,~se~R_d \geq E_d. \\ \longrightarrow min~R_k = ~R_d \cdot \gamma_M ~/~k_{mod} / k_{mod} / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \frac{1}{\gamma_M} / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{2} \rightarrow \text{Allineamento con i valori della tabella.}$ 

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA PIATTA, ACCIAIO INOX TEMPRATO



| Dimensioni     |            |            |            | Resistenza all'estrazione     | Resistenza di perforazione della testa                                                                                                                                    | Taglio legno-legno         |                            |                                  |                                  | Taglio acciaio-legno |                            |                            |
|----------------|------------|------------|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|----------------------|----------------------------|----------------------------|
|                | k          |            | ET AD      | N Fax.90.Rk                   | $\begin{array}{c c} V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=90^\circ) \\ \hline \\ \end{array}$ |                            | ET V(                      | α=90°)<br>α=90°)<br>α=90°)       | AD ET ET                         | V (α= 0°             |                            |                            |
| dl x L<br>[mm] | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | $F_{ m ex,head,Rk} \ [kN]$                                                                                                                                                | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]       | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                |            |            |            |                               |                                                                                                                                                                           |                            |                            | $\alpha_{\text{AD}} = 0^{\circ}$ | $\alpha_{AD}$ = 90°              |                      |                            |                            |
|                |            |            |            |                               |                                                                                                                                                                           | $\alpha$ = 0°              | α= <b>90</b> °             | $\alpha_{\text{ET}}$ = 90°       | $\alpha_{\text{EI}} = 0^{\circ}$ |                      | α= <b>0</b> °              | α= <b>90</b> °             |
| 6,0 x 60       | 14,0       | 24         | 36         | 2,46                          | 2,35                                                                                                                                                                      |                            |                            | 1,81                             |                                  | 2                    | 2                          | ,21                        |
| 6,0 x 80       | 14,0       | 32         | 48         | 3,28                          | 2,35                                                                                                                                                                      |                            |                            | 2,01                             |                                  | 2                    | 2                          | ,41                        |
| 6,0 x 100      | 14,0       | 40         | 60         | 4,10                          | 2,35                                                                                                                                                                      |                            |                            | 1,74                             |                                  | 2                    | 2                          | ,18                        |
| 6,0 x 100      | 14,0       | 40         | 60         | 4,10                          | 2,35                                                                                                                                                                      |                            |                            | 2,18                             |                                  | 2                    | 2                          | ,62                        |
| 6,0 x 120      | 14,0       | 50         | 70         | 4,80                          | 2,35                                                                                                                                                                      |                            |                            | 2,18                             |                                  | 2                    |                            | ,80                        |
| 6,0 x 160      | 14,0       | 90         | 70         | 4,80                          | 2,35                                                                                                                                                                      |                            |                            | 2,18                             |                                  | 2                    | 2                          | ,80                        |
| 8,0 x 80       | 22,0       | 30         | 50         | 4,26                          | 5,81                                                                                                                                                                      | 3,94                       | 3,21                       | 3,72                             | 3,36                             | 3                    | 4,41                       | 3,83                       |
| 8,0 x 100      | 22,0       | 40         | 60         | 4,80                          | 5,81                                                                                                                                                                      | 4,55                       | 3,71                       | 4,21                             | 3,87                             | 3                    | 4,55                       | 3,96                       |
| 8,0 x 120      | 22,0       | 60         | 60         | 5,33                          | 5,81                                                                                                                                                                      | 4,68                       | 4,10                       | 4,34                             | 4,34                             | 3                    | 4,68                       | 4,10                       |
| 8,0 x 140      | 22,0       | 60         | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 160      | 22,0       | 80         | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 180      | 22,0       | 100        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 200      | 22,0       | 120        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 220      | 22,0       | 140        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 240      | 22,0       | 160        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 260      | 22,0       | 180        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 280      | 22,0       | 200        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 300      | 22,0       | 220        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 320      | 22,0       | 240        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 340      | 22,0       | 260        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 360      | 22,0       | 280        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 380      | 22,0       | 300        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |
| 8,0 x 400      | 22,0       | 320        | 80         | 7,10                          | 5,81                                                                                                                                                                      | 4,80                       | 4,21                       | 4,46                             | 4,46                             | 3                    | 5,12                       | 4,54                       |

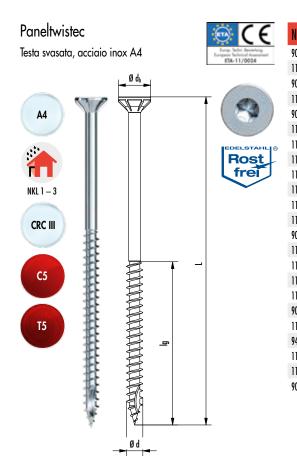
Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{M}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

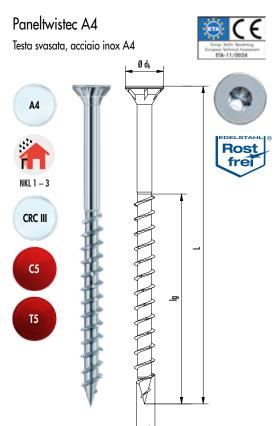
#### Esempio:

Valore tipico di un efftto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN. k<sub>mod</sub>= 0,9. γ<sub>M</sub>= 1,3.

→ Valore di misurazione dell'effetto  $E_d$ = 2,00 · 1,35 + 3,00 · 1,5=  $\frac{7,20 \text{ kN}}{2}$ .

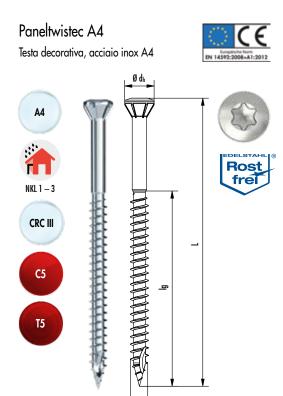

 $La\ capacit\`{a}\ di\ carico\ del\ collegamento\ si\ applica\ così\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = R_d \cdot \gamma_M\ /\ k_{mod}$ 

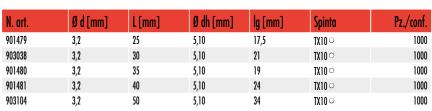
Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \frac{1}{2} \frac{1$ 

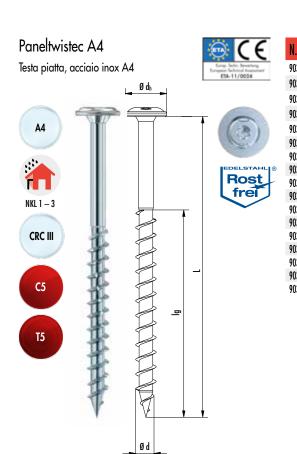

## **Eurotec**® | Paneltwistec

## PANELTWISTEC A4

#### Acciaio inox A4



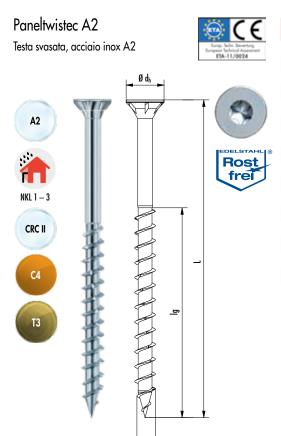


| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 901476  | 4,0      | 25    | 7,75      | 15      | TX20 • | 500       |
| 111442  | 4,0      | 35    | 7,75      | 21      | TX20 - | 500       |
| 903202  | 4,0      | 40    | 7,75      | 24      | TX20 - | 500       |
| 111443  | 4,0      | 45    | 7,75      | 27      | TX20 - | 500       |
| 901109  | 4,0      | 55    | 7,75      | 33      | TX20 - | 500       |
| 111444  | 4,0      | 60    | 7,75      | 36      | TX20 - | 500       |
| 111445  | 4,0      | 70    | 7,75      | 42      | TX20 - | 200       |
| 111446  | 4,0      | 80    | 7,75      | 48      | TX20 - | 200       |
| 111447  | 4,5      | 45    | 8,75      | 27      | TX25 • | 200       |
| 111448  | 4,5      | 60    | 8,75      | 36      | TX25 • | 200       |
| 111449  | 4,5      | 70    | 8,75      | 42      | TX25 • | 200       |
| 111450  | 4,5      | 80    | 8,75      | 48      | TX25 • | 200       |
| 903990  | 5,0      | 40    | 9,75      | 24      | TX25 • | 200       |
| 111451  | 5,0      | 50    | 9,75      | 30      | TX25 • | 200       |
| 111452  | 5,0      | 60    | 9,75      | 36      | TX25 • | 200       |
| 111453  | 5,0      | 70    | 9,75      | 42      | TX25 • | 200       |
| 111454  | 5,0      | 80    | 9,75      | 48      | TX25 • | 200       |
| 903580  | 5,0      | 100   | 9,75      | 60      | TX25 • | 200       |
| 111459  | 6,0      | 60    | 11,75     | 36      | TX30 • | 100       |
| 944885  | 6,0      | 70    | 11,75     | 42      | TX30 • | 100       |
| 111460  | 6,0      | 80    | 11,75     | 48      | TX30 • | 100       |
| 111458  | 6,0      | 100   | 11,75     | 60      | TX30 • | 100       |
| 901478  | 6,0      | 120   | 11,75     | 60      | TX30 • | 100       |



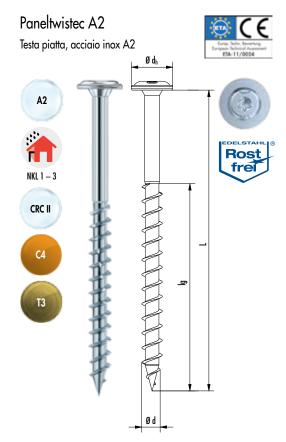

| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 903280  | 8,0      | 80    | 14,50     | 48      | TX40 • | 50        |
| 903281  | 8,0      | 100   | 14,50     | 60      | TX40 • | 50        |
| 903282  | 8,0      | 120   | 14,50     | 80      | TX40 • | 50        |
| 903283  | 8,0      | 140   | 14,50     | 80      | TX40 • | 50        |
| 903284  | 8,0      | 160   | 14,50     | 80      | TX40 • | 50        |
| 903285  | 8,0      | 180   | 14,50     | 80      | TX40 • | 50        |
| 903286  | 8,0      | 200   | 14,50     | 80      | TX40 • | 50        |
| 903287  | 8,0      | 220   | 14,50     | 80      | TX40 • | 50        |
| 903288  | 8,0      | 240   | 14,50     | 80      | TX40 • | 50        |
| 903289  | 8,0      | 260   | 14,50     | 80      | TX40 • | 50        |
| 903290  | 8,0      | 280   | 14,50     | 80      | TX40 • | 50        |
| 903291  | 8,0      | 300   | 14,50     | 80      | TX40 • | 50        |
| 903292  | 8,0      | 320   | 14,50     | 80      | TX40 • | 50        |
| 903293  | 8,0      | 340   | 14,50     | 80      | TX40 • | 50        |
| 903294  | 8,0      | 360   | 14,50     | 80      | TX40 • | 50        |
| 903295  | 8,0      | 380   | 14,50     | 80      | TX40 • | 50        |
| 903296  | 8,0      | 400   | 14,50     | 80      | TX40 • | 50        |

## **Eurotec** Paneltwistec



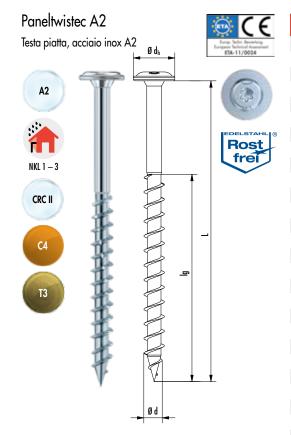






| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 903260  | 8,0      | 80    | 16        | 48      | TX40 • | 50        |
| 903261  | 8,0      | 100   | 16        | 60      | TX40 • | 50        |
| 903262  | 8,0      | 120   | 16        | 80      | TX40 • | 50        |
| 903263  | 8,0      | 140   | 16        | 80      | TX40 • | 50        |
| 903264  | 8,0      | 160   | 16        | 80      | TX40 • | 50        |
| 903265  | 8,0      | 180   | 16        | 80      | TX40 • | 50        |
| 903266  | 8,0      | 200   | 16        | 80      | TX40 • | 50        |
| 903267  | 8,0      | 220   | 16        | 80      | TX40 • | 50        |
| 903268  | 8,0      | 240   | 16        | 80      | TX40 • | 50        |
| 903269  | 8,0      | 260   | 16        | 80      | TX40 • | 50        |
| 903270  | 8,0      | 280   | 16        | 80      | TX40 • | 50        |
| 903271  | 8,0      | 300   | 16        | 80      | TX40 • | 50        |
| 903272  | 8,0      | 320   | 16        | 80      | TX40 • | 50        |
| 903273  | 8,0      | 340   | 16        | 80      | TX40 • | 50        |
| 903274  | 8,0      | 360   | 16        | 80      | TX40 • | 50        |
| 903275  | 8,0      | 380   | 16        | 80      | TX40 • | 50        |
| 903276  | 8,0      | 400   | 16        | 80      | TX40 • | 50        |

## PANELTWISTEC A2

#### Acciaio inox A2




| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 903230  | 8,0      | 80    | 14,5      | 48      | TX40 • | 50        |
| 903231  | 8,0      | 100   | 14,5      | 60      | TX40 • | 50        |
| 903232  | 8,0      | 120   | 14,5      | 80      | TX40 • | 50        |
| 903233  | 8,0      | 140   | 14,5      | 80      | TX40 • | 50        |
| 903234  | 8,0      | 160   | 14,5      | 80      | TX40 • | 50        |
| 903235  | 8,0      | 180   | 14,5      | 80      | TX40 • | 50        |
| 903236  | 8,0      | 200   | 14,5      | 80      | TX40 • | 50        |
| 903237  | 8,0      | 220   | 14,5      | 80      | TX40 • | 50        |
| 903238  | 8,0      | 240   | 14,5      | 80      | TX40 • | 50        |
| 903239  | 8,0      | 260   | 14,5      | 80      | TX40 • | 50        |
| 903240  | 8,0      | 280   | 14,5      | 80      | TX40 • | 50        |
| 903241  | 8,0      | 300   | 14,5      | 80      | TX40 • | 50        |
| 903242  | 8,0      | 320   | 14,5      | 80      | TX40 • | 50        |
| 903243  | 8,0      | 340   | 14,5      | 80      | TX40 • | 50        |
| 903244  | 8,0      | 360   | 14,5      | 80      | TX40 • | 50        |
| 903245  | 8,0      | 380   | 14,5      | 80      | TX40 • | 50        |
| 903246  | 8,0      | 400   | 14,5      | 80      | TX40 • | 50        |



| N. art.              | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|----------------------|----------|-------|-----------|---------|--------|-----------|
| 946266 <sup>a)</sup> | 3,0      | 25    | 9         | 18      | TX100  | 1000      |
| 946267°)             | 3,0      | 30    | 9         | 18      | TX10 o | 1000      |
| 946268 <sup>a)</sup> | 3,0      | 35    | 9         | 24      | TX10 o | 1000      |
| 946269 <sup>a)</sup> | 3,0      | 40    | 9         | 24      | TX10 o | 1000      |
| 946270°)             | 3,0      | 45    | 9         | 30      | TX100  | 1000      |
| 946271 <sup>a)</sup> | 3,0      | 50    | 9         | 30      | TX10 o | 1000      |
| 946272               | 4,0      | 30    | 12        | 18      | TX20 - | 1000      |
| 946273               | 4,0      | 40    | 12        | 24      | TX20 - | 1000      |
| 946274               | 4,0      | 50    | 12        | 30      | TX20 • | 500       |
| 946275               | 4,0      | 60    | 12        | 36      | TX20 - | 500       |
| 946276               | 4,0      | 70    | 12        | 42      | TX20 - | 200       |
| 946277               | 4,5      | 40    | 13        | 24      | TX20 - | 500       |
| 946278               | 4,5      | 50    | 13        | 30      | TX20 • | 500       |
| 946279               | 4,5      | 60    | 13        | 36      | TX20 - | 200       |
| 946280               | 4,5      | 70    | 13        | 42      | TX20 - | 200       |
| 946281               | 4,5      | 80    | 13        | 48      | TX20 - | 200       |
| 946282               | 5,0      | 40    | 14        | 24      | TX25 • | 200       |
| 946283               | 5,0      | 50    | 14        | 30      | TX25 • | 200       |
| 946284               | 5,0      | 60    | 14        | 36      | TX25 • | 200       |
| 946285               | 5,0      | 70    | 14        | 42      | TX25 • | 200       |
| 946286               | 5,0      | 80    | 14        | 48      | TX25 • | 200       |
| 946287               | 5,0      | 100   | 14        | 60      | TX25 • | 200       |
| 946288               | 5,0      | 120   | 14        | 70      | TX25 • | 200       |
| 946289               | 6,0      | 60    | 15        | 36      | TX30 • | 200       |
| 946290               | 6,0      | 80    | 15        | 48      | TX30 • | 200       |

## **Eurotec** | Paneltwistec



| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 946291  | 6,0      | 100   | 15        | 70      | TX30 • | 100       |
| 946292  | 6,0      | 120   | 15        | 70      | TX30 • | 100       |
| 946293  | 6,0      | 140   | 15        | 70      | TX30 • | 100       |
| 946294  | 6,0      | 160   | 15        | 70      | TX30 • | 100       |
| 946295  | 6,0      | 180   | 15        | 70      | TX30 • | 100       |
| 946296  | 6,0      | 200   | 15        | 70      | TX30 • | 100       |
| 946291  | 6,0      | 100   | 15        | 70      | TX30 • | 100       |
| 946292  | 6,0      | 120   | 15        | 70      | TX30 • | 100       |
| 946293  | 6,0      | 140   | 15        | 70      | TX30 • | 100       |
| 946294  | 6,0      | 160   | 15        | 70      | TX30 • | 100       |
| 946295  | 6,0      | 180   | 15        | 70      | TX30 • | 100       |
| 946296  | 6,0      | 200   | 15        | 70      | TX30 • | 100       |
| 903211  | 8,0      | 80    | 16        | 48      | TX40 • | 50        |
| 903212  | 8,0      | 100   | 16        | 60      | TX40 • | 50        |
| 903213  | 8,0      | 120   | 16        | 80      | TX40 • | 50        |
| 903214  | 8,0      | 140   | 16        | 80      | TX40 • | 50        |
| 903215  | 8,0      | 160   | 16        | 80      | TX40 • | 50        |
| 903216  | 8,0      | 180   | 16        | 80      | TX40 • | 50        |
| 903217  | 8,0      | 200   | 16        | 80      | TX40 • | 50        |
| 903218  | 8,0      | 220   | 16        | 80      | TX40 • | 50        |
| 903219  | 8,0      | 240   | 16        | 80      | TX40 • | 50        |
| 903220  | 8,0      | 260   | 16        | 80      | TX40 • | 50        |
| 903221  | 8,0      | 280   | 16        | 80      | TX40 • | 50        |
| 903222  | 8,0      | 300   | 16        | 80      | TX40 • | 50        |
| 903223  | 8,0      | 320   | 16        | 80      | TX40 • | 50        |
| 903224  | 8,0      | 340   | 16        | 80      | TX40 • | 50        |
| 903225  | 8,0      | 360   | 16        | 80      | TX40 • | 50        |
| 903226  | 8,0      | 380   | 16        | 80      | TX40 • | 50        |
| 903227  | 8,0      | 400   | 16        | 80      | TX40 • | 50        |
|         |          |       |           |         |        |           |

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO INOX A4



|                      | Dimen        | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione della testa Taglio legno-legno |                                             |                            |                            |                               | Taglio acciaio-legno         |                      |                            |                            |
|----------------------|--------------|------------|------------|-------------------------------|-----------------------------------------------------------|---------------------------------------------|----------------------------|----------------------------|-------------------------------|------------------------------|----------------------|----------------------------|----------------------------|
| dk wattumming        |              |            | ET AD      | N Fax,90,Rk                   | Fax.head.Rk                                               | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 90°) |                            | AD                         | = 90°)<br>= 90°)              | AD ET                        | V (a= 0°) V (a= 90°) | 77/                        | t t                        |
| d1 x L<br>[mm]       | dk<br>[mm]   | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]                           |                                             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]    | F <sub>la,Rk</sub><br>[kN]   | t<br>[mm]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
| Lilling              | []           | []         | []         | [mi]                          | [IIII]                                                    |                                             | [KII]                      | [KII]                      | $\alpha_{AD} = 0^{\circ}$     | $\alpha_{AD} = 90^{\circ}$   | []                   | [KII]                      | [KII]                      |
|                      |              |            |            |                               |                                                           |                                             | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\rm H} = 90^{\circ}$ | $\alpha_{\rm H} = 0^{\circ}$ |                      | α= <b>0</b> °              | α= <b>90</b> °             |
| 4,0 x 25             | 8,0          | 10         | 15         | 0,77                          | 0,77                                                      |                                             | W V                        |                            | 0,60                          | o,€i                         | 2                    |                            | ,70                        |
| 4,0 x 35             | 8,0          | 14         | 21         | 1,08                          | 0,77                                                      |                                             |                            |                            | 0,68                          |                              | 2                    |                            | ,85                        |
| 4,0 x 40             | 8,0          | 16         | 24         | 1,24                          | 0,77                                                      |                                             |                            |                            | 0,72                          |                              | 2                    |                            | ,90                        |
| 4,0 x 45             | 8,0          | 18         | 27         | 1,39                          | 0,77                                                      |                                             |                            |                            | 0,76                          |                              | 2                    |                            | ,93                        |
| 4,0 x 55             | 8,0          | 22         | 33         | 1,55                          | 0,77                                                      |                                             |                            |                            | 0,78                          |                              | 2                    |                            | ,01                        |
| 4,0 x 60             | 8,0          | 24         | 36         | 1,86                          | 0,77                                                      |                                             |                            |                            | 0,78                          |                              | 2                    | 1,                         | ,05                        |
| 4,0 x 70             | 8,0          | 28         | 42         | 2,17                          | 0,77                                                      |                                             |                            |                            | 0,78                          |                              | 2                    | 1,                         | ,13                        |
| 4,0 x 80             | 8,0          | 32         | 48         | 2,48                          | 0,77                                                      |                                             |                            |                            | 0,78                          |                              | 2                    |                            | ,20                        |
| 4,5 x 45             | 9,0          | 18         | 27         | 1,69                          | 0,97                                                      |                                             |                            |                            | 0,90                          |                              | 2                    |                            | ,10                        |
| 4,5 x 60             | 9,0          | 24         | 36         | 2,03                          | 0,97                                                      |                                             |                            |                            | 0,97                          |                              | 2                    |                            | ,23                        |
| 4,5 x 70             | 9,0          | 28         | 42         | 2,36                          | 0,97                                                      |                                             |                            |                            | 0,97                          |                              | 2                    |                            | ,31                        |
| 4,5 x 80             | 9,0          | 32         | 48         | 2,70                          | 0,97                                                      |                                             |                            |                            | 0,97                          |                              | 2                    |                            | ,40                        |
| 5,0 x 40             | 10,0         | 16         | 24         | 1,45                          | 1,20                                                      |                                             |                            |                            | 0,98                          |                              | 2                    |                            | ,22                        |
| 5,0 x 45             | 10,0         | 18         | 27         | 1,63                          | 1,20                                                      |                                             |                            |                            | 1,03                          |                              | 2                    |                            | ,26                        |
| 5,0 x 50             | 10,0         | 20         | 30         | 1,82                          | 1,20                                                      |                                             |                            |                            | 1,07                          |                              | 2                    |                            | ,31                        |
| 5,0 x 60             | 10,0         | 24         | 36         | 2,18                          | 1,20                                                      |                                             |                            |                            | 1,15                          |                              | 2                    |                            | ,40                        |
| 5,0 x 70             | 10,0         | 28         | 42         | 2,54                          | 1,20                                                      |                                             |                            |                            | 1,15                          |                              | 2                    |                            | ,50                        |
| 5,0 x 80             | 10,0         | 32         | 48         | 2,90                          | 1,20                                                      |                                             |                            |                            | 1,15                          |                              | 2                    |                            | ,58                        |
| 5,0 x 90             | 10,0         | 36         | 54<br>40   | 3,27                          | 1,20                                                      |                                             |                            |                            | 1,15                          |                              | 2                    |                            | ,67<br>74                  |
| 5,0 x 100            | 10,0         | 40         | 60         | 3,63                          | 1,20                                                      |                                             |                            |                            | 1,15                          |                              | 2                    |                            | ,76<br>77                  |
| 6,0 x 60             | 12,0         | 24         | 36         | 2,46                          | 1,73                                                      |                                             |                            |                            | 1,48                          |                              | 2                    |                            | ,77<br>07                  |
| 6,0 x 70<br>6,0 x 80 | 12,0         | 28<br>32   | 42         | 2,87<br>3,28                  | 1,73                                                      |                                             |                            |                            | 1,60<br>1,60                  |                              | 2                    |                            | ,87<br>,97                 |
| 6,0 x 90             | 12,0<br>12,0 | 36         | 48<br>54   | 3,69                          | 1,73<br>1,73                                              |                                             |                            |                            | 1,60                          |                              | 2                    |                            | ,08                        |
| 6,0 x 100            | 12,0         | 40         | 60         | 4,10                          | 1,73                                                      |                                             |                            |                            | 1,60                          |                              | 2                    |                            | ,18                        |
| 6,0 x 120            | 12,0         | 50         | 70         | 4,79                          | 1,73                                                      |                                             |                            |                            | 1,60                          |                              | 2                    |                            | ,35                        |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.

→ Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacità di carico del collegamento si applica così come dimostrato, se R\_d  $\geq$  E\_d.  $\longrightarrow$  min R\_k= R\_d  $\cdot$   $\gamma_M$  /  $k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO INOX A2 E A4



|                | Dimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione della t | esta                       | Taglio legno-legno         |                            |                                  |                    | Taglio acciaio-legno       |                            |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------------|------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------|----------------------------|----------------------------|--|--|
| dk minimus di  | $V(a=0^{\circ})$ |            |            |                               |                                    |                            |                            |                            |                                  | V (a= 0°) V (a= 90 | - t                        |                            |  |  |
| dl x L<br>[mm] | dk<br>[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]    | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]          | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                               |                                    |                            |                            | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$       |                    |                            |                            |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |                               |                                    | α= 0                       | α=90°                      | $\alpha_{\rm H}$ = 90°     | $\alpha_{\text{ET}} = 0^{\circ}$ |                    | α= <b>0</b> °              | α= <b>90</b> °             |  |  |
| 8,0 x 80       | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30         | 50         | 4,26                          | 2,52                               | 3,08                       | 2,50                       | 2,83                       | 2,62                             | 3                  | 3,51                       | 3,08                       |  |  |
| 8,0 x 100      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40         | 60         | 5,33                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 3,78                       | 3,35                       |  |  |
| 8,0 x 120      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40         | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 140      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60         | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 160      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80         | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 180      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 200      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 220      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 240      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 260      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 280      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 300      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 220        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 320      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 240        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 340      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 360      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 280        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 380      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |
| 8,0 x 400      | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 320        | 80         | 7,10                          | 2,52                               | 3,08                       | 2,65                       | 2,83                       | 2,83                             | 3                  | 4,22                       | 3,80                       |  |  |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \min R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min R<sub>k</sub>= R<sub>d</sub>·  $\gamma_{M}$  / k<sub>mod</sub>  $\rightarrow$  R<sub>k</sub>= 7,20 kN · 1,3/0,9=  $\frac{10,40 \text{ kN}}{1,3/0,9}$   $\rightarrow$  Allineamento con i valori della tabella.

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA PIATTA, ACCIAIO INOX A4



|                | Dimens     | ioni       |            | Resistenza all'estrazione     | Resistenza di perforazione della testa |                                             | Taglio                     | legno-legno                       |                            | Taglio acciaio-legno |                            |                            |  |
|----------------|------------|------------|------------|-------------------------------|----------------------------------------|---------------------------------------------|----------------------------|-----------------------------------|----------------------------|----------------------|----------------------------|----------------------------|--|
| dk samming di  | -          |            | ET AD      | N Fax,90,Rk                   | Fax.head.Rk                            | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 90°) | A A A                      | ν (α= 90°)                        | AL ET                      | V (α  V  V (α        | = 90°)                     | t                          |  |
| d1 x L<br>[mm] | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ox.heod,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN]                  | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN] | t<br>[mm]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |  |
|                |            |            |            |                               |                                        |                                             |                            | $\alpha_{AD} = 0^{\circ}$         | $\alpha_{AD} = 90^{\circ}$ |                      |                            |                            |  |
|                |            |            |            |                               |                                        | α= <b>0</b> °                               | α= <b>90</b> °             | $\alpha_{\text{ET}} = 90^{\circ}$ | $\alpha_{\rm H}$ = 0°      |                      | α= <b>0</b> °              | α= <b>90</b> °             |  |
| 8,0 x 80       | 16,0       | 30         | 50         | 4,26                          | 3,07                                   | 3,21                                        | 2,63                       | 2,97                              | 2,75                       | 3                    | 3,51                       | 3,08                       |  |
| 8,0 x 100      | 16,0       | 40         | 60         | 5,33                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 3,78                       | 3,35                       |  |
| 8,0 x 120      | 16,0       | 40         | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 140      | 16,0       | 60         | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 160      | 16,0       | 80         | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 180      | 16,0       | 100        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 200      | 16,0       | 120        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 220      | 16,0       | 140        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 240      | 16,0       | 160        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 260      | 16,0       | 180        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 280      | 16,0       | 200        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 300      | 16,0       | 220        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 320      | 16,0       | 240        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 340      | 16,0       | 260        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 360      | 16,0       | 280        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 380      | 16,0       | 300        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |
| 8,0 x 400      | 16,0       | 320        | 80         | 7,10                          | 3,07                                   | 3,21                                        | 2,78                       | 2,97                              | 2,97                       | 3                    | 4,22                       | 3,80                       |  |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ ,  $\gamma_{N} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } \textit{R}_{\textit{d}} \geq \textit{E}_{\textit{d}}. \longrightarrow \textit{min } \textit{R}_{\textit{k}} = \textit{R}_{\textit{d}} \cdot \gamma_{\textit{M}} \: / \: k_{\textit{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

## INFORMAZIONI TECNICHE PANELTWISTEC, TESTA ORNAMENTALE, ACCIAIO INOX A4



|                |            | Dimensi    | oni        | Resistenza di perforazione della testa | Taglio legno-legno         |                            |                            |                              |  |  |
|----------------|------------|------------|------------|----------------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|--|--|
| - dk<br>- 1971 | ÷ _        |            | Q          | Faxhead,Rik                            |                            | V (α= 0°)                  | AD ET AD                   | V (a= 90°) AD  V (a= 90°) ET |  |  |
| - d1           | _ =        |            |            | N                                      |                            | V (α= 90°)                 | ET                         | V (a= 0°)                    |  |  |
| d1 x L<br>[mm] | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,heod,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]   |  |  |
|                |            |            |            |                                        |                            |                            | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD}$ = 90°          |  |  |
|                |            |            |            |                                        | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{EI}}$ = 90° | $\alpha_{ET} = 0^{\circ}$    |  |  |
| 3,2 x 25       | 5,1        | 7          | 18         | 0,31                                   |                            |                            | 0,34                       |                              |  |  |
| 3,2 x 30       | 5,1        | 9          | 21         | 0,31                                   |                            |                            | 0,37                       |                              |  |  |
| 3,2 x 35       | 5,1        | 16         | 19         | 0,31                                   |                            |                            | 0,45                       |                              |  |  |
| 3,2 x 40       | 5,1        | 16         | 24         | 0,31                                   |                            |                            | 0,45                       |                              |  |  |
| 3,2 x 50       | 5,1        | 16         | 34         | 0,31                                   |                            |                            | 0,45                       |                              |  |  |

A causa dell'elevata resistenza di perforazione della testa per le viti Paneltwistec con testa decorativa rispetto alla resistenza all'estrazione della vite, è possibile trascurare questo valore.

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ ,  $\gamma_{Nl} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{2}$ 

## INFORMAZIONI TECNICHE PANELTWISTEC, TESTA PIATTA, ACCIAIO INOX A2

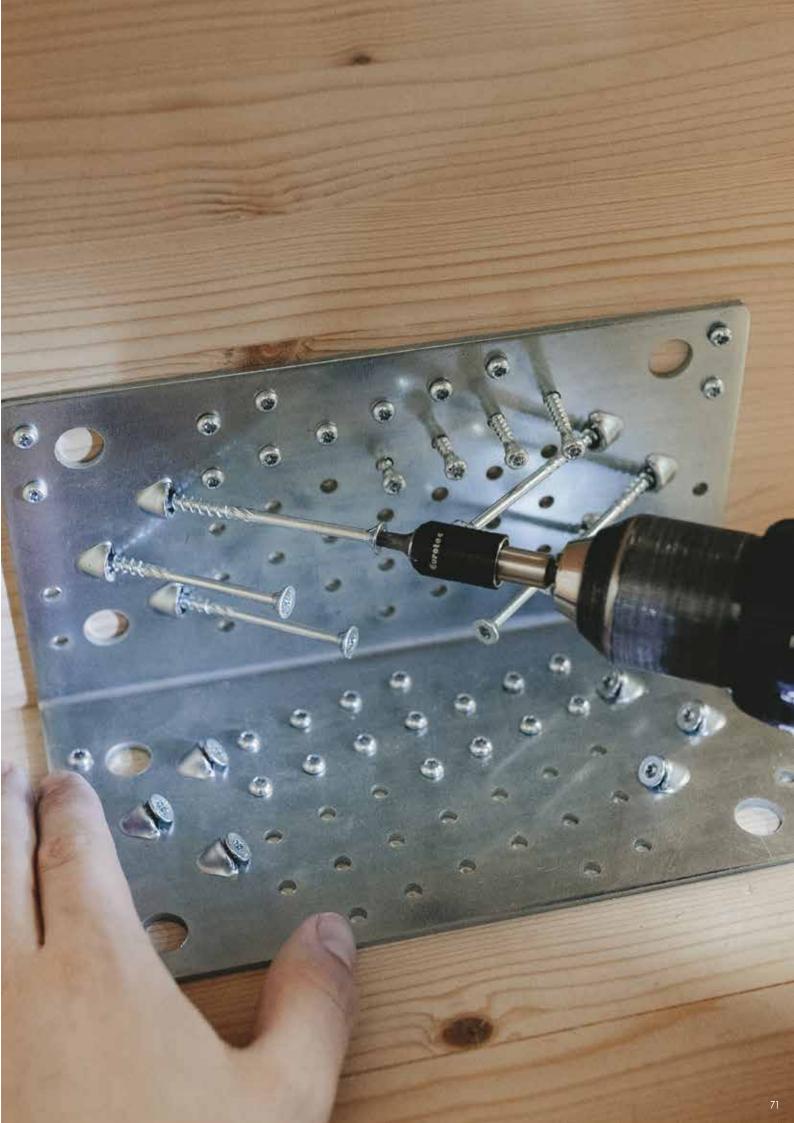
|                       |              | Dimen      | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione della te | esta                                                                                                |                     | Taglio le                  | gno-legno                                 |                              | Taglio acciaio-legno |                            |                            |
|-----------------------|--------------|------------|------------|------------|-------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|----------------------------|-------------------------------------------|------------------------------|----------------------|----------------------------|----------------------------|
| -<br>-<br>-<br>-<br>- | dk sammum d1 |            |            | ET AD      | N   Fax,90,7k                 | Fax,head,Rk                         | $V (\alpha = 0^{\circ})$ $V (\alpha = 0^{\circ})$ $V (\alpha = 0^{\circ})$ $V (\alpha = 0^{\circ})$ |                     | ET AD                      | V (a= 90°) V (a= 90°) V (a= 0°) V (a= 0°) | AD AD                        | V (α= 0°             | 777                        | t                          |
| d1 x<br>[mn           |              | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]     | F <sub>[</sub>                                                                                      | ia,Rk<br><b>kN]</b> | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]                | F <sub>la,Rk</sub><br>[kN]   | t<br>[mm]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                       |              |            |            |            |                               |                                     |                                                                                                     |                     |                            | $\alpha_{AD} = 0^{\circ}$                 | $\alpha_{AD} = 90^{\circ}$   |                      |                            |                            |
|                       |              |            |            |            |                               |                                     | α:                                                                                                  | = 0°                | α= <b>90</b> °             | $\alpha_{\rm H}$ = 90°                    | $\alpha_{\rm H} = 0^{\circ}$ |                      | α= <b>0</b> °              | α= <b>90</b> °             |
| 3,0 x                 | 25           | 9          | 7          | 18         | 0,72                          | 0,77                                |                                                                                                     |                     |                            | ,43                                       | u                            | 1                    | 0,:                        |                            |
| 3,0 x                 |              | 9          | 12         | 18         | 0,72                          | 0,77                                |                                                                                                     |                     |                            | ,51                                       |                              | 1                    | 0,:                        |                            |
| 3,0 x                 | 35           | 9          | 11         | 24         | 0,96                          | 0,77                                |                                                                                                     |                     |                            | ,51                                       |                              | 1                    | 0,                         | 60                         |
| 3,0 x                 |              | 9          | 16         | 24         | 0,96                          | 0,77                                |                                                                                                     |                     |                            | ,55                                       |                              | 1                    | 0,0                        |                            |
| 3,0 x                 |              | 9          | 15         | 30         | 1,20                          | 0,77                                |                                                                                                     |                     |                            | ,55                                       |                              | 1                    | 0,0                        |                            |
| 3,0 x                 |              | 9          | 20         | 30         | 1,20                          | 0,77                                |                                                                                                     |                     |                            | ,55                                       |                              | 1                    | 0,                         |                            |
| 4,0 x                 |              | 12         | 12         | 18         | 0,93                          | 1,45                                |                                                                                                     |                     |                            | ,68                                       |                              | 2                    | 0,8                        |                            |
| 4,0 x                 |              | 12         | 16         | 24         | 1,24                          | 1,45                                |                                                                                                     |                     |                            | ,84                                       |                              | 2                    | 0,8                        |                            |
| 4,0 x                 |              | 12         | 20         | 30         | 1,55                          | 1,45                                |                                                                                                     |                     |                            | ,95                                       |                              | 2                    | 0,9                        |                            |
| 4,0 x                 |              | 12         | 24         | 36         | 1,86                          | 1,45                                |                                                                                                     |                     |                            | ,95<br>70                                 |                              | 2                    | 1,0                        |                            |
| 4,0 x<br>4,5 x        |              | 12<br>13   | 28<br>16   | 42<br>24   | 2,17                          | 1,45<br>1,73                        |                                                                                                     |                     |                            | ,78<br>,94                                |                              | 2 2                  | 1,                         |                            |
| 4,5 x<br>4,5 x        |              | 13         | 20         | 30         | 1,35<br>1,69                  | 1,73                                |                                                                                                     |                     |                            | ,94<br>,12                                |                              | 2                    | 1,0<br>1,1                 |                            |
| 4,5 x                 |              | 13         | 24         | 36         | 2,03                          | 1,73                                |                                                                                                     |                     |                            | ,12                                       |                              | 2                    | 1,1                        |                            |
| 4,5 x                 |              | 13         | 28         | 42         | 2,36                          | 1,73                                |                                                                                                     |                     |                            | ,15                                       |                              | 2                    | 1,:                        |                            |
| 4,5 x                 |              | 13         | 32         | 48         | 2,70                          | 1,73                                |                                                                                                     |                     |                            | ,15                                       |                              | 2                    | 1,4                        |                            |
| 5,0 x                 |              | 14         | 16         | 24         | 1,45                          | 2,03                                |                                                                                                     |                     |                            | ,04                                       |                              | 2                    | 1,:                        |                            |
| 5,0 x                 |              | 14         | 20         | 30         | 1,82                          | 2,03                                |                                                                                                     |                     |                            | ,23                                       |                              | 2                    | 1,3                        |                            |
| 5,0 x                 | 60           | 14         | 24         | 36         | 2,18                          | 2,03                                |                                                                                                     |                     | 1,                         | ,36                                       |                              | 2                    | 1,4                        | 40                         |
| 5,0 x                 | 70           | 14         | 28         | 42         | 2,54                          | 2,03                                |                                                                                                     |                     |                            | ,36                                       |                              | 2                    | 1,                         | 50                         |
| 5,0 x                 |              | 14         | 32         | 48         | 2,90                          | 2,03                                |                                                                                                     |                     |                            | ,36                                       |                              | 2                    | 1,                         |                            |
| 5,0 x                 |              | 14         | 40         | 60         | 3,63                          | 2,03                                |                                                                                                     |                     |                            | ,36                                       |                              | 2                    | 1,7                        |                            |
| 5,0 x                 |              | 14         | 50         | 70         | 4,24                          | 2,03                                |                                                                                                     |                     |                            | ,36                                       |                              | 2                    | 1,9                        |                            |
| 6,0 x                 |              | 15         | 24         | 36         | 2,46                          | 2,35                                |                                                                                                     |                     |                            | ,64                                       |                              | 3                    | 1,7                        |                            |
| 6,0 x                 |              | 15         | 32         | 48         | 3,28                          | 2,35                                |                                                                                                     |                     |                            | ,74                                       |                              | 3                    | 1,9                        |                            |
| 6,0 x                 |              | 15         | 30         | 70         | 4,79                          | 2,35                                |                                                                                                     |                     |                            | ,74<br>74                                 |                              | 3                    | 2,:                        |                            |
| 6,0 x<br>6,0 x        |              | 15<br>15   | 50<br>70   | 70<br>70   | 4,79<br>4,79                  | 2,35<br>2,35                        |                                                                                                     |                     |                            | ,74<br>,74                                |                              | 3                    | 2,:<br>2,:                 |                            |
| 6,0 x                 |              | 15         | 90         | 70         | 4,79                          | 2,35<br>2,35                        |                                                                                                     |                     |                            | ,74<br>,74                                |                              | 3                    | 2,:                        |                            |
| 6,0 x                 |              | 15         | 110        | 70         | 4,79                          | 2,35                                |                                                                                                     |                     |                            | ,74                                       |                              | 3                    | 2,:                        |                            |
| 6,0 x                 |              | 15         | 130        | 70         | 4,79                          | 2,35                                |                                                                                                     |                     |                            | ,74                                       |                              | 3                    |                            | 35                         |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi cakolati e si applicano salvo errori di composizione e di pressione. I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_k = R_k \cdot k_{med} / \gamma_{tt}$ . I valori di misurazione della capacità di carico  $R_k$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_k \ge E_k$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .  $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00$  c.  $1,35 + 3,00 \cdot 1,5 = 7,20$  kN. La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\rightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$  Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20$  kN  $\cdot$  1,3/0,9 = 10,40 kN  $\rightarrow$  Allineamento con i valori della tabella.

## INFORMAZIONI TECNICHE PANELTWISTEC, TESTA PIATTA, ACCIAIO INOX A2



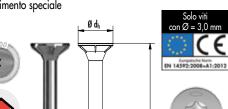

| Dimensioni     |                                                                                                                                          |            |            | Resistenza all'estrazione     | Resistenza di perforazione della testa |                            | Taglio legno-legno         |                            |                              | Taglio acciaio-legno |                            |                            |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------------|----------------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|----------------------|----------------------------|----------------------------|
|                | $V(a=0^{\circ})$ $ET$ $V(a=90^{\circ})$ $AD$ $V(a=90^{\circ})$ $V(a=90^{\circ})$ $ET$ $V(a=90^{\circ})$ $ET$ $V(a=90^{\circ})$ $ET$ $ET$ |            |            |                               |                                        |                            |                            |                            |                              |                      | 90")                       | t                          |
| d1 x L<br>[mm] | dk<br>[mm]                                                                                                                               | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,heod,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]   | †<br>[mm]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                |                                                                                                                                          |            |            |                               |                                        |                            |                            | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$   |                      |                            |                            |
|                |                                                                                                                                          |            |            |                               |                                        | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\rm H}$ = 90°     | $\alpha_{\rm H} = 0^{\circ}$ |                      | α= <b>0</b> °              | α= <b>90</b> °             |
| 8,0 x 80       | 14,5                                                                                                                                     | 30         | 50         | 4,26                          | 2,52                                   | 3,08                       | 2,50                       | 2,83                       | 2,62                         | 3                    | 3,51                       | 3,08                       |
| 8,0 x 100      | 14,5                                                                                                                                     | 40         | 60         | 5,33                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 3,78                       | 3,35                       |
| 8,0 x 120      | 14,5                                                                                                                                     | 40         | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 140      | 14,5                                                                                                                                     | 60         | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 160      | 14,5                                                                                                                                     | 80         | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 180      | 14,5                                                                                                                                     | 100        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 200      | 14,5                                                                                                                                     | 120        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 220      | 14,5                                                                                                                                     | 140        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 240      | 14,5                                                                                                                                     | 160        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 260      | 14,5                                                                                                                                     | 180        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 280      | 14,5                                                                                                                                     | 200        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 300      | 14,5                                                                                                                                     | 220        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 320      | 14,5                                                                                                                                     | 240        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 340      | 14,5                                                                                                                                     | 260        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 360      | 14,5                                                                                                                                     | 280        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 380      | 14,5                                                                                                                                     | 300        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |
| 8,0 x 400      | 14,5                                                                                                                                     | 320        | 80         | 7,10                          | 2,52                                   | 3,08                       | 2,65                       | 2,83                       | 2,83                         | 3                    | 4,22                       | 3,80                       |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione. I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_k = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_k$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_d \ge E_k$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .  $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00$  ch.  $1,35 + 3,00 \cdot 1,5 = 7,20$  kN. La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\rightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$  Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20$  kN  $\cdot$  1,3/0,9 = 10,40 kN  $\rightarrow$  Allineamento con i valori della tabella.



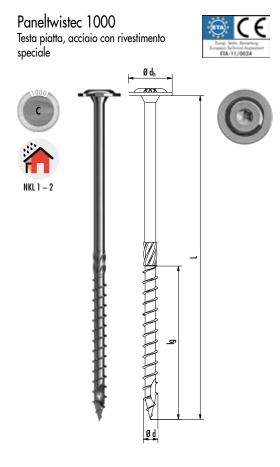

## PANELTWISTEC 1000

Acciaio con rivestimento speciale

Paneltwistec 1000 in acciaio al carbonio temprato e dotato di rivestimento speciale è un mezzo di collegamento per strutture in legno portanti fra componenti in legno massiccio (legno di conifera), legno lamellare, legno lamellare impiallacciato o derivati del legno incollati in modo simile. La vite è dotata di una scanalatura autopulente sulla punta e di nervature di fresatura sulla filettatura. La vite è disponibile nelle versioni "a testa svasata" e "a testa piatta". La speciale geometria della vite garantisce un effetto di fessurazione ridotto in fase di avvitamento. Inoltre, grazie al rivestimento speciale si riduce la resistenza all'avvitamento, il che significa che l'attrito tra il corpo della vite e il legno è di gran lunga inferiore.

#### Paneltwistec 1000

Testa svasata, punta della vite con scanalatura autopulente, acciaio con rivestimento speciale




| NKL 1 – 2 | [6]                                     | <br>Employee flow<br>(N 14592-2008+A1 |
|-----------|-----------------------------------------|---------------------------------------|
|           | [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] |                                       |

Ød

| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm]            | Spinta                  | Pz./conf. |
|---------|----------|-------|-----------|--------------------|-------------------------|-----------|
| R945034 | 3,0      | 12    | 5,6       | Filettatura intera | TX10°                   | 1000      |
| R945035 | 3,0      | 16    | 5,6       | Filettatura intera | TX10 O                  | 1000      |
| R903038 | 3,0      | 20    | 5,6       | Filettatura intera | TX10 O                  | 1000      |
| R903039 | 3,0      | 25    | 5,6       | Filettatura intera | TX10 O                  | 1000      |
| R903040 | 3,0      | 30    | 5,6       | 18                 | TX100                   | 1000      |
| R903041 | 3,0      | 35    | 5,6       | 21                 | TX10 O                  | 1000      |
| R903042 | 3,0      | 40    | 5,6       | 24                 | TX10 O                  | 1000      |
| R945036 | 3,5      | 12    | 7,0       | Filettatura intera | TX20 -                  | 1000      |
| R945037 | 3,5      | 16    | 7,0       | Filettatura intera | TX20 -                  | 1000      |
| R903043 | 3,5      | 20    | 7,0       | Filettatura intera | TX20 -                  | 1000      |
| R903044 | 3,5      | 25    | 7,0       | Filettatura intera | TX20 -                  | 1000      |
| R903045 | 3,5      | 30    | 7,0       | 18                 | TX20 -                  | 1000      |
| R903046 | 3,5      | 35    | 7,0       | 21                 | TX20 •                  | 1000      |
| R903047 | 3,5      | 40    | 7,0       | 24                 | TX20 •                  | 1000      |
| R903048 | 3,5      | 50    | 7,0       | 27                 | TX20 •                  | 500       |
| R945038 | 4,0      | 16    | 8,0       | Filettatura intera | TX20 •                  | 1000      |
| R903001 | 4,0      | 20    | 8,0       | Filettatura intera | TX20 •                  | 1000      |
| R903002 | 4,0      | 25    | 8,0       | Filettatura intera | TX20 •                  | 1000      |
| R903003 | 4,0      | 30    | 8,0       | 18                 | TX20 •                  | 1000      |
| R903049 | 4,0      | 35    | 8,0       | 21                 | TX20 •                  | 1000      |
| R903004 | 4,0      | 40    | 8,0       | 24                 | TX20 -                  | 1000      |
| R902089 | 4,0      | 45    | 8,0       | 27                 | TX20 •                  | 500       |
| R903005 | 4,0      | 50    | 8,0       | 30                 | TX20 •                  | 500       |
| R903006 | 4,0      | 60    | 8,0       | 36                 | TX20 •                  | 200       |
| R903007 | 4,0      | 70    | 8,0       | 42                 | TX20 •                  | 200       |
| R903008 | 4,0      | 80    | 8,0       | 48                 | TX20 •                  | 200       |
| R945039 | 4,5      | 16    | 9,0       | Filettatura intera | TX20 -                  | 1000      |
| R903050 | 4,5      | 25    | 9,0       | Filettatura intera | TX20 •                  | 500       |
| R903051 | 4,5      | 30    | 9,0       | 18                 | TX20 •                  | 500       |
| R903052 | 4,5      | 35    | 9,0       | 21                 | TX20 •                  | 500       |
| R903009 | 4,5      | 40    | 9,0       | 24                 | TX20 -                  | 500       |
| R903010 | 4,5      | 50    | 9,0       | 30                 | TX20 •                  | 500       |
| R903011 | 4,5      | 60    | 9,0       | 36                 | TX20 -                  | 200       |
| R903012 | 4,5      | 70    | 9,0       | 42                 | TX20 •                  | 200       |
| R903013 | 4,5      | 80    | 9,0       | 48                 | TX20 -                  | 200       |
| R903468 | 4,5      | 90    | 9,0       | 54                 | TX20 •                  | 200       |
| R903063 | 4,5      | 100   | 9,0       | 60                 | TX20 •                  | 200       |
| R903053 | 5,0      | 25    | 10,0      | Filettatura intera | TX20 •                  | 500       |
| R903054 | 5,0      | 30    | 10,0      | 20                 | TX20 •                  | 500       |
| R903055 | 5,0      | 35    | 10,0      | 21                 | TX20 •                  | 500       |
| R903014 | 5,0      | 40    | 10,0      | 24                 | TX20 •                  | 200       |
| R903579 | 5,0      | 45    | 10,0      | 27                 | TX20 •                  | 200       |
| R903015 | 5,0      | 50    | 10,0      | 30                 | TX20 •                  | 200       |
| R903016 | 5,0      | 60    | 10,0      | 36                 | TX20 •                  | 200       |
| R903017 | 5,0      | 70    | 10,0      | 42                 | TX20 •                  | 200       |
| R903018 | 5,0      | 80    | 10,0      | 48                 | TX20 •                  | 200       |
| R903578 | 5,0      | 90    | 10,0      | 54                 | TX20 •                  | 200       |
| R903019 | 5,0      | 100   | 10,0      | 60                 | TX20 •                  | 200       |
| R903020 | 5,0      | 120   | 10,0      | 70                 | TX20 •                  | 200       |
| •       | ,        |       | •         |                    | Altre dimensioni alla p |           |

| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| R903581 | 6,0      | 40    | 12,0      | 24      | TX30 • | 200       |
| R903582 | 6,0      | 50    | 12,0      | 30      | TX30 • | 200       |
| R903021 | 6,0      | 60    | 12,0      | 36      | TX30 • | 200       |
| R903022 | 6,0      | 70    | 12,0      | 42      | TX30 • | 200       |
| R903023 | 6,0      | 80    | 12,0      | 48      | TX30 • | 200       |
| R903163 | 6,0      | 90    | 12,0      | 54      | TX30 • | 100       |
| R903024 | 6,0      | 100   | 12,0      | 60      | TX30 • | 100       |
| R903025 | 6,0      | 120   | 12,0      | 70      | TX30 • | 100       |
| R903026 | 6,0      | 130   | 12,0      | 70      | TX30 • | 100       |
| R903027 | 6,0      | 140   | 12,0      | 70      | TX30 • | 100       |
| R903029 | 6,0      | 160   | 12,0      | 70      | TX30 • | 100       |
| R903031 | 6,0      | 180   | 12,0      | 70      | TX30 • | 100       |
| R903032 | 6,0      | 200   | 12,0      | 70      | TX30 • | 100       |
| R903033 | 6,0      | 220   | 12,0      | 70      | TX30 • | 100       |
| R903034 | 6,0      | 240   | 12,0      | 70      | TX30 • | 100       |
| R903035 | 6,0      | 260   | 12,0      | 70      | TX30 • | 100       |
| R903036 | 6,0      | 280   | 12,0      | 70      | TX30 • | 100       |
| R903037 | 6,0      | 300   | 12,0      | 70      | TX30 • | 100       |



| N. art. | Ød[mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|--------|-------|-----------|---------|--------|-----------|
| R901357 | 6,0    | 100   | 14,0      | 60      | TX30 • | 100       |
| R901359 | 6,0    | 120   | 14,0      | 70      | TX30 • | 100       |
| R901361 | 6,0    | 140   | 14,0      | 70      | TX30 • | 100       |
| R901364 | 6,0    | 180   | 14,0      | 70      | TX30 • | 100       |
| R901365 | 6,0    | 200   | 14,0      | 70      | TX30 • | 100       |
| R903060 | 8,0    | 80    | 22,0      | 48      | TX40 • | 50        |
| R903062 | 8,0    | 100   | 22,0      | 54      | TX40 • | 50        |
| R903064 | 8,0    | 120   | 22,0      | 60      | TX40 • | 50        |
| R903066 | 8,0    | 140   | 22,0      | 80      | TX40 • | 50        |
| R903067 | 8,0    | 160   | 22,0      | 80      | TX40 • | 50        |
| R903470 | 8,0    | 180   | 22,0      | 80      | TX40 • | 50        |
| R903069 | 8,0    | 200   | 22,0      | 80      | TX40 • | 50        |
| R903472 | 8,0    | 220   | 22,0      | 80      | TX40 • | 50        |
| R903071 | 8,0    | 240   | 22,0      | 80      | TX40 • | 50        |
| R903072 | 8,0    | 260   | 22,0      | 80      | TX40 • | 50        |
| R903073 | 8,0    | 280   | 22,0      | 80      | TX40 • | 50        |
| R903074 | 8,0    | 300   | 22,0      | 80      | TX40 • | 50        |
| R903475 | 8,0    | 360   | 22,0      | 80      | TX40 • | 50        |
| R904625 | 8,0    | 380   | 22,0      | 80      | TX40 • | 50        |
| R903476 | 8,0    | 400   | 22,0      | 80      | TX40 • | 50        |
| R903077 | 10,0   | 60    | 25,0      | 36      | TX40 • | 50        |
| R903079 | 10,0   | 80    | 25,0      | 50      | TX40 • | 50        |
| R903081 | 10,0   | 100   | 25,0      | 60      | TX40 • | 50        |
| R903083 | 10,0   | 120   | 25,0      | 70      | TX40 • | 50        |
| R903085 | 10,0   | 160   | 25,0      | 90      | TX40 • | 50        |
| R903086 | 10,0   | 180   | 25,0      | 100     | TX40 • | 50        |
| R903087 | 10,0   | 200   | 25,0      | 100     | TX40 • | 50        |
| R903088 | 10,0   | 220   | 25,0      | 100     | TX40 • | 50        |
| R903089 | 10,0   | 240   | 25,0      | 100     | TX40 • | 50        |

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO CON RIVESTIMENTO SPECIALE 1000



|                | Dimen      | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione      | della testa                                 |                            | Taglio l                   | egno-legno                                           |                              | Tagl                | Taglio acciaio-legno       |                            |
|----------------|------------|------------|------------|-------------------------------|---------------------------------|---------------------------------------------|----------------------------|----------------------------|------------------------------------------------------|------------------------------|---------------------|----------------------------|----------------------------|
| dk summing di  |            |            | ET AO      | Pax,90,Rk                     | Fax.head.Rk                     | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 90°) |                            | ET V(                      | 3= 90°)<br>3= 90°)                                   | AD ET                        | V (a= 0°)  V (a= 90 |                            | t t                        |
| d1 x L<br>[mm] | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN] |                                             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]                           | F <sub>la,Rk</sub><br>[kN]   | t<br>[mm]           | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
| []             | <u>.</u>   |            |            | [,,,,]                        | []                              |                                             | [KII]                      | [mi]                       | $\alpha_{AD} = 0^{\circ}$                            | $\alpha_{AD} = 90^{\circ}$   | L                   | [KIT]                      | [KIT]                      |
|                |            |            |            |                               |                                 |                                             | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\rm AD} = 0$ $\alpha_{\rm ET} = 90^{\circ}$ | $\alpha_{\rm H} = 0^{\circ}$ |                     | α= <b>0</b> °              | α= <b>90</b> °             |
| 3,0 x 12       | 5,6        | 6          | 6          | 0,21                          | 0,38                            |                                             | u- <b>v</b>                |                            | 0,21                                                 | ω <sub>El</sub> − <b>υ</b>   | 1                   |                            | ,27                        |
| 3,0 x 16       | 5,6        | 8          | 8          | 0,28                          | 0,38                            |                                             |                            |                            | 0,28                                                 |                              | 1                   |                            | ,37                        |
| 3,0 x 20       | 5,6        | 10         | 10         | 0,35                          | 0,38                            |                                             |                            |                            | 0,35                                                 |                              | 1                   |                            | ,47                        |
| 3,0 x 25       | 5,6        | 10         | 15         | 0,53                          | 0,38                            |                                             |                            |                            | 0,42                                                 |                              | 1                   |                            | ,60                        |
| 3,0 x 30       | 5,6        | 12         | 18         | 0,64                          | 0,38                            |                                             |                            |                            | 0,45                                                 |                              | 1                   |                            | ,60                        |
| 3,0 x 35       | 5,6        | 14         | 21         | 0,74                          | 0,38                            |                                             |                            |                            | 0,48                                                 |                              | 1                   |                            | ,63                        |
| 3,0 x 40       | 5,6        | 16         | 24         | 0,85                          | 0,38                            |                                             |                            |                            | 0,52                                                 |                              | 1                   |                            | ,66                        |
| 3,5 x 12       | 7          | 6          | 6          | 0,28                          | 0,59                            |                                             |                            |                            | 0,24                                                 |                              | - 1                 |                            | ,30                        |
| 3,5 x 16       | 7          | 8          | 8          | 0,37                          | 0,59                            |                                             |                            |                            | 0,32                                                 |                              | 1                   |                            | ,41                        |
| 3,5 x 20       | 7          | 10         | 10         | 0,47                          | 0,59                            |                                             |                            |                            | 0,40                                                 |                              | 1                   |                            | ,52                        |
| 3,5 x 25       | 7          | 10         | 15         | 0,70                          | 0,59                            |                                             |                            |                            | 0,52                                                 |                              | 1                   | 0,                         | ,66                        |
| 3,5 x 30       | 7          | 12         | 18         | 0,84                          | 0,59                            |                                             |                            |                            | 0,62                                                 |                              | 1                   | 0,                         | ,86                        |
| 3,5 x 35       | 7          | 14         | 21         | 0,98                          | 0,59                            |                                             |                            |                            | 0,67                                                 |                              | 1                   | 0,                         | ,92                        |
| 3,5 x 40       | 7          | 16         | 24         | 1,12                          | 0,59                            |                                             |                            |                            | 0,70                                                 |                              | 1                   | 0,                         | ,95                        |
| 3,5 x 50       | 7          | 20         | 30         | 1,40                          | 0,59                            |                                             |                            |                            | 0,78                                                 |                              | 1                   |                            | ,02                        |
| 4,0 x 16       | 8          | 8          | 8          | 0,41                          | 0,77                            |                                             |                            |                            | 0,35                                                 |                              | 2                   |                            | ,42                        |
| 4,0 x 20       | 8          | 10         | 10         | 0,52                          | 0,77                            |                                             |                            |                            | 0,44                                                 |                              | 2                   |                            | ,55                        |
| 4,0 x 25       | 8          | 10         | 15         | 0,77                          | 0,77                            |                                             |                            |                            | 0,60                                                 |                              | 2                   |                            | ,70                        |
| 4,0 x 30       | 8          | 12         | 18         | 0,93                          | 0,77                            |                                             |                            |                            | 0,71                                                 |                              | 2                   |                            | ,91                        |
| 4,0 x 35       | 8          | 14         | 21         | 1,08                          | 0,77                            |                                             |                            |                            | 0,80                                                 |                              | 2                   |                            | ,07                        |
| 4,0 x 40       | 8          | 16         | 24         | 1,24                          | 0,77                            |                                             |                            |                            | 0,84                                                 |                              | 2                   |                            | ,15                        |
| 4,0 x 45       | 8          | 18         | 27         | 1,39                          | 0,77                            |                                             |                            |                            | 0,88                                                 |                              | 2                   |                            | ,19                        |
| 4,0 x 50       | 8          | 20         | 30         | 1,55                          | 0,77                            |                                             |                            |                            | 0,92                                                 |                              | 2                   |                            | ,23                        |
| 4,0 x 60       | 8          | 24         | 36         | 1,86                          | 0,77                            |                                             |                            |                            | 1,01                                                 |                              | 2                   |                            | ,31                        |
| 4,0 x 70       | 8          | 28         | 42         | 2,17                          | 0,77                            |                                             |                            |                            | 1,03                                                 |                              | 2                   |                            | ,38                        |
| 4,0 x 80       | 8          | 32         | 48         | 2,48                          | 0,77                            |                                             | . "                        |                            | 1,03                                                 |                              | 2                   | 1,                         | ,46                        |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho$ k= 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico Rk non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico Rk devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione Rd: Rd = Rk · kmod /  $\gamma$ M. I valori di misurazione della capacità di carico Rd devono essere contrapposti ai valori di misurazione degli effetti Ed (Rd  $\geq$  Ed).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{ii} = 1,3$ .

→ Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $La\ capacit\`{a}\ di\ carico\ del\ collegamento\ si\ applica\ cos\`{i}\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = R_d\cdot \gamma_M \ /\ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO CON RIVESTIMENTO SPECIALE 1000



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dimens     | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione del  | la testa                                    |                            | Taglio le                  | gno-legno                         |                            | Tag                | lio acciaio                | -legno                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|-------------------------------|---------------------------------|---------------------------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------|--------------------|----------------------------|----------------------------|
| dk wathin | -          |            | ET AD      | N Fax.90,Rx                   | Fax,head,Rk                     | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 90°) |                            | ET V(                      | 2= 90°)<br>2= 90°)<br>2= 0°)      | AD ET                      | V (α= 0°  V (α= 90 |                            | t                          |
| d1 x L<br>[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN] |                                             | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN] | t<br>[mm]          | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |            |                               |                                 |                                             |                            |                            | $\alpha_{AD} = 0^{\circ}$         | $\alpha_{AD} = 90^{\circ}$ |                    |                            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |            |                               |                                 |                                             | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{ET}} = 90^{\circ}$ | $\alpha_{\rm H}$ = 0°      |                    | α= <b>0</b> °              | α= <b>90</b> °             |
| 4,5 x 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 8          | 8          | 0,45                          | 0,97                            |                                             |                            |                            | ,40                               | Li                         | 2                  |                            | ,46                        |
| 4,5 x 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 10         | 15         | 0,84                          | 0,97                            |                                             |                            |                            | ,65                               |                            | 2                  |                            | ,76                        |
| 4,5 x 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 12         | 18         | 1,01                          | 0,97                            |                                             |                            |                            | ,77                               |                            | 2                  |                            | ,92                        |
| 4,5 x 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 14         | 21         | 1,18                          | 0,97                            |                                             |                            |                            | ,86                               |                            | 2                  |                            | ,09                        |
| 4,5 x 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 16         | 24         | 1,35                          | 0,97                            |                                             |                            |                            | ,00                               |                            | 2                  |                            | ,34                        |
| 4,5 x 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 20         | 30         | 1,69                          | 0,97                            |                                             |                            |                            | ,08                               |                            | 2                  |                            | ,44                        |
| 4,5 x 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 24         | 36         | 2,03                          | 0,97                            |                                             |                            | 1                          | ,17                               |                            | 2                  | 1,                         | ,53                        |
| 4,5 x 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 28         | 42         | 2,36                          | 0,97                            |                                             |                            | 1                          | ,23                               |                            | 2                  | 1,                         | ,61                        |
| 4,5 x 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 32         | 48         | 2,70                          | 0,97                            |                                             |                            | 1                          | ,23                               |                            | 2                  | 1,                         | ,75                        |
| 4,5 x 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9          | 36         | 54         | 3,04                          | 0,97                            |                                             |                            | 1                          | ,23                               |                            | 2                  | 1,                         | ,75                        |
| 4,5 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9          | 40         | 60         | 3,38                          | 0,97                            |                                             |                            |                            | ,23                               |                            | 2                  |                            | ,75                        |
| 5,0 x 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 10         | 15         | 0,91                          | 1,20                            |                                             |                            |                            | ,70                               |                            | 2                  |                            | ,81                        |
| 5,0 x 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 10         | 20         | 1,21                          | 1,20                            |                                             |                            |                            | ,90                               |                            | 2                  |                            | ,00                        |
| 5,0 x 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 14         | 21         | 1,27                          | 1,20                            |                                             |                            |                            | ,96                               |                            | 2                  | 1,                         | ,17                        |
| 5,0 x 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 16         | 24         | 1,45                          | 1,20                            |                                             |                            |                            | ,11                               |                            | 2                  |                            | ,44                        |
| 5,0 x 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 18         | 27         | 1,63                          | 1,20                            |                                             |                            |                            | ,20                               |                            | 2                  |                            | ,62                        |
| 5,0 x 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 20         | 30         | 1,82                          | 1,20                            |                                             |                            |                            | ,24                               |                            | 2                  |                            | ,67                        |
| 5,0 x 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 24         | 36         | 2,18                          | 1,20                            |                                             |                            |                            | ,34                               |                            | 2                  | 1,                         | ,76                        |
| 5,0 x 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 28         | 42         | 2,54                          | 1,20                            |                                             |                            |                            | ,44                               |                            | 2                  |                            | ,85                        |
| 5,0 x 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 32         | 48         | 2,90                          | 1,20                            |                                             |                            |                            | ,52                               |                            | 2                  |                            | ,94                        |
| 5,0 x 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 36         | 54         | 3,27                          | 1,20                            |                                             |                            |                            | ,52                               |                            | 2                  |                            | ,03                        |
| 5,0 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,0       | 40         | 60         | 3,63                          | 1,20                            |                                             |                            |                            | ,52                               |                            | 2                  |                            | ,12                        |
| 5,0 x 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,0       | 50         | 70         | 4,24                          | 1,20                            |                                             |                            | 1                          | ,52                               |                            | 2                  | 2,                         | ,27                        |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho$ k= 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico Rk non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico Rk devono essere ridotti in riferimento alla classe di utilizzo e alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione Rd: Rd = Rk · kmod /  $\gamma$ M. I valori di misurazione della capacità di carico Rd devono essere contrapposti ai valori di misurazione degli effetti Ed (Rd  $\geq$  Ed).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ ,  $\gamma_{N} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d$ = 2,00 · 1,35 + 3,00 · 1,5=  $\overline{7}$ ,20 kN.

 $La\ capacit\`{a}\ di\ carico\ del\ collegamento\ si\ applica\ cos\`{i}\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = R_d \cdot \gamma_M \ / \ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min R<sub>L</sub>= R<sub>d</sub>  $\gamma_M$  /  $k_{mod} \rightarrow R_L$ = 7,20 kN · 1,3/0,9= 10,40 kN  $\rightarrow$  Allineamento con i valori della tabella.

# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA SVASATA, ACCIAIO CON RIVESTIMENTO SPECIALE 1000



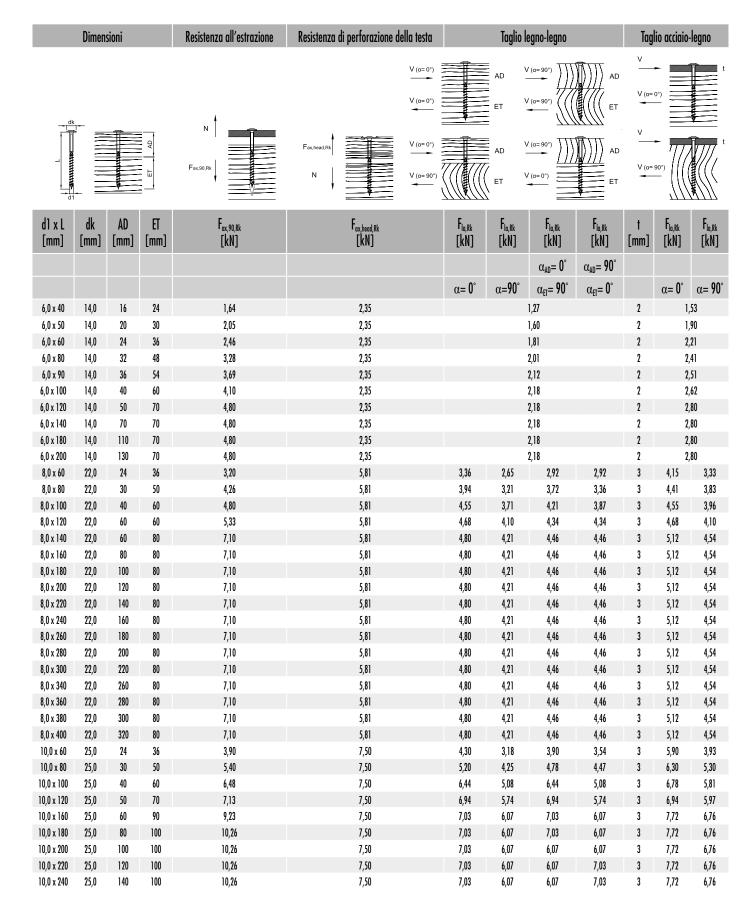
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dimen      | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione della | a testa                                               |                            | Taglio le                  | gno-legno                     |                                  | Tagl                | io acciaio-                | -legno                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|-------------------------------|----------------------------------|-------------------------------------------------------|----------------------------|----------------------------|-------------------------------|----------------------------------|---------------------|----------------------------|----------------------------|
| dk with the state of the state | -          |            | ET AD      | N Fax,90,Rk                   | Fax,head,Rk                      | √ (α= 0°)  √ (α= 0°)  √ (α= 0°)  √ (α= 0°)  √ (α= 0°) |                            | ET V(0                     | 2= 90°)<br>2= 90°)<br>3= 90°) | AD ET                            | V (a= 0°) V (a= 0°) |                            | t t                        |
| d1 x L<br>[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ox,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub><br>[kN]  |                                                       | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]    | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]           | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |            |            |                               |                                  |                                                       |                            |                            | $\alpha_{AD} = 0^{\circ}$     | $\alpha_{AD} = 90^{\circ}$       |                     |                            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |            |            |                               |                                  |                                                       | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{EI}}$ = 90°    | $\alpha_{\text{EI}} = 0^{\circ}$ |                     | α= <b>0</b> °              | α= <b>90</b> °             |
| 6,0 x 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,0       | 16         | 24         | 1,64                          | 1,73                             |                                                       |                            | 1                          | ,27                           |                                  | 2                   | 1,                         | ,53                        |
| 6,0 x 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,0       | 20         | 30         | 2,05                          | 1,73                             |                                                       |                            |                            | ,51                           |                                  | 2                   |                            | ,90                        |
| 6,0 x 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,0       | 24         | 36         | 2,46                          | 1,73                             |                                                       |                            | 1                          | ,65                           |                                  | 2                   | 2,                         | ,21                        |
| 6,0 x 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,0       | 28         | 42         | 2,87                          | 1,73                             |                                                       |                            | 1                          | ,75                           |                                  | 2                   | 2,                         | ,31                        |
| 6,0 x 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,0       | 32         | 48         | 3,28                          | 1,73                             |                                                       |                            | 1                          | ,85                           |                                  | 2                   | 2,                         | ,41                        |
| 6,0 x 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,0       | 36         | 54         | 3,69                          | 1,73                             |                                                       |                            | 1                          | ,96                           |                                  | 2                   | 2,                         | ,51                        |
| 6,0 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 40         | 60         | 4,10                          | 1,73                             |                                                       |                            | 2                          | ,02                           |                                  | 2                   | 2,                         | ,62                        |
| 6,0 x 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 50         | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | ,02                           |                                  | 2                   |                            | ,80                        |
| 6,0 x 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 60         | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | ,02                           |                                  | 2                   |                            | ,80                        |
| 6,0 x 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 70         | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | ,02                           |                                  | 2                   |                            | ,80                        |
| 6,0 x 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 90         | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | 2,02                          |                                  | 2                   |                            | ,80                        |
| 6,0 x 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 110        | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | 2,02                          |                                  | 2                   |                            | ,80                        |
| 6,0 x 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 130        | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | 2,02                          |                                  | 2                   |                            | ,80                        |
| 6,0 x 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 150        | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | 2,02                          |                                  | 2                   |                            | ,80                        |
| 6,0 x 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 170        | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | 2,02                          |                                  | 2                   |                            | ,80                        |
| 6,0 x 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 190        | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | 2,02                          |                                  | 2                   |                            | ,80                        |
| 6,0 x 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 210        | 70         | 4,79                          | 1,73                             |                                                       |                            |                            | 2,02                          |                                  | 2                   | 2,                         | ,80                        |
| 6,0 x 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,0       | 230        | 70         | 4,79                          | 1,73                             |                                                       |                            | 2                          | ,02                           |                                  | 2                   | 2,                         | ,80                        |

Misurazione a norma ETA-11/0024. Spessore grezzo pk= 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base ai collaudi effettuati e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

I valori tipici della capacità di carico Rk non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico Rk devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione Rd: Rd = Rk · kmod /  $\gamma$ M. I valori di misurazione della capacità di carico Rd devono essere contrapposti ai valori di misurazione degli effetti Ed (Rd  $\geq$  Ed).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{li} = 1,3$ .


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d=2,00\cdot 1,35+3,00\cdot 1,5=7,20$  kN.

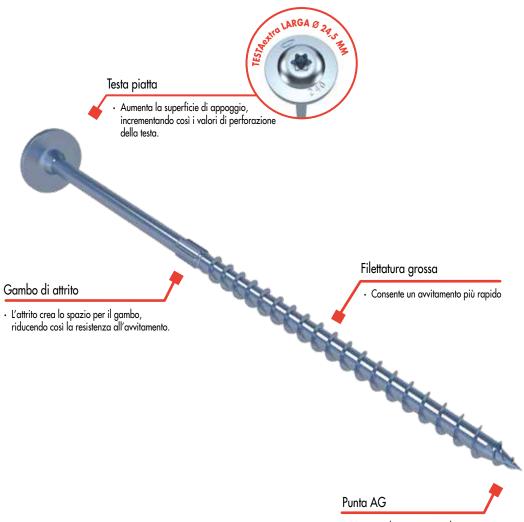
 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

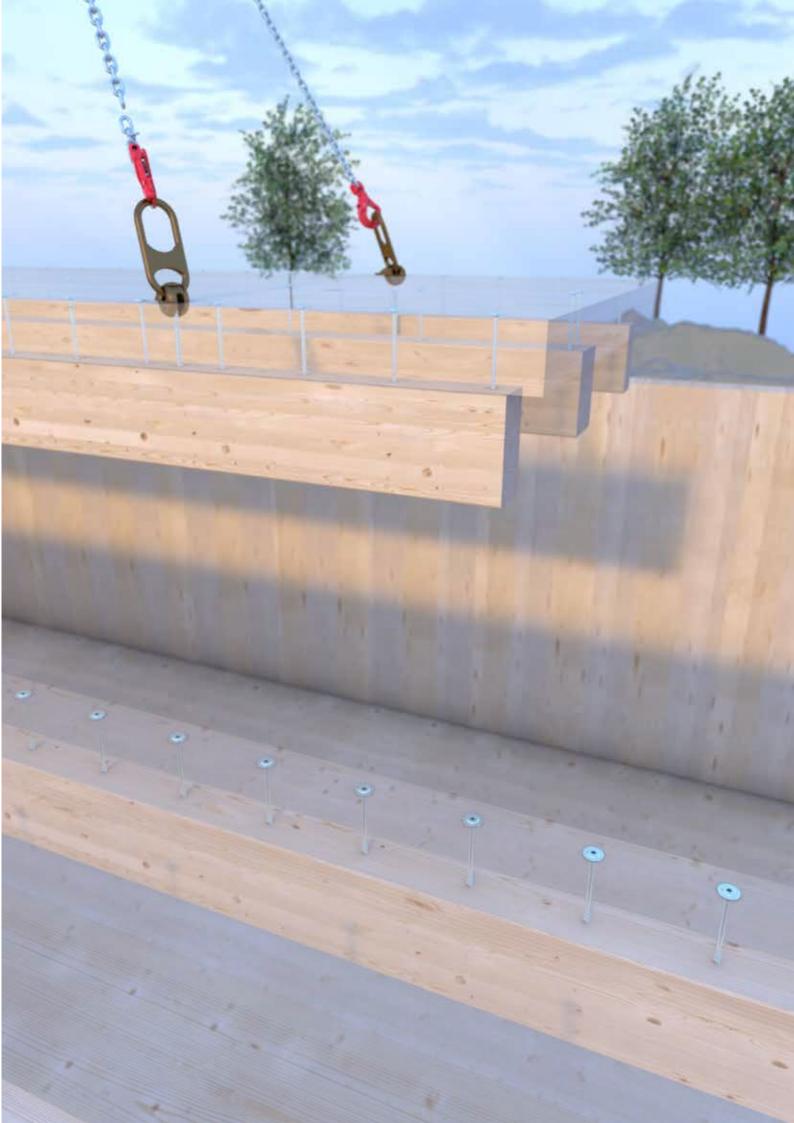
# INFORMAZIONI TECNICHE PANELTWISTEC, TESTA PIATTA, ACCIAIO CON RIVESTIMENTO SPECIALE 1000






## PANELTWISTEC TK AG STRONGHEAD

Per l'uso di componenti per edilizia pressati e incollati



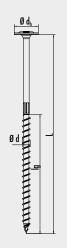


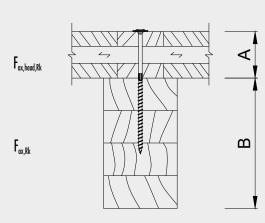

Le viti per legno Paneltwistec si possono installare senza preforare all'interno di CLT o di legno lamellare. Paneltwistec ha una speciale punta AG e nervature di fresatura sopra la filettatura, che fanno sì che la vite attecchisca rapidamente e l'effetto di fessurazione sia ridotto in fase di avvitamento. Inoltre, la filettatura non solo accelera il processo di montaggio, ma riduce anche il momento di avvitamento. La testa piatta garantisce una elevata resistenza di perforazione della testa e assicura una pressione sufficiente tra le due superfici da collegare, il che è molto efficace in vista di un incollaggio. Se l'incollaggio a pressione durante il processo di indurimento dei materiali collanti viene effettuato correttamente, è possibile creare componenti compositi in legno. Inoltre, è possibile realizzare applicazioni che prevedono pannelli con nervature.



- · Momento di avvitamento ridotto
- · Effetto di fessurazione ridotto




## **Eurotec**\* | Paneltwistec




| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 903170  | 8,0      | 200   | 24,5      | 120     | TX40 • | 50        |
| 903171  | 8,0      | 220   | 24,5      | 120     | TX40 • | 50        |
| 903172  | 8,0      | 240   | 24,5      | 120     | TX40 • | 50        |
| 903173  | 8,0      | 260   | 24,5      | 120     | TX40 • | 50        |
| 903174  | 8,0      | 280   | 24,5      | 120     | TX40 • | 50        |
| 903175  | 8,0      | 300   | 24,5      | 120     | TX40 • | 50        |
| 903176  | 8,0      | 320   | 24,5      | 120     | TX40 • | 50        |
| 903177  | 8,0      | 340   | 24,5      | 120     | TX40 • | 50        |
| 903178  | 8,0      | 360   | 24,5      | 120     | TX40 • | 50        |
| 903179  | 8,0      | 380   | 24,5      | 120     | TX40 • | 50        |
| 903180  | 8,0      | 400   | 24,5      | 120     | TX40 • | 50        |



### INCOLLAGGIO A PRESSIONE DI VITI CON LUNGHEZZE MINIME NECESSARIE





|        | Ø 8 mm |                           |                                        |  |  |  |  |  |  |
|--------|--------|---------------------------|----------------------------------------|--|--|--|--|--|--|
|        |        | Resistenza all'estrazione | Resistenza di perforazione della testa |  |  |  |  |  |  |
| A [mm] | L[mm]  | F <sub>ax, Rk</sub> [kN]  | F <sub>ax, head, Rk</sub>              |  |  |  |  |  |  |
| 80     | 200    |                           |                                        |  |  |  |  |  |  |
| 100    | 220    |                           |                                        |  |  |  |  |  |  |
| 120    | 240    |                           |                                        |  |  |  |  |  |  |
| 140    | 260    |                           |                                        |  |  |  |  |  |  |
| 160    | 280    |                           |                                        |  |  |  |  |  |  |
| 180    | 300    | 10,6                      | 7,2                                    |  |  |  |  |  |  |
| 200    | 320    |                           |                                        |  |  |  |  |  |  |
| 220    | 340    |                           |                                        |  |  |  |  |  |  |
| 240    | 360    |                           |                                        |  |  |  |  |  |  |
| 260    | 380    |                           |                                        |  |  |  |  |  |  |
| 280    | 400    |                           |                                        |  |  |  |  |  |  |

I calcoli vengono effettuati a norma ETA-11/0024 ed EN 1995-1-1, con fori non preforati e uno spessore del legno  $\rho$ k = 350 kg/m³. I valori di misurazione di Fax,Rd devono essere calcolati tenendo conto di kmod = 1 e  $\gamma$ M = 1,3. Fax,d è limitato dalla resistenza di perforazione della testa, dove "L" è la lunghezza minima della vite per raggiungere la prestazione interessata. Il componente A indica lo spessore massimo del pannello, che può essere pressato con le viti su una trave con nervature. Il componente B corrisponde all'altezza della trave con nervature: B  $\geq$  [L - A].

### REQUISITI GENERALI DI INCOLLAGGIO A PRESSIONE CON LE VITI (DIN 1052:2004; EN 1995-1-1)

- · Materiali: Legno massiccio, compensato, OSB, legno lamellare impiallacciato, legno lamellare, compensato lamellare
- Colle: EN 301 e DIN 68141 per strutture portanti e spessore delle giunture da incollare a norma DIN EN 302
- Applicazione: La parte filettata deve essere avvitata completamente nell'elemento da fissare. Prima dell'applicazione la superficie deve essere liscia, pulita e priva di polveri e impurità. Più strati devono essere incollati singolarmente. Lo spessore massimo consentito per il legno massiccio e i derivati del legno è compreso fra 30 mm e 55 mm. (Per spessori di più grandi dimensioni si prega di rivolgersi agli esperti di competenza.)
- Temperatura ambiente ≥ 20 °C
- Temperatura del materiale ≥ 20 °C
- Tenore di umidità ≤ 15 m % (differenza massima 4 m %)
- Distanza dei fissaggi ≤ 150 mm
- Superficie per ciascun elemento di fissaggio ≤ 15.000 mm²
- Pressa a vuoto, 0,1 MPa ~ 1,5 kN (forza necessaria per ciascun elemento di fissaggio in base alla superficie)
- Pressa idraulica, 0,6 MPa ~ 9 kN (forza necessaria per ciascun elemento di fissaggio in base alla superficie)

## BARRA FILETTATA BRUTUS

Barra filettata a filettatura intera per il rinforzo trasversale dei legni lamellari

Le barre filettate BRUTUS vengono utilizzate sia nelle nuove costruzioni (nella produzione dei mattoni di punta) sia nella ristrutturazione. Mentre nelle nuove costruzioni consentono maggiori portate o sezioni del legno più sottili, in fase di ristrutturazione assicurano la giacenza. In questo modo non è necessario sostituire tanti mattoni di punta oppure utilizzarli a doppio rendendo il tutto più impegnativo, sebbene siano soggette a crepe visibili. È opportuno effettuare una perizia in ogni caso. Le barre filettate BRUTUS si possono ridurre della lunghezza desiderata e vengono preforate a 13 mm. Nel predisporre i fori è necessario assicurarsi che questi siano fatti bene. La barra filettata BRUTUS consente il rinforzo trasversale in caso di sganciamento o sfondamento, su attacchi trasversali e dei mattoni di punta.

#### Barra filettata BRUTUS

Acciaio 8.8, con zincatura galvanica





NKL 1 – 2



| N. art. | Ø d [mm] | L[mm] | Pz./conf. |
|---------|----------|-------|-----------|
| 903170  | 16       | 3000  | 1         |

#### DI COSA TENER CONTO

- · Preforare su Ø 13 mm
- · In caso di fori lunghi la punta potrebbe svergolare



alla lunghezza desiderata.

#### UTENSILE DI INSERIMENTO





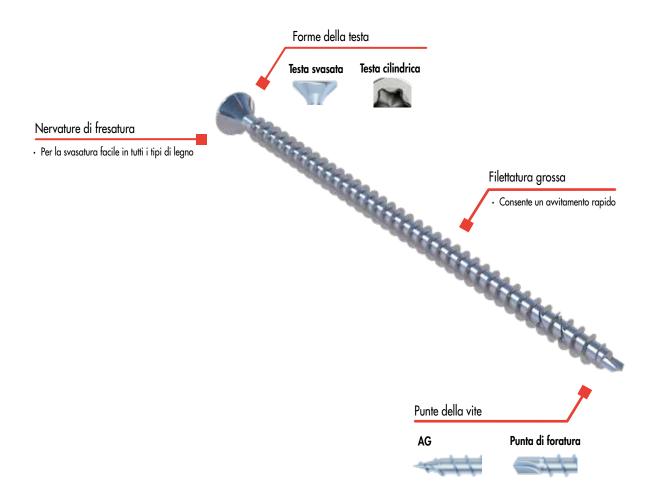


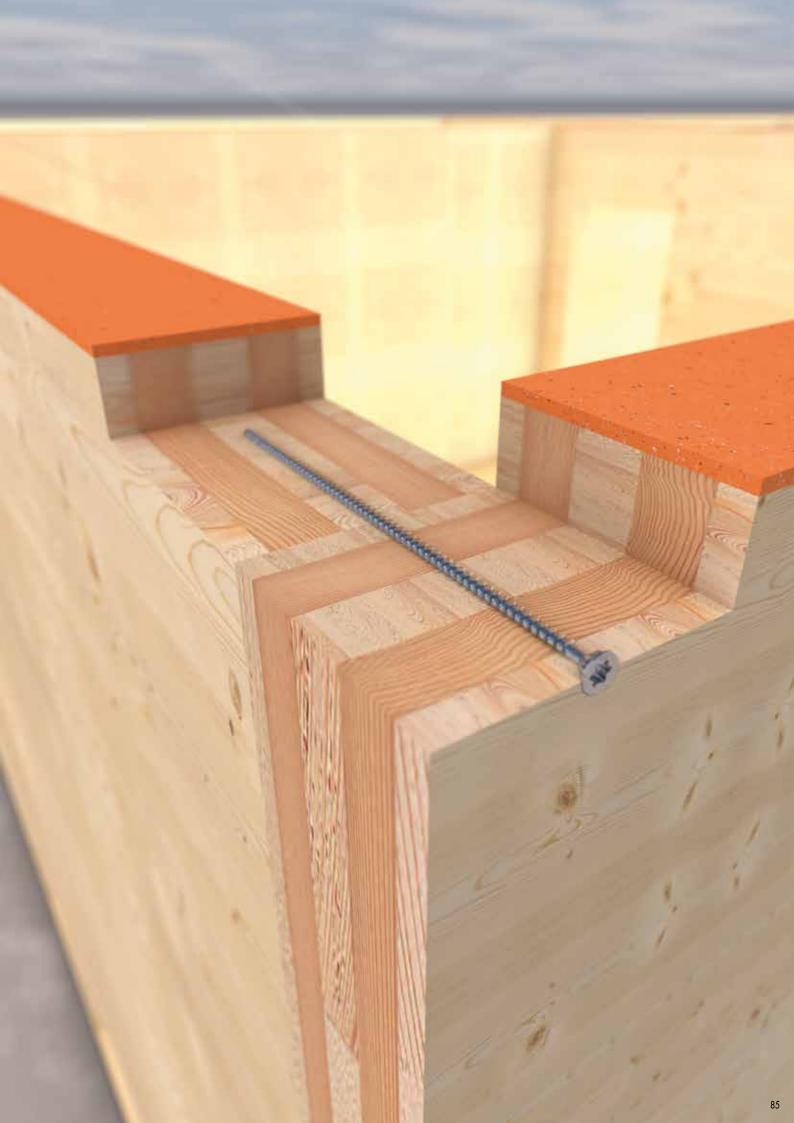
#### ESEMPI DI APPLICAZIONE





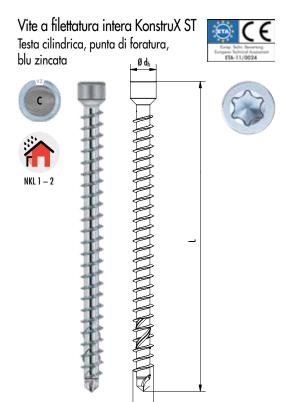
Sganciamento Sfondamento





## VITE A FILETTATURA INTERA KONSTRUX

La soluzione potente per le nuove costruzioni e le ristrutturazioni




Le viti a filettatura intera KonstruX massimizzano la capacità di carico di una struttura composita grazie alla elevata resistenza all'estrazione della filettatura in entrambi i componenti. Se si utilizzano viti a filettatura parziale la resistenza di perforazione della testa notevolmente ridotta nel componente limita la capacità di carico della struttura composita. Le viti a filettatura intera KonstruX rappresentano una alternativa economica agli attacchi tradizionali o ai mezzi di collegamento del legno, quali i terminali e i supporti delle travi.

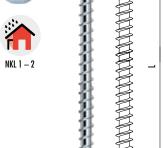




## VITE A FILETTATURA INTERA KONSTRUX

Acciaio al carbonio, blu zincata




| N. art.                      | Ø d [mm] | L[mm] | Ø dh [mm] | Spinta  | Pz./conf. |
|------------------------------|----------|-------|-----------|---------|-----------|
| 100425                       | 5,2      | 80    | 6,4       | TX 25 • | 100       |
| 100427                       | 5,2      | 100   | 6,4       | TX 25 • | 100       |
| 100428                       | 5,2      | 120   | 6,4       | TX 25 • | 100       |
| 100430                       | 5,2      | 140   | 6,4       | TX 25 • | 100       |
| 100431                       | 5,2      | 160   | 6,4       | TX 25 • | 100       |
| 100410                       | 5,9      | 80    | 8,0       | TX30 •  | 100       |
| 100412                       | 5,9      | 100   | 8,0       | TX30 •  | 100       |
| 100413                       | 5,9      | 120   | 8,0       | TX30 •  | 100       |
| 100415                       | 5,9      | 140   | 8,0       | TX30 •  | 100       |
| 100416                       | 5,9      | 160   | 8,0       | TX30 •  | 100       |
| 100417                       | 5,9      | 180   | 8,0       | TX30 •  | 100       |
| 100418                       | 5,9      | 200   | 8,0       | TX30 •  | 100       |
| 904808                       | 6,5      | 80    | 8,0       | TX30 •  | 100       |
| 904809                       | 6,5      | 100   | 8,0       | TX30 •  | 100       |
| 904810                       | 6,5      | 120   | 8,0       | TX30 •  | 100       |
| 904811                       | 6,5      | 140   | 8,0       | TX30 •  | 100       |
| 904812                       | 6,5      | 160   | 8,0       | TX30 •  | 100       |
| 904813                       | 6,5      | 195   | 8,0       | TX30 •  | 100       |
| 100063 <sup>a)</sup>         | 6,5      | 200   | 8,0       | TX30 •  | 100       |
| 100064 <sup>a)</sup>         | 6,5      | 220   | 8,0       | TX30 •  | 100       |
| 100065 <sup>a)</sup>         | 6,5      | 240   | 8,0       | TX30 •  | 100       |
| 100066 <sup>a)</sup>         | 6,5      | 260   | 8,0       | TX30 •  | 100       |
| 954081                       | 8,0      | 125   | 10,0      | TX40 •  | 50        |
| 904825                       | 8,0      | 155   | 10,0      | TX40 •  | 50        |
| 904826                       | 8,0      | 195   | 10,0      | TX40 •  | 50        |
| 904827                       | 8,0      | 220   | 10,0      | TX40 •  | 50        |
| 904828                       | 8,0      | 245   | 10,0      | TX40 •  | 50        |
| 904834                       | 8,0      | 270   | 10,0      | TX40 •  | 50        |
| 904829                       | 8,0      | 295   | 10,0      | TX40 •  | 50        |
| 904830                       | 8,0      | 330   | 10,0      | TX40 •  | 50        |
| 904831                       | 8,0      | 375   | 10,0      | TX40 •  | 50        |
| 904832                       | 8,0      | 400   | 10,0      | TX40 •  | 50        |
| 944804                       | 8,0      | 430   | 10,0      | TX40 •  | 50        |
| 944805                       | 8,0      | 480   | 10,0      | TX40 •  | 50        |
| 944806                       | 8,0      | 530   | 10,0      | TX40 •  | 50        |
| 944807                       | 8,0      | 580   | 10,0      | TX40 •  | 50        |
| 904872                       | 10,0     | 195   | 13,0      | TX50 ●  | 25        |
| 904873                       | 10,0     | 220   | 13,0      | TX50 ●  | 25        |
| 904874                       | 10,0     | 245   | 13,0      | TX50 ●  | 25        |
| 904875                       | 10,0     | 270   | 13,0      | TX50 ●  | 25        |
| 904815                       | 10,0     | 300   | 13,0      | TX50 ●  | 25        |
| 904816                       | 10,0     | 330   | 13,0      | TX50 ●  | 25        |
| 904817                       | 10,0     | 360   | 13,0      | TX50 ●  | 25        |
| 904818                       | 10,0     | 400   | 13,0      | TX50 ●  | 25        |
| 904819                       | 10,0     | 450   | 13,0      | TX50 ●  | 25        |
| 904820                       | 10,0     | 500   | 13,0      | TX50 ●  | 25        |
| 904821                       | 10,0     | 550   | 13,0      | TX50 ●  | 25        |
| 904822                       | 10,0     | 600   | 13,0      | TX50 ●  | 25        |
| 100080 <sup>a)</sup>         | 10,0     | 650   | 13,0      | TX50 ●  | 25        |
| 100081 <sup>a)</sup>         | 10,0     | 700   | 13,0      | TX50 ●  | 25        |
| 100082 <sup>a)</sup>         | 10,0     | 750   | 13,0      | TX50 ●  | 25        |
| 100083 <sup>a)</sup>         | 10,0     | 800   | 13,0      | TX50 ●  | 25        |
| 100084 <sup>a)</sup>         | 10,0     | 900   | 13,0      | TX50 ●  | 25        |
| 100085 <sup>a)</sup>         | 10,0     | 1000  | 13,0      | TX50 ●  | 25        |
| a) È ctata richiocta la valu |          | /ETA\ |           |         |           |

### Vite a filettatura intera KonstruX ST

Testa svasata, punta della vite AG,

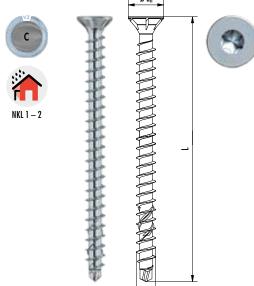











| N. art. | Ød[mm] | L[mm] | Ø dh [mm] | Spinta | Pz./conf. |
|---------|--------|-------|-----------|--------|-----------|
| 905737  | 11,3   | 300   | 18,0      | TX50 ● | 20        |
| 905738  | 11,3   | 340   | 18,0      | TX50 ● | 20        |
| 905739  | 11,3   | 380   | 18,0      | TX50 ● | 20        |
| 905740  | 11,3   | 420   | 18,0      | TX50 ● | 20        |
| 905741  | 11,3   | 460   | 18,0      | TX50 ● | 20        |
| 905742  | 11,3   | 500   | 18,0      | TX50 ● | 20        |
| 905743  | 11,3   | 540   | 18,0      | TX50 ● | 20        |
| 905744  | 11,3   | 580   | 18,0      | TX50 ● | 20        |
| 905745  | 11,3   | 620   | 18,0      | TX50 ● | 20        |
| 905746  | 11,3   | 660   | 18,0      | TX50 ● | 20        |
| 905747  | 11,3   | 700   | 18,0      | TX50 ● | 20        |
| 905748  | 11,3   | 750   | 18,0      | TX50 ● | 20        |
| 905749  | 11,3   | 800   | 18,0      | TX50 ● | 20        |
| 904750  | 11,3   | 900   | 18,0      | TX50 ● | 20        |
| 904751  | 11,3   | 1000  | 18,0      | TX50 ● | 20        |

## Vite a filettatura intera KonstruX ST

Testa svasata, punta di foratura, blu zincata

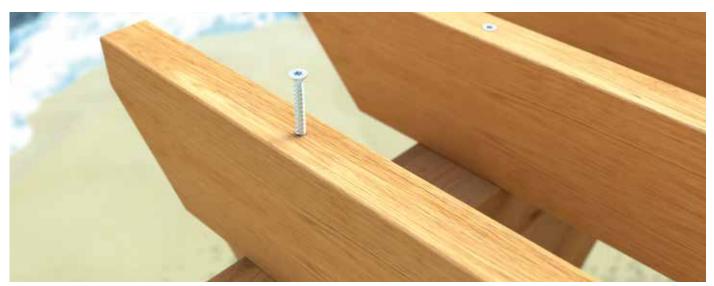




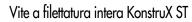


| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|--------|-----------|
| 904876  | 5,2      | 80    | 6,4       | TX25 ● | 100       |
| 904878  | 5,2      | 100   | 6,4       | TX25 • | 100       |
| 904879  | 5,2      | 120   | 6,4       | TX25 • | 100       |
| 904907  | 5,2      | 140   | 6,4       | TX25 • | 100       |
| 904908  | 5,2      | 160   | 6,4       | TX25 • | 100       |
| 904857  | 6,5      | 80    | 11,5      | TX30 • | 100       |
| 904858  | 6,5      | 100   | 11,5      | TX30 • | 100       |
| 904859  | 6,5      | 120   | 11,5      | TX30 • | 100       |
| 904860  | 6,5      | 140   | 11,5      | TX30 • | 100       |
| 904790  | 8,0      | 95    | 14,5      | TX40 • | 50        |
| 904791  | 8,0      | 125   | 14,5      | TX40 • | 50        |
| 904792  | 8,0      | 155   | 14,5      | TX40 • | 50        |
| 904793  | 8,0      | 195   | 14,5      | TX40 • | 50        |
| 904794  | 8,0      | 220   | 14,5      | TX40 • | 50        |
| 904795  | 8,0      | 245   | 14,5      | TX40 • | 50        |
| 904796  | 8,0      | 270   | 14,5      | TX40 • | 50        |
| 904797  | 8,0      | 295   | 14,5      | TX40 • | 50        |
| 904798  | 8,0      | 330   | 14,5      | TX40 • | 50        |
| 904799  | 8,0      | 375   | 14,5      | TX40 • | 50        |
| 904800  | 8,0      | 400   | 14,5      | TX40 • | 50        |
| 904801  | 8,0      | 430   | 14,5      | TX40 • | 50        |
| 904802  | 8,0      | 480   | 14,5      | TX40 • | 50        |
| 904803  | 8,0      | 545   | 14,5      | TX40 • | 50        |
| 904770  | 10,0     | 125   | 17,8      | TX50 ● | 25        |
| 904771  | 10,0     | 155   | 17,8      | TX50 ● | 25        |
| 904772  | 10,0     | 195   | 17,8      | TX50 ● | 25        |
| 904773  | 10,0     | 220   | 17,8      | TX50 ● | 25        |
| 904774  | 10,0     | 245   | 17,8      | TX50 ● | 25        |
| 904775  | 10,0     | 270   | 17,8      | TX50 ● | 25        |
| 904776  | 10,0     | 300   | 17,8      | TX50 ● | 25        |
| 904777  | 10,0     | 330   | 17,8      | TX50 ● | 25        |
| 904778  | 10,0     | 360   | 17,8      | TX50 ● | 25        |
| 904779  | 10,0     | 400   | 17,8      | TX50 ● | 25        |
| 904780  | 10,0     | 450   | 17,8      | TX50 ● | 25        |
| 904781  | 10,0     | 500   | 17,8      | TX50 ● | 25        |
| 904782  | 10,0     | 550   | 17,8      | TX50 ● | 25        |
| 904783  | 10,0     | 600   | 17,8      | TX50 ● | 25        |
| 100090  | 10,0     | 650   | 17,8      | TX50 ● | 25        |
| 100091  | 10,0     | 700   | 17,8      | TX50 ● | 25        |
| 100092  | 10,0     | 750   | 17,8      | TX50 ● | 25        |
| 100093  | 10,0     | 800   | 17,8      | TX50 ● | 25        |
| 100094  | 10,0     | 900   | 17,8      | TX50 ● | 25        |
| 100095  | 10,0     | 1000  | 17,8      | TX50 ● | 25        |

## VITE A FILETTATURA INTERA KONSTRUX


#### Acciaio inox A4

Le viti a filettatura intera KonstruX ST A4 massimizzano la capacità di carico di una struttura composita grazie all'elevata resistenza all'estrazione della filettatura in entrambi i componenti. Al contrario, in caso di uso di viti a filettatura parziale la resistenza di perforazione della testa notevolmente ridotta nel componente limita la capacità di carico della struttura composita.


Ideali per l'uso in strutture composite legno-legno in ambienti interni ed esterni. I campi di applicazione delle viti KonstruX ST A4 si trovano negli ambienti esterni nei parchi giochi, sui balconi, sotto forma di pergola per ripararsi dal sole nonché nei pressi delle coste e nelle costruzioni idrauliche per es. passerelle o ponti sul mare.



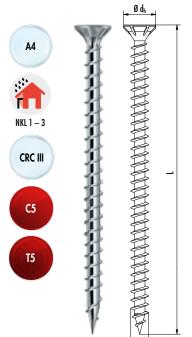
|         | 1        |       |           |        |           |
|---------|----------|-------|-----------|--------|-----------|
| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | Spinta | Pz./conf. |
| 944780  | 6,5      | 140   | 8,0       | TX40 • | 100       |
| 944781  | 6,5      | 160   | 8,0       | TX40 • | 100       |
| 944782  | 6,5      | 195   | 8,0       | TX40 • | 100       |
| 944783  | 8,0      | 155   | 8,0       | TX40 • | 50        |
| 944784  | 8,0      | 195   | 8,0       | TX40 • | 50        |
| 944785  | 8,0      | 220   | 8,0       | TX40 • | 50        |
| 944786  | 8,0      | 245   | 8,0       | TX40 • | 50        |
| 944787  | 8,0      | 270   | 8,0       | TX40 • | 50        |
| 944788  | 8,0      | 295   | 8,0       | TX40 • | 50        |
| 944789  | 8,0      | 330   | 8,0       | TX40 • | 50        |
| 944790  | 8,0      | 375   | 8,0       | TX40 • | 50        |
| 944791  | 8,0      | 400   | 8,0       | TX40 • | 50        |



KonstruX con testa svasata acciaio inox A4: Ideali per strutture composite legno-legno in città e zone industriali inquinate > 0,25 km dalla costa.



Testa svasata, punta di foratura,

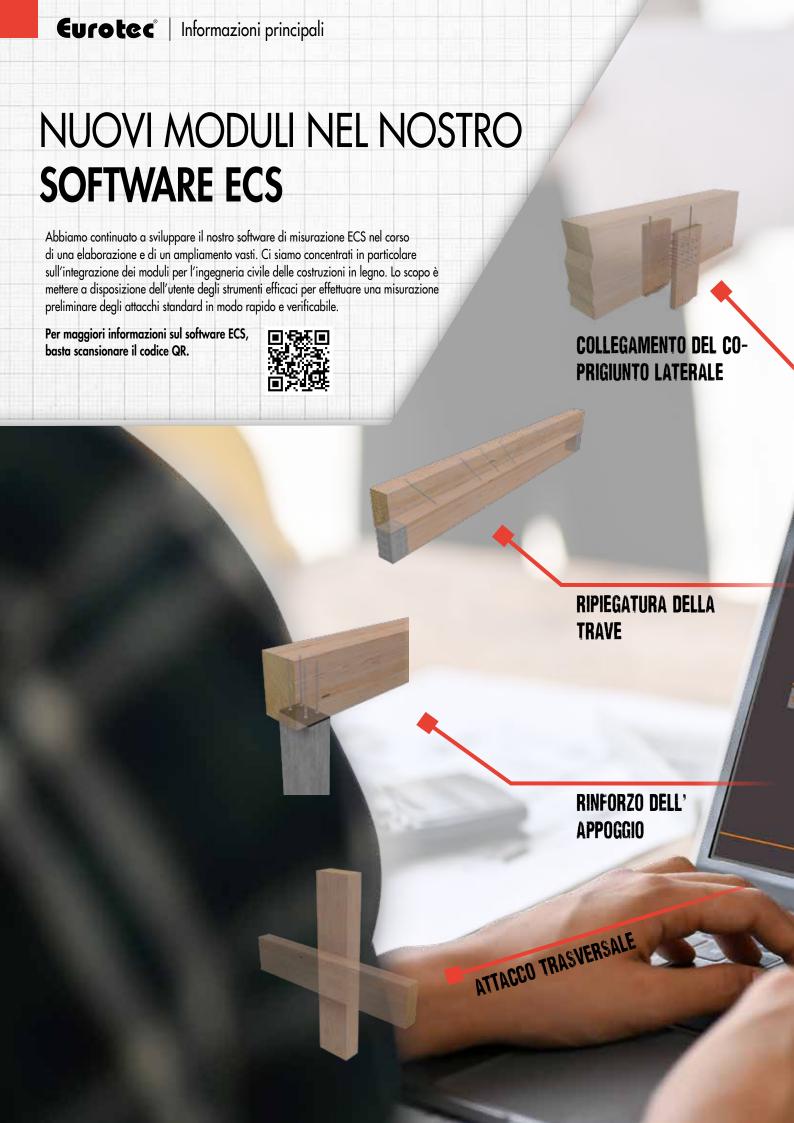



| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | Spinta | Pz./conf |
|---------|----------|-------|-----------|--------|----------|
| 944795  | 8,0      | 95    | 14,5      | TX40 ● | 5(       |
| 944792  | 8,0      | 125   | 14,5      | TX40 • | 50       |
| 944793  | 8,0      | 155   | 14,5      | TX40 • | 50       |
| 944794  | 8,0      | 195   | 14,5      | TX40 • | 50       |



### Vite a filettatura intera KonstruX

Testa svasata, acciaio inox A4











| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|--------|-----------|
| 905750  | 10,0     | 160   | 17,8      | TX50 ● | 25        |
| 905751  | 10,0     | 200   | 17,8      | TX50 ● | 25        |
| 905752  | 10,0     | 220   | 17,8      | TX50 ● | 25        |
| 905753  | 10,0     | 240   | 17,8      | TX50 ● | 25        |
| 905754  | 10,0     | 260   | 17,8      | TX50 ● | 25        |
| 905755  | 10,0     | 280   | 17,8      | TX50 ● | 25        |
| 905756  | 10,0     | 300   | 17,8      | TX50 ● | 25        |
| 905757  | 10,0     | 350   | 17,8      | TX50 ● | 25        |
| 905758  | 10,0     | 400   | 17,8      | TX50 ● | 25        |





### ESEMPIO DI APPLICAZIONE: RINFORZO DELL'APPOGGIO

#### ARMATURA DEL SUPPORTO (PRESSIONE VERTICALE RISPETTO ALLA FIBRA)

Rispetto al calcestruzzo e all'acciaio il legno è un materiale da costruzione creato in natura con un comportamento estremamente anisotropo in termini di portata. Il rapporto tra le tipiche resistenze alla trazione e alla pressione verticali rispetto alla fibra e parallele alla stessa è circa 1/30 oppure 1/8. Pertanto, le costruzioni in legno devono essere progettate in modo accuratamente dettagliato per minimizzare il più possibile eventuali sovraccarichi. Inoltre, sarebbe opportuno applicare metodi di rinforzo per bilanciare all'occorrenza eventuali punti deboli.

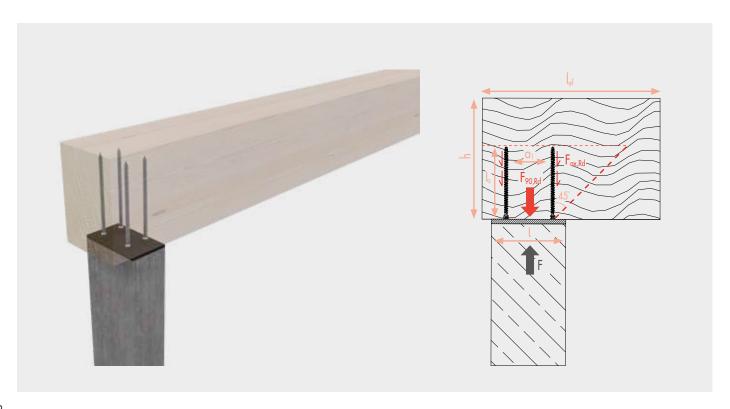
Un esempio è il sostegno delle travi. Le barre filettate incollate e i pannelli in legno compensato incollati gli uni sugli altri in questo caso sono stati spesso utilizzati come metodo di rinforzo, tuttavia sono molto impegnativi in termini di tempo e anche costosi a causa delle colle epossidiche utilizzate. Le viti a filettatura intera sono un'alternativa più moderna ed economica e consentono di sperimentare l'aumento della capacità di carico del sostegno fino al 300%. Vengono applicate prima del pannello di supporto in acciaio e si fanno carico di una parte del carico di pressione locale mediante ritorno (limitato dalla capacità di piegamento), laddove la distribuzione della tensione nel legno è migliore.

VALORE DI MISURAZIONE DELLA CAPACITÀ DI CARICO VERTICALE RISPETTO ALL'ANDAMENTO DELLE FIBRE CON ARMATURA DELLA VITE:

$$\begin{aligned} F_{90,Rd} = min & \begin{cases} F_{c,90,Rd} + n_s \cdot F_{\alpha x,Rd} \\ b \cdot l_{ef} \cdot f_{c,90,d} \end{cases} \end{aligned}$$

 $F_{c,90,Rd} = k_{c,90} \cdot b \cdot l \cdot f_{c,90,d}$ 

 $F_{\alpha x,Rd} = min$  Capacità di carico al piegamento della vite Capacità di carico all'estrazione della vite


n<sub>s</sub>: Numero di viti

b: Larghezza della superficie di appoggio

k<sub>c,90</sub> : Fattore di distribuzione della tensione tenendo conto della configurazione del carico, della possibilità di fessurazione e del grado di deformazione alla pressione

 $f_{c,90,d}$ : Resistenza alla pressione di misura verticale rispetto alla direzione delle fibre

Per misurare la resistenza all'estrazione e al piegamento delle viti cfr. ETA-11/0024.



### ESEMPIO DI APPLICAZIONE: ATTACCO SUPPORTO PRINCIPALE-SUPPORTO SECONDARIO

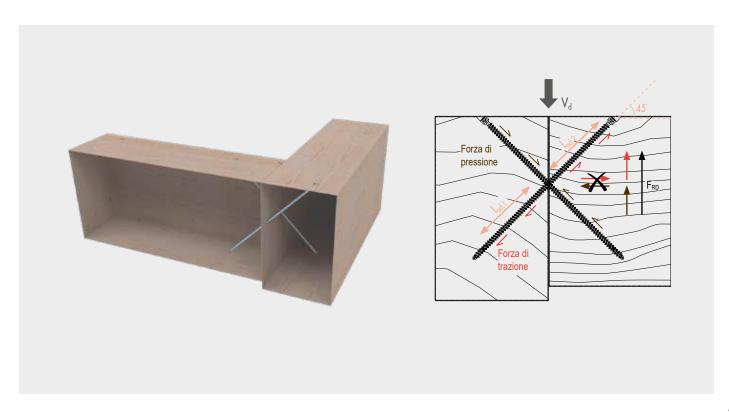
Per il collegamento di supporti principali e secondari esistono diverse alternative, per es. angolari esterni in metallo e profili a T interni in alluminio. Tuttavia, lamiere aggiuntive possono risultare costose e impegnative in termini di tempo in fase di montaggio. Al loro posto è possibile utilizzare viti autotaglienti per il fissaggio di questo tipo di struttura composita.

Le viti a filettatura intera rappresentano una soluzione conveniente in termini di costi e tempi. Le viti KonstruX si dispongono a croce e a coppia a un angolo di 45° rispetto alla venatura del legno, in modo tale da mantenere intatta la struttura architettonica in legno. Aumenta anche la reazione al fuoco, cosa ancora più importante. Nell'ingegneria civile delle costruzioni in legno in fase di misurazione delle viti a croce è necessario verificare tre tipi di anomalie: (a) La capacità di estrazione utilizzando l'effettiva lunghezza della filettatura e il fattore kmod, (b) La resistenza alla trazione della vite e (c) La resistenza alla pressione della vite. Assicuratevi di confrontare le capacità di misurazione (non i valori tipici), poiché i tipi di anomalie hanno fattori di sicurezza parziale diversi.

#### MISURAZIONE DELLA CAPACITÀ DI CARICO DELLE VITI A CROCE:

$$F_{Rd} = 2 \cdot \sin 45^{\circ} \cdot n_{paar}^{0,9} \cdot F_{\alpha x,Rd}$$

 $F_{ax,Rd} = min$ Ritiro:  $l_{ef}$ ,  $k_{mod}$ ,  $\gamma_M = 1,3$ Resistenza alla trazione:  $\gamma_{M2} = 1,25$ Resistenza al piegamento:  $\gamma_{M1} = 1,00$ 


 $l_{ef} = min (l_{ad,1}; l_{ad,2})$ 

yMi: Fattore di sicurezza parziale

n<sub>pair</sub>: Numero di viti

k<sub>mod</sub>: Fattore di modifica, che tiene conto dell'influenza della durata del sovraccarico e del tenore di umidità dell'elemento in legno.

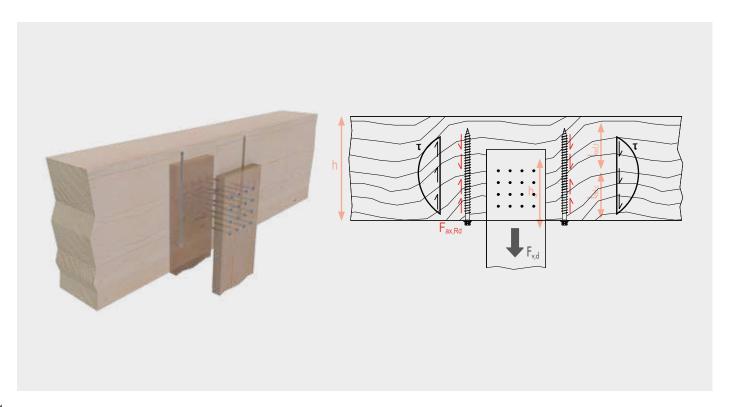
Per misurare la resistenza all'estrazione e al piegamento delle viti, cfr. ETA-11/0024.





### ESEMPIO DI APPLICAZIONE: ATTACCO PARALLELO

#### ARMATURA DI ATTACCO AVVITATA (NON DISPONIBILE IN ECS)


Nel misurare le costruzioni in legno è noto che, se possibile, le tensioni verticali rispetto alla direzione delle fibre si dovrebbero evitare. A causa della ridotta capacità di resistenza del legno in tal senso, in questi casi all'interno dei componenti in legno si possono formare rapidamente delle crepe, che li indeboliscono nel tempo. Tuttavia, ci sono casi in cui ciò non si può evitare ed è necessario mettere in atto misure di rinforzo. A questo scopo si possono utilizzare viti autotaglienti oppure barre filettate incollate: le prime in generale sono più economiche e più veloci da installare.

I collegamenti a vite verticali rispetto alla direzione della fibra rappresentano un caso più frequente. L'armatura viene rilevata contro la forza di trazione alla misurazione e verticale rispetto alla fibra sul piano che viene definito dalla distanza del bordo soggetto a sovraccarico al centro della vite più lontana. La parte di armatura dotata di filettatura deve coprire almeno il 75% dell'altezza della trave.

FORZA DI TRAZIONE ALLA MISURAZIONE VERTICALE RISPETTO ALLA DIREZIONE DELLA FIBRA, CHE DEVE ESSERE SUPPORTATA DALL'ARMATURA:

$$\begin{split} & \quad \quad \text{tenendo conto delle tensioni di taglio} \\ F_{t,90,d} &= F_{v,Ed} \cdot \overbrace{\left[1 - 3 \cdot \widehat{k} + 2 \cdot k^3\right]} \\ k &= \frac{h_e}{h} \\ I_{ef} &= min\left(I_{ad,t}\right) \; ; \; I_{ad,c}\right) \\ F_{t,90,Rd} &= n_s \cdot min\left\{ \begin{array}{l} f_{ax,d} \cdot d \cdot I_{ef} \\ f_{tens,d} \end{array} \right. \\ & \left. \begin{array}{l} F_{t,90,Rd} \\ \hline F_{t,90,Rd} \end{array} \right. \leq 1,0 \end{split}$$

F<sub>v,d</sub>: Valore di misurazione del componente di forza trasversale verticale rispetto alla direzione della fibra



### ESEMPIO DI APPLICAZIONE: RIPIEGATURA DELLA TRAVE

#### RIPIEGATURA DELLA TRAVE (DISPONIBILE IN ECS)

Le travi di legno ripiegate vengono utilizzate spesso durante le modifiche come soluzione di rinforzo e servono appunto a rafforzare travi già esistenti, quando i carichi aumentano a causa della modifica dell'utilizzo del piano che poggia sulle stesse. La capacità di carico migliora grazie all'aumento dell'altezza della trave per mezzo di una trave in legno aggiuntiva, che viene applicata sopra oppure sotto la trave già esistente. Il momento di piegatura causa tensioni di taglio (scorrimento) nel punto di incontro fra entrambi i componenti per edilizia, che cambiano aumentando dal centro della campata fino agli appoggi delle estremità. Per trasmettere queste tensioni vengono utilizzate viti che fanno sì che entrambi i componenti si comportino come se fossero un unico grande supporto. Le viti a filettatura intera, montate in posizione inclinata rispetto alla venatura del legno, sfruttano a questo scopo la loro resistenza assiale ottenendo così una rigidità di gran lunga superiore rispetto alle viti spostate di 90° nella semplice posizione di taglio.

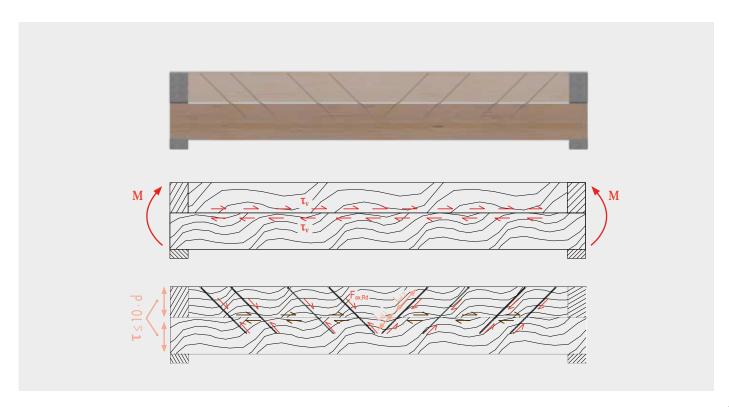
SOLLECITAZIONE AL TAGLIO DA PARTE DELLE VITI (A UN'INCLINAZIONE DI 45° RISPETTO ALLA VENATURA DEL LEGNO):

$$\tau_v = \frac{3}{2} \cdot \frac{F_{v,d}}{b \cdot 2h}$$

$$V_d = \tau_v \cdot b$$

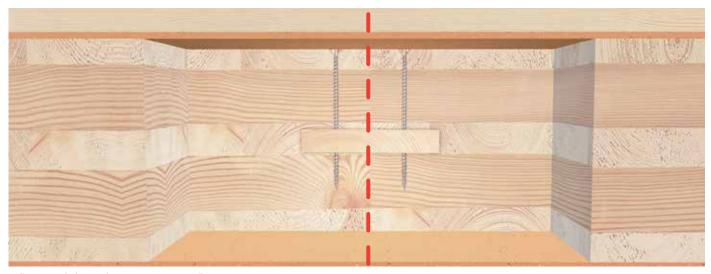
$$F_{\text{ax,Rd}} = \min \left\{ \begin{array}{l} f_{\text{ax,d}} \cdot d \cdot I_{\text{ef}} \\ f_{\text{tens,d}} \end{array} \right.$$

$$l_{ef} = min (l_{ad,1}; l_{ad,2})$$

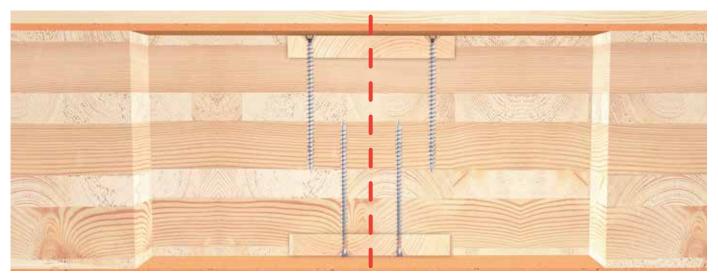

$$F_{v,Rd} = F_{\alpha x,Rd} \cdot \underline{n_s}$$

$$\frac{V_d}{F_{v,Rd}} \leq 1.0$$

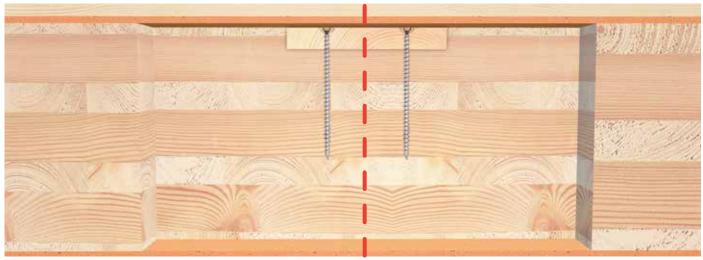
F<sub>v,d</sub> è massimo sui sostegni e minimo nella campata centrale. Per ottimizzare la struttura è possibile distribuire le viti.


V<sub>d</sub>: Forza trasversale per metro

a: Distanza delle viti







### ESEMPI DI APPLICAZIONE: ELEMENTI DI COPERTURA



Collegamento di elementi di copertura con un pannello paraurti interno



Collegamento di elementi di copertura con un pannello paraurti doppio



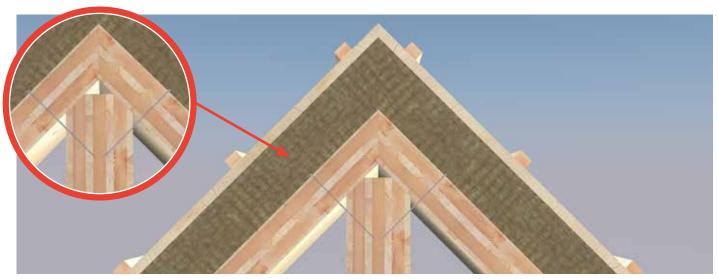
KonstruX per il collegamento di parete e soffitto al piano superiore

## ESEMPI DI APPLICAZIONE: ELEMENTI A PARETE

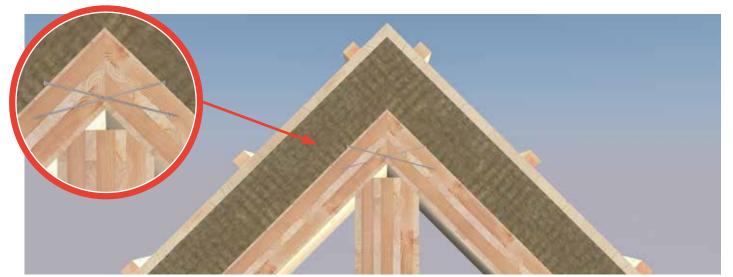


Collegamento dell'elemento a parete con l'elemento di copertura




Collegamento della parete con il pavimento in legno al piano superiore



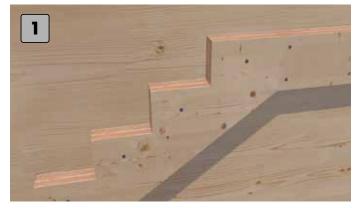

Collegamento del tetto con l'elemento a parete

## **Eurotec**° | KonstruX

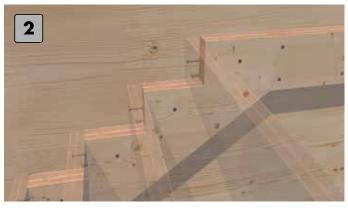
## ESEMPI DI APPLICAZIONE: ELEMENTI DEL TETTO



Pannelli del tetto su bisellatura – Avvitamento con arcareccio di colmo




Pannelli del tetto su bisellatura - Avvitamento obliquo




Pannelli del tetto su giunto – Avvitamento obliquo

## ESEMPI DI APPLICAZIONE: COSTRUZIONE DI SCALE CON CLT



Posizionare l'appoggio dei gradini alla parete.



Posizionare gli elementi di completamento dei gradini frontalmente all'appoggio dei gradini.



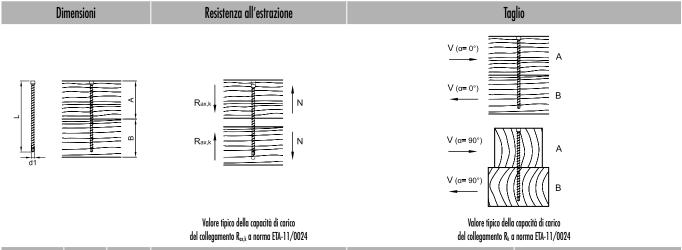
Posizionare i gradini superiori all'appoggio dei gradini.



Fatto!



## SISTEMI DI COLLEGAMENTO DI STRUTTURE IN LEGNO RAPIDI E SICURI KONSTRUX VITI A TESTA CILINDRICA / VITI A TESTA SVASATA


| Esempi di applicazione                             |                                                   |               | Testa cilindrica |               |               |                | Testa svasata |               |               |                |                |
|----------------------------------------------------|---------------------------------------------------|---------------|------------------|---------------|---------------|----------------|---------------|---------------|---------------|----------------|----------------|
|                                                    |                                                   | Ø 5,2<br>[mm] | Ø 5,9<br>[mm]    | Ø 6,5<br>[mm] | Ø 8,0<br>[mm] | Ø 10,0<br>[mm] | Ø 5,2<br>[mm] | Ø 6,5<br>[mm] | Ø 8,0<br>[mm] | Ø 10,0<br>[mm] | Ø 11,3<br>[mm] |
| Sollecitazione alla trazione legno-legno           | Taglio legno-legno                                | ✓             | <b>✓</b>         | ✓             |               | ✓              | ✓             |               |               |                | ✓              |
| Legno-legno su trazione 45°                        | Legno-legno su trazione 45°                       | ✓             | ✓                | ✓             | ✓             | ✓              | ✓             | ✓             | ✓             | ✓              | ✓              |
| Sollecitazione alla trazione acciaio-legno         | Taglio acciaio-legno                              | -             | -                | -             | -             | -              | ✓             | ✓             | ✓             | ✓              | ✓              |
| Acciaio-legno su trazione 45°                      | Acciaio-legno su trazione 45°                     | -             | -                | -             | -             | -              | ✓             | ✓             | ✓             | ✓              | ✓              |
| Attacco supporto principale-supporto secondario    | Collegamento montante-barra                       | ✓             | ✓                | ✓             | ✓             | ✓              | ✓             | ✓             | ✓             | -              | -              |
| Rinforzo dell'appoggio                             | Rinforzo dell'appoggio                            | ✓             | ✓                | ✓             | ✓             | ✓              | ✓             | ✓             | ✓             | ✓              | ✓              |
| Rinforzo alla trazione trasversale su sganciamento | Rinforzo alla trazione trasversale su sfondamento | ✓             | ✓                | ✓             | ✓             | ✓              | ✓             | ✓             | ✓             | ✓              | ✓              |
| Ripiegatura                                        | della trave                                       | -             | -                | ✓             | ✓             | ✓              | ✓             | ✓             | ✓             | ✓              | ✓              |
| Rinforzo alla trazione trasve                      | rsale dei mattoni di punta                        | _             | _                | _             | _             | ✓              | -             | _             | ✓             | ✓              | ✓              |

### VITI A FILETTATURA INTERA KONSTRUX

Informazioni tecniche



## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA DA 5,2 A 6,5 MM: ATTACCO LEGNO-LEGNO



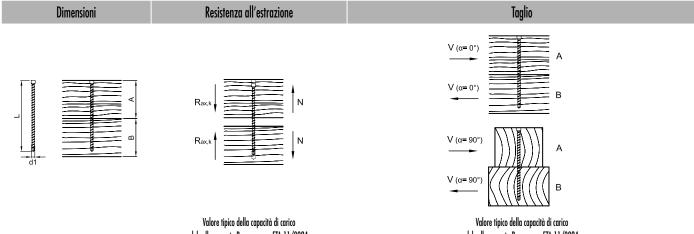
dl x L[mm] A [mm]  $R_{\alpha x,k}^{\alpha}$  - [kN]  $R_k^{\alpha}$  - [kN]  $R_k^{a}$  - [kN] B [mm]  $\alpha = 0^{\circ}$  $\alpha = 90^{\circ}$ 5,2 x 80 40 60 2,58 2,26 2,26 60 5,2 x 100 60 3,44 2,48 2,48 5,2 x 120 2,69 60 4,30 2,69 80 5,2 x 140 80 5,16 2,91 2,91 5,2 x 160 100 6,03 3,12 3,12 5,9 x 80 40 60 2,93 3,15 2.42 60 60 5,9 x 100 3,91 3,60 3,03 5,9 x 120 60 80 4,88 3,84 3,41 80 5,9 x 140 80 5,86 4,08 3,65 80 100 4,33 5,9 x 160 6,84 3,89 5,9 x 180 100 100 6,84 4,33 3,89 5,9 x 200 100 120 8,79 4,82 4,37 6,5 x 80 40 60 3,22 3,46 2,64 6,5 x 100 60 60 4,30 3.82 3.28 80 4,75 6,5 x 120 60 3,93 3,47 80 4,75 3,93 3,47 6,5 x 140 80 6,5 x 160 80 100 6,33 4,32 3,86 100 100 7,52 4,62 4,16 6,5 x 195 6,5 x 200 100 120 7,52 4,62 4,16 120 120 9,68 5,16 6,5 x 220 4,55 6,5 x 240 120 140 11,84 5,48 4,55 140 140 12.91 5.48 4.55

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{tk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .


Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10.40 \text{ kM} \rightarrow \text{Allineamento con i valori della tabella.}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 8,0 MM: ATTACCO LEGNO-LEGNO





del collegamento  $R_{\alpha x,k}$  a norma ETA-11/0024

del collegamento R<sub>k</sub> a norma ETA-11/0024

| dl x L[mm] | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha l}$ - [kN] | $R_k^{a}$ - [kN]     | $R_k^{a}$ - [kN]      |
|------------|--------|--------|------------------------------------|----------------------|-----------------------|
|            |        |        |                                    | $\alpha = 0^{\circ}$ | $\alpha = 90^{\circ}$ |
| 8,0 x 125  | 60     | 80     | 4,61                               | 5,05                 | 4,37                  |
| 8,0 x 155  | 80     | 80     | 7,11                               | 5,67                 | 4,99                  |
| 8,0 x 195  | 100    | 100    | 9,01                               | 6,15                 | 5,46                  |
| 8,0 x 220  | 120    | 120    | 9,48                               | 6,27                 | 5,58                  |
| 8,0 x 245  | 120    | 140    | 11,38                              | 6,74                 | 6,06                  |
| 8,0 x 270  | 140    | 140    | 12,33                              | 6,98                 | 6,29                  |
| 8,0 x 295  | 140    | 160    | 13,28                              | 7,21                 | 6,42                  |
| 8,0 x 330  | 160    | 180    | 15,17                              | 7,69                 | 6,42                  |
| 8,0 x 375  | 180    | 200    | 17,07                              | 7,79                 | 6,42                  |
| 8,0 x 400  | 200    | 220    | 18,97                              | 7,79                 | 6,42                  |
| 8,0 x 430  | 220    | 220    | 19,92                              | 7,79                 | 6,42                  |
| 8,0 x 480  | 240    | 260    | 22,76                              | 7,79                 | 6,42                  |
| 8,0 x 530  | 260    | 280    | 25,00                              | 7,79                 | 6,42                  |
| 8,0 x 580  | 280    | 320    | 25,00                              | 7,79                 | 6,42                  |

Misurazione a norma ETA-1 1/0024. Spessore grezzo ρ<sub>k</sub> = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico Re non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico Re devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 10,0 MM: ATTACCO LEGNO-LEGNO



| Dimensioni                               | Resistenza all'estrazione                                                                 | Taglio                                                                                                                                                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dummunumunumunumunumunumunumunumunumunum | Rax,k N                                                                                   | $V(\alpha = 0^{\circ})$ $V(\alpha = 0^{\circ})$ $V(\alpha = 90^{\circ})$ |
|                                          | Valore tipico della capacità di carico del collegamento $R_{\rm ack}$ a norma ETA-11/0024 | Valore tipico della capacità di carico del collegamento $R_{\bf k}$ a norma ETA-11/0024                                                                                                                                        |

|             |        |        | <b>3</b>                           |                      |                       |  |  |
|-------------|--------|--------|------------------------------------|----------------------|-----------------------|--|--|
| dl x L [mm] | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha l}$ - [kN] | $R_{k}^{a)}$ - [kN]  | $R_k^{a)}$ - [kN]     |  |  |
|             |        |        |                                    | $\alpha = 0^{\circ}$ | $\alpha = 90^{\circ}$ |  |  |
| 10,0 x 125  | 60     | 80     | 6,92                               | 7,18                 | 6,18                  |  |  |
| 10,0 x 220  | 120    | 120    | 11,53                              | 8,33                 | 7,33                  |  |  |
| 10,0 x 245  | 120    | 140    | 13,84                              | 8,91                 | 7,91                  |  |  |
| 10,0 x 270  | 140    | 140    | 15,00                              | 9,20                 | 8,20                  |  |  |
| 10,0 x 300  | 160    | 160    | 16,15                              | 9,48                 | 8,48                  |  |  |
| 10,0 x 330  | 160    | 180    | 18,46                              | 10,06                | 8,90                  |  |  |
| 10,0 x 360  | 180    | 200    | 20,76                              | 10,64                | 8,90                  |  |  |
| 10,0 x 400  | 200    | 220    | 23,07                              | 10,89                | 8,90                  |  |  |
| 10,0 x 450  | 220    | 240    | 25,38                              | 10,89                | 8,90                  |  |  |
| 10,0 x 500  | 240    | 280    | 27,68                              | 10,89                | 8,90                  |  |  |
| 10,0 x 550  | 260    | 300    | 29,99                              | 10,89                | 8,90                  |  |  |
| 10,0 x 600  | 300    | 320    | 33,00                              | 10,89                | 8,90                  |  |  |
| 10,0 x 650  | 320    | 340    | 33,00                              | 10,89                | 8,90                  |  |  |
| 10,0 x 700  | 340    | 360    | 33,00                              | 10,89                | 8,90                  |  |  |
| 10,0 x 750  | 360    | 400    | 33,00                              | 10,89                | 8,90                  |  |  |
| 10,0 x 800  | 400    | 420    | 33,00                              | 10,89                | 8,90                  |  |  |
| 10,0 x 900  | 440    | 480    | 33,00                              | 10,89                | 8,90                  |  |  |
| 10,0 x 1000 | 480    | 540    | 33,00                              | 10,89                | 8,90                  |  |  |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{tk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{M} = 1,3$ .

→ Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = \frac{7,20 \text{ kN}}{2}$ 

 $La\ capacit\`a\ di\ carico\ del\ collegamento\ si\ applica\ così\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = R_d \cdot \gamma_M\ /\ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA DA 5,2 A 6,5 MM: ATTACCO LEGNO-LEGNO





Valore tipico della capacità di carico del collegamento  $R_{\text{ex},k}\,$  oppure  $R_{k}\,$ a norma ETA-11/0024

| dl x L [mm] | A [mm] | B [mm] | $R_{k}^{\alpha l}$ - [kN] |
|-------------|--------|--------|---------------------------|
|             |        |        | $\alpha = 45^{\circ}$     |
| 5,2 x 80    | 30     | 40     | 2,42                      |
| 5,2 x 100   | 40     | 60     | 2,82                      |
| 5,2 x 120   | 40     | 60     | 3,22                      |
| 5,2 x 140   | 60     | 60     | 3,22                      |
| 5,2 x 160   | 60     | 60     | 4,84                      |
| 5,9 x 80    | 30     | 40     | 2,75                      |
| 5,9 x 100   | 40     | 60     | 3,20                      |
| 5,9 x 120   | 40     | 60     | 3,65                      |
| 5,9 x 140   | 60     | 60     | 3,65                      |
| 5,9 x 160   | 60     | 60     | 5,50                      |
| 5,9 x 180   | 80     | 80     | 6,00                      |
| 5,9 x 200   | 80     | 80     | 6,40                      |
| 6,5 x 80    | 30     | 40     | 3,00                      |
| 6,5 x 100   | 40     | 60     | 3,50                      |
| 6,5 x 120   | 40     | 60     | 4,00                      |
| 6,5 x 140   | 60     | 60     | 4,00                      |
| 6,5 x 160   | 60     | 60     | 6,05                      |
| 6,5 x 195   | 80     | 80     | 7,05                      |
| 6,5 x 200   | 80     | 80     | 7,05                      |
| 6,5 x 220   | 80     | 80     | 8,00                      |
| 6,5 x 240   | 100    | 100    | 9,05                      |
| 6,5 x 260   | 100    | 100    | 10,05                     |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k = 380 \text{ kg/m}^3$ . Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_a$ :  $R_d = R_k \cdot k_{mod} / \gamma_{tk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{M} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \text{ / } k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

# KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 8,0 MM: ATTACCO LEGNO-LEGNO





Valore tipico della capacità di carico del collegamento  $R_{\alpha x k}$  oppure  $R_k$  a norma ETA-11/0024

| dl x L [mm] | A [mm] | B [mm] | $R_{k}^{\alpha}$ - [kN] |
|-------------|--------|--------|-------------------------|
|             |        |        | $\alpha = 45^{\circ}$   |
| 8,0 x 125   | 40     | 60     | 3,20                    |
| 8,0 x 155   | 60     | 60     | 4,70                    |
| 8,0 x 195   | 80     | 80     | 5,49                    |
| 8,0 x 220   | 80     | 100    | 7,17                    |
| 8,0 x 245   | 100    | 100    | 6,95                    |
| 8,0 x 270   | 100    | 100    | 9,61                    |
| 8,0 x 295   | 120    | 100    | 8,40                    |
| 8,0 x 330   | 120    | 140    | 10,75                   |
| 8,0 x 375   | 140    | 140    | 11,87                   |
| 8,0 x 400   | 160    | 140    | 11,65                   |
| 8,0 x 430   | 160    | 160    | 13,66                   |
| 8,0 x 480   | 180    | 180    | 15,12                   |
| 8,0 x 530   | 180    | 200    | 17,67                   |
| 8,0 x 580   | 220    | 220    | 17,67                   |

Misurazione a norma ETA-1 1/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{tk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

 $La~capacità~di~carico~del~collegamento~si~applica~così~come~dimostrato,~se~R_d \geq E_d. \\ \longrightarrow min~R_k = R_d \cdot \gamma_M \ / \ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 10,0 MM: ATTACCO LEGNO-LEGNO





Valore tipico della capacità di carico del collegamento  $R_{\alpha x,k}$  oppure  $R_k$  a norma ETA-11/0024

| d1 x L [mm] | A [mm] | B [mm] | R <sub>k</sub> °) - [kN] |
|-------------|--------|--------|--------------------------|
|             |        |        | $\alpha$ = 45°           |
| 10,0 x 125  | 40     | 60     | 3,68                     |
| 10,0 x 220  | 80     | 80     | 8,60                     |
| 10,0 x 245  | 100    | 100    | 8,60                     |
| 10,0 x 270  | 100    | 100    | 10,63                    |
| 10,0 x 300  | 120    | 120    | 10,63                    |
| 10,0 x 330  | 120    | 140    | 13,07                    |
| 10,0 x 360  | 140    | 140    | 13,21                    |
| 10,0 x 400  | 160    | 140    | 14,17                    |
| 10,0 x 450  | 160    | 180    | 18,25                    |
| 10,0 x 500  | 180    | 200    | 20,02                    |
| 10,0 x 550  | 200    | 200    | 21,79                    |
| 10,0 x 600  | 220    | 220    | 23,33                    |
| 10,0 x 650  | 220    | 240    | 23,33                    |
| 10,0 x 700  | 240    | 260    | 23,33                    |
| 10,0 x 750  | 260    | 280    | 23,33                    |
| 10,0 x 800  | 280    | 300    | 23,33                    |
| 10,0 x 900  | 320    | 340    | 23,33                    |
| 10,0 x 1000 | 360    | 380    | 23,33                    |

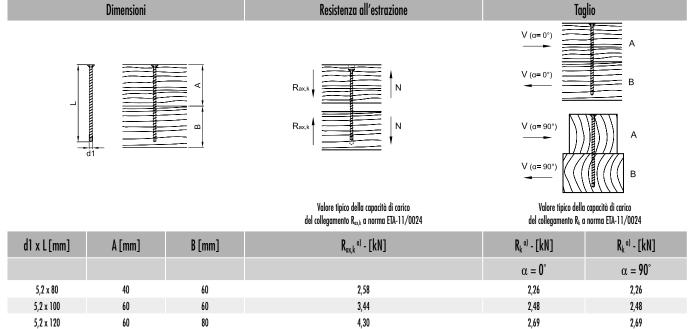
Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .


→ Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella.}$ 

## KONSTRUX ST CON TESTA SVASATA E PUNTA DI FORATURA DA 5,2 A 8,0 MM: ATTACCO LEGNO-LEGNO





| 5,2 x 80  | 40  | 60  | 2,58  | 2,26 | 2,26 |
|-----------|-----|-----|-------|------|------|
| 5,2 x 100 | 60  | 60  | 3,44  | 2,48 | 2,48 |
| 5,2 x 120 | 60  | 80  | 4,30  | 2,69 | 2,69 |
| 5,2 x 140 | 80  | 80  | 5,16  | 2,91 | 2,91 |
| 5,2 x 160 | 80  | 100 | 6,03  | 3,12 | 3,12 |
| 6,5 x 80  | 40  | 60  | 3,22  | 3,46 | 2,64 |
| 6,5 x 100 | 60  | 60  | 4,30  | 3,82 | 3,28 |
| 6,5 x 120 | 60  | 80  | 4,75  | 3,93 | 3,47 |
| 6,5 x 140 | 80  | 80  | 4,75  | 3,93 | 3,47 |
| 8,0 x 95  | 40  | 60  | 3,08  | 4,61 | 3,57 |
| 8,0 x 125 | 60  | 80  | 4,61  | 5,05 | 4,37 |
| 8,0 x 155 | 80  | 80  | 7,11  | 5,67 | 4,99 |
| 8,0 x 195 | 100 | 100 | 9,01  | 6,15 | 5,46 |
| 8,0 x 220 | 120 | 120 | 9,48  | 6,27 | 5,58 |
| 8,0 x 245 | 120 | 140 | 11,38 | 6,74 | 6,06 |
| 8,0 x 270 | 140 | 140 | 12,33 | 6,98 | 6,29 |
| 8,0 x 295 | 140 | 160 | 13,28 | 7,21 | 6,42 |
| 8,0 x 330 | 160 | 180 | 15,17 | 7,69 | 6,42 |
| 8,0 x 375 | 180 | 200 | 17,07 | 7,79 | 6,42 |
| 8,0 x 400 | 200 | 220 | 18,97 | 7,79 | 6,42 |
| 8,0 x 430 | 220 | 220 | 19,92 | 7,79 | 6,42 |
| 8,0 x 480 | 240 | 260 | 22,76 | 7,79 | 6,42 |
| 8,0 x 545 | 260 | 300 | 25,00 | 7,79 | 6,42 |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{gk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

→ Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10.40 \text{ kM} \rightarrow \text{Allineamento con i valori della tabella.}$ 

## KONSTRUX ST CON TESTA SVASATA E PUNTA DI FORATURA 10,0 MM: ATTACCO LEGNO-LEGNO



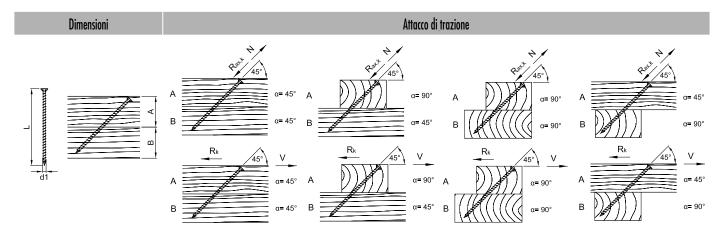
| Dimensioni | Resistenza all'estrazione                                                                        | Taglio                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| <b>A</b>   | Rax,k N                                                                                          | V (a= 0°) A<br>V (a= 0°) B                                                                              |
| d1         | Rax,k                                                                                            | $V (\alpha = 90^{\circ})$ $V (\alpha = 90^{\circ})$ $V (\alpha = 90^{\circ})$ $V (\alpha = 90^{\circ})$ |
|            | Valore tipico della capacità di carico<br>del collegamento R <sub>ax</sub> , a norma ETA-11/0024 | Valore tipico della capacità di carico<br>del collegamento R₁ a norma ETA-11/0024                       |

|             |        |        | 201 tonogumonio 102, 1 1 1011112 211 1 1 7 002 1 | an toning amount in a normal zin i i i i voz i |                       |  |
|-------------|--------|--------|--------------------------------------------------|------------------------------------------------|-----------------------|--|
| dl x L [mm] | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha j}$ - [kN]               | $R_k^{a}$ - [kN]                               | $R_k^{\alpha}$ - [kN] |  |
|             |        |        |                                                  | $\alpha = 0^{\circ}$                           | $\alpha = 90^{\circ}$ |  |
| 10,0 x 125  | 60     | 80     | 6,92                                             | 7,18                                           | 6,18                  |  |
| 10,0 x 155  | 80     | 80     | 8,65                                             | 7,61                                           | 6,61                  |  |
| 10,0 x 195  | 100    | 100    | 10,96                                            | 8,19                                           | 7,19                  |  |
| 10,0 x 220  | 120    | 120    | 11,53                                            | 8,33                                           | 7,33                  |  |
| 10,0 x 245  | 120    | 140    | 13,84                                            | 8,91                                           | 7,91                  |  |
| 10,0 x 270  | 140    | 140    | 14,99                                            | 9,20                                           | 8,20                  |  |
| 10,0 x 300  | 160    | 160    | 16,15                                            | 9,48                                           | 8,48                  |  |
| 10,0 x 330  | 160    | 180    | 18,46                                            | 10,06                                          | 8,90                  |  |
| 10,0 x 360  | 180    | 200    | 20,76                                            | 10,64                                          | 8,90                  |  |
| 10,0 x 400  | 200    | 220    | 23,07                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 450  | 220    | 240    | 25,38                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 500  | 240    | 280    | 27,68                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 550  | 260    | 300    | 29,99                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 600  | 300    | 320    | 33,00                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 650  | 320    | 340    | 33,00                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 700  | 340    | 360    | 33,00                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 750  | 360    | 400    | 33,00                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 800  | 400    | 420    | 33,00                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 900  | 440    | 480    | 33,00                                            | 10,89                                          | 8,90                  |  |
| 10,0 x 1000 | 480    | 540    | 33,00                                            | 10,89                                          | 8,90                  |  |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{M}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d$  = 2,00  $\cdot$  1,35 + 3,00  $\cdot$  1,5 = 7,20 kN.

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \ / \ k_{\text{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10.40 \text{ kM} \rightarrow \text{Allineamento con i valori della tabella.}$ 

# KONSTRUX CON TESTA SVASATA E PUNTA AG 11,3 MM: ATTACCO LEGNO-LEGNO





Valore tipico della capacità di carico del collegamento  $R_{\alpha x,k}\,$  oppure  $R_k\,a$  norma ETA-11/0024

| dl x L [mm] | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha}$ - [kN] | $R_k^{a} - [kN]$ | $R_{\alpha x,k}^{\alpha}$ - [kN]                | $R_k^{\alpha}$ - [kN] | $R_{\alpha x,k}^{\alpha}$ - [kN]                | $R_k^{\alpha}$ - [kN] | $R_{\alpha x,k}^{\alpha l}$ - [kN]              | $R_k^{a}$ - [kN] |
|-------------|--------|--------|----------------------------------|------------------|-------------------------------------------------|-----------------------|-------------------------------------------------|-----------------------|-------------------------------------------------|------------------|
|             |        |        | α =                              | 45°              | $\alpha_A = 90^{\circ}$ $\alpha_B = 45^{\circ}$ |                       | $\alpha_A = 90^{\circ}$ $\alpha_B = 90^{\circ}$ |                       | $\alpha_A = 45^{\circ}$ $\alpha_B = 90^{\circ}$ |                  |
| 11,3 x 300  | 120    | 120    | 16,98                            | 12,01            | 16,98                                           | 12,01                 | 16,98                                           | 12,01                 | 16,98                                           | 12,01            |
| 11,3 x 340  | 140    | 120    | 18,51                            | 13,09            | 18,51                                           | 13,09                 | 18,51                                           | 13,09                 | 18,51                                           | 13,09            |
| 11,3 x 380  | 140    | 140    | 23,72                            | 16,77            | 23,72                                           | 16,77                 | 23,72                                           | 16,77                 | 23,72                                           | 16,77            |
| 11,3 x 420  | 160    | 160    | 25,25                            | 17,85            | 25,25                                           | 17,85                 | 25,25                                           | 17,85                 | 25,25                                           | 17,85            |
| 11,3 x 460  | 180    | 160    | 26,78                            | 18,93            | 26,78                                           | 18,93                 | 26,78                                           | 18,93                 | 26,78                                           | 18,93            |
| 11,3 x 500  | 180    | 200    | 31,99                            | 22,62            | 31,99                                           | 22,62                 | 31,99                                           | 22,62                 | 31,99                                           | 22,62            |
| 11,3 x 540  | 200    | 200    | 33,52                            | 23,70            | 33,52                                           | 23,70                 | 33,52                                           | 23,70                 | 33,52                                           | 23,70            |
| 11,3 x 580  | 220    | 220    | 35,04                            | 24,78            | 35,04                                           | 24,78                 | 35,04                                           | 24,78                 | 35,04                                           | 24,78            |
| 11,3 x 620  | 220    | 240    | 40,26                            | 28,47            | 40,26                                           | 28,47                 | 40,26                                           | 28,47                 | 40,26                                           | 28,47            |
| 11,3 x 660  | 240    | 240    | 41,79                            | 29,55            | 41,79                                           | 29,55                 | 41,79                                           | 29,55                 | 41,79                                           | 29,55            |
| 11,3 x 700  | 260    | 260    | 43,31                            | 30,63            | 43,31                                           | 30,63                 | 43,31                                           | 30,63                 | 43,31                                           | 30,63            |
| 11,3 x 750  | 280    | 280    | 46,14                            | 32,63            | 46,14                                           | 32,63                 | 46,14                                           | 32,63                 | 46,14                                           | 32,63            |
| 11,3 x 800  | 300    | 280    | 48,97                            | 34,63            | 48,97                                           | 34,63                 | 48,97                                           | 34,63                 | 48,97                                           | 34,63            |
| 11,3 x 900  | 320    | 340    | 50,00                            | 35,36            | 50,00                                           | 35,36                 | 50,00                                           | 35,36                 | 50,00                                           | 35,36            |
| 11,3 x 1000 | 360    | 360    | 50,00                            | 35,36            | 50,00                                           | 35,36                 | 50,00                                           | 35,36                 | 50,00                                           | 35,36            |

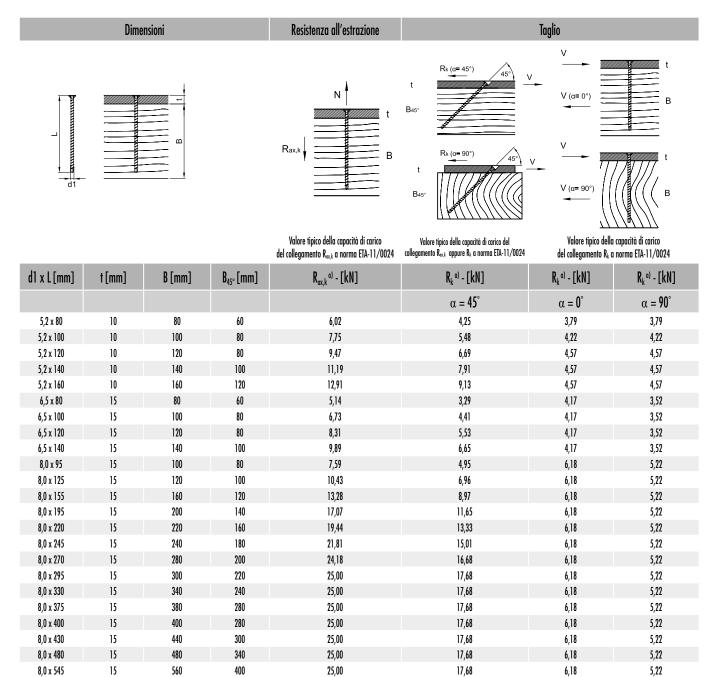
Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{tk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{th} = 1,3$ .


→ Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

 $La\ capacit\`{a}\ di\ carico\ del\ collegamento\ si\ applica\ cos\`{a}\ come\ dimostrato,\ se\ R_d \geq E_d. \ \longrightarrow min\ R_k = \ R_d \cdot \gamma_M \ / \ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_k \cdot \gamma_M / k_{mod} \rightarrow R_k = 7.20 \text{ kN} \cdot 1.3 / 0.9 = 10.40 \text{ kM} \rightarrow \text{Allineamento con i valori della tabella}$ 

#### KONSTRUX ST CON TESTA SVASATA E PUNTA DI FORATURA DA 5,2 A 8,0 MM: ATTACCO ACCIAIO-LEGNO



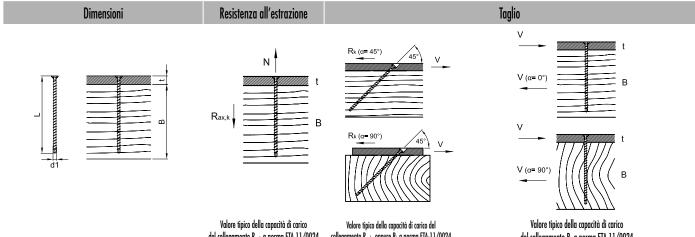


Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{H}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Fremnio.

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ ,  $\gamma_M = 1,3$ .


 $\rightarrow$  Valore di misurazione dell'effetto E<sub>d</sub> = 2,00  $\cdot$  1,35 + 3,00  $\cdot$  1,5 = 7,20 kN.

 $\textbf{La capacità di carico del collegamento si applica così come dimostrato, se } \textit{R}_{\textit{d}} \geq \textit{E}_{\textit{d}}. \longrightarrow \textit{min } \textit{R}_{\textit{k}} = \textit{R}_{\textit{d}} \cdot \gamma_{\textit{M}} \, / \, k_{\textit{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

# KONSTRUX ST CON TESTA SVASATA E PUNTA DI FORATURA 10,0 MM: ATTACCO ACCIAIO-LEGNO





del collegamento R<sub>ax,k</sub> a norma ETA-11/0024

collegamento  $\dot{R_{\alpha\kappa,k}}$  oppure  $\dot{R}_k$  a norma ETA-11/0024

del collegamento R<sub>k</sub> a norma ETA-11/0024

| dl x L [mm] | t[mm] | B [mm] | B <sub>45°</sub> [mm] | $R_{\alpha x,k}^{a)}$ - [kN] | $R_k^{a}$ - [kN]      | R <sub>k</sub> a) - [kN] | R <sub>k</sub> °) - [kN] |
|-------------|-------|--------|-----------------------|------------------------------|-----------------------|--------------------------|--------------------------|
|             |       |        |                       |                              | $\alpha = 45^{\circ}$ | $\alpha = 0^{\circ}$     | $\alpha = 90^{\circ}$    |
| 10,0 x 125  | 15    | 120    | 100                   | 12,69                        | 8,46                  | 8,72                     | 7,30                     |
| 10,0 x 155  | 15    | 160    | 120                   | 16,15                        | 10,91                 | 8,72                     | 7,30                     |
| 10,0 x 195  | 15    | 200    | 140                   | 20,76                        | 14,17                 | 8,72                     | 7,30                     |
| 10,0 x 220  | 15    | 220    | 160                   | 23,65                        | 16,21                 | 8,72                     | 7,30                     |
| 10,0 x 245  | 15    | 240    | 180                   | 26,53                        | 18,25                 | 8,72                     | 7,30                     |
| 10,0 x 270  | 15    | 280    | 200                   | 29,41                        | 20,29                 | 8,72                     | 7,30                     |
| 10,0 x 300  | 15    | 300    | 220                   | 32,87                        | 22,74                 | 8,72                     | 7,30                     |
| 10,0 x 330  | 15    | 340    | 240                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 360  | 15    | 360    | 260                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 400  | 15    | 400    | 280                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 450  | 15    | 460    | 320                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 500  | 15    | 500    | 360                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 550  | 15    | 560    | 400                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 600  | 15    | 600    | 420                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 650  | 15    | 660    | 480                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 700  | 15    | 720    | 520                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 750  | 15    | 660    | 560                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 800  | 15    | 800    | 600                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 900  | 15    | 920    | 640                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |
| 10,0 x 1000 | 15    | 1000   | 720                   | 33,00                        | 23,33                 | 8,72                     | 7,30                     |

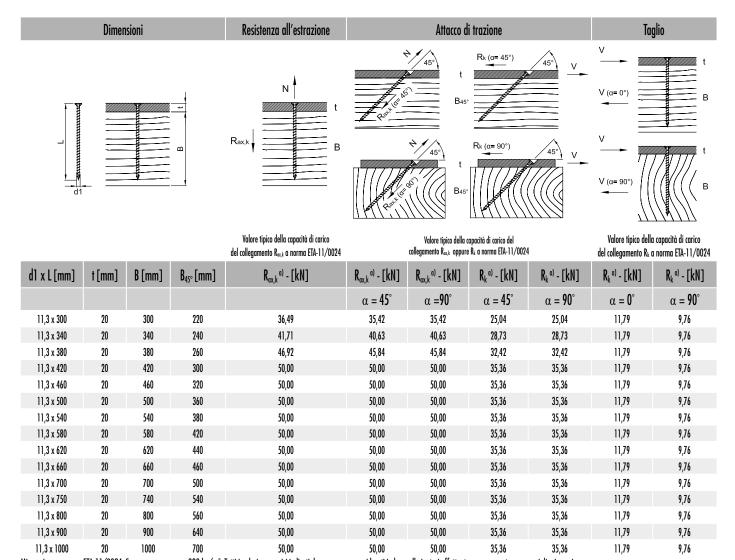
Misurazione a norma ETA-11/0024. Spessore grezzo  $ho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico Rk non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico Rk devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

 $Valore \ \ ^{1}\text{tipico di un effetto costante (carico strutturale)} \ G_{k} = 2,00 \ kN \ ed \ effetto \ variabile (per es. carico della neve) \ Q_{k} = 3,00 \ kN. \ k_{mod} = 0,9. \ \gamma_{M} = 1,3.$ 


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{d} \geq E_{d}. \longrightarrow \text{min } R_{k} = R_{d} \cdot \gamma_{M} \: / \: k_{mod}$ 

Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_k \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10,40 \text{ kM} \rightarrow \text{Allineamento con i valori della tabella}$ 

#### KONSTRUX CON TESTA SVASATA E PUNTA AG 11,3 MM: ATTACCO ACCIAIO-LEGNO





Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico R₁ non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico R₂ devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione R₂: R₂ = R₂ · kmaℓ / γ₂. I valori di misurazione della capacità di carico R₂ devono essere contrapposti ai valori di misurazione degli effetti E₂ (R₂ ≥ E₂).

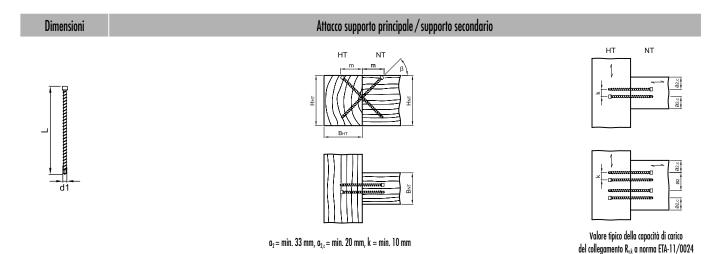
#### Esempio:

 $Valore\ it pico\ di\ un\ effetto\ costante\ (carico\ strutturale)\ G_k=2,00\ kN\ ed\ effetto\ variabile\ (per\ es.\ carico\ della\ neve)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{N}=1,3.$ 

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{d} \geq E_{d}. \longrightarrow \text{min } R_{k} = R_{d} \cdot \gamma_{M} \: / \: k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 


26,88

34,83

3

#### KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA DA 5,2 A 5,9 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





β°  $R_{v,k}^{a)b}$  -  $\lceil kN \rceil$ dl x L [mm] min. B<sub>NT</sub>[mm] min. H<sub>NT</sub>[mm] min. B<sub>HT</sub>[mm] min. H<sub>HT</sub>[mm] m [mm] Coppia (n) 60 8,00 1 80 14,93 2 52 5,2 x 140 120 60 120 45 100 21,50 3 140 27.86 60 8,00 80 14,93 5,2 x 160 140 80 140 60 45 100 21,50 140 27.86 60 10,00 100 2 18,66 140 80 140 60 45 5,9 x 160 120 26,88 3 160 34.83 60 10,00 100 18,66 160 5,9 x 180 80 160 65 45 120 26,88 160 34,83 60 10,00 100 18,66 2 5,9 x 200 160 80 160 70 45

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

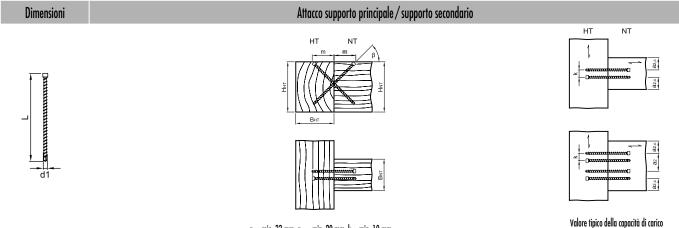
a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{tk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

120


160

 $La\ capacit\`{a}\ di\ carico\ del\ collegamento\ si\ applica\ cos\`{i}\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = R_d \cdot \gamma_M\ /\ k_{mod}$ 

Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ .

# KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 6,5 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





| $a_2 = \min. 33 \text{ mm}, a_{2,c} = \min. 20$ | ) mm, k = min. 10 mm |
|-------------------------------------------------|----------------------|
|-------------------------------------------------|----------------------|

Valore tipico della capacità di carico del collegamento R<sub>vk</sub> a norma ETA-11/0024

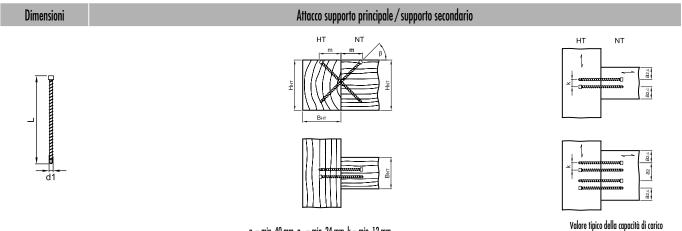
| d1 x L[mm] | min. B <sub>NT</sub> [mm] | min. H <sub>NT</sub> [mm] | min. B <sub>HT</sub> [mm] | min. H <sub>HT</sub> [mm] | m [mm] | β° | $R_{v,k}^{a) b}$ - [kN] | Coppia (n) |
|------------|---------------------------|---------------------------|---------------------------|---------------------------|--------|----|-------------------------|------------|
|            | 60                        |                           | 80                        | 160                       |        |    | 10,91                   | 1          |
| 6,5 x 195  | 100                       | 160                       |                           |                           | 69     | 45 | 20,36                   | 2          |
| U,J X 17J  | 120                       | 100                       | 00                        | 100                       |        |    | 29,33                   | 3          |
|            | 160                       |                           |                           |                           |        |    | 38,00                   | 4          |
|            | 60                        |                           |                           |                           |        |    | 10,91                   | 1          |
| 6,5 x 200  | 100                       | 160                       | 80                        | 160                       | 70     | 45 | 20,36                   | 2          |
| 0,5 X 200  | 120                       | 100                       | 00                        | 100                       | 70     | 43 | 29,33                   | 3          |
|            | 160                       |                           |                           |                           |        |    | 38,00                   | 4          |
|            | 60                        | 180                       | 100                       |                           | 80     | 45 | 12,90                   | 1          |
| 6,5 x 220  | 100                       |                           |                           | 180                       |        |    | 24,07                   | 2          |
| 0,5 X 220  | 120                       |                           |                           |                           |        |    | 34,67                   | 3          |
|            | 160                       |                           |                           |                           |        |    | 44,92                   | 4          |
|            | 60                        |                           |                           |                           |        |    | 12,90                   | 1          |
| 6,5 x 240  | 100                       | 180                       | 100                       | 180                       | 85     | 45 | 24,07                   | 2          |
| 0,5 X 2 10 | 120                       | 100                       | 100                       | 100                       | 03     |    | 34,67                   | 3          |
|            | 160                       |                           |                           |                           |        |    | 44,92                   | 4          |
|            | 60                        |                           |                           |                           |        |    | 12,90                   | 1          |
| 6,5 x 260  | 100                       | 200                       | 100                       | 200                       | 90     | 45 | 24,07                   | 2          |
| U,J A 200  | 120                       | 200                       | 100                       | 200                       | 70     | 43 | 34,67                   | 3          |
|            | 160                       |                           |                           |                           |        |    | 44,92                   | 4          |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k = 380 \text{ kg/m}^3$ . Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{kk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .


 $\longrightarrow$  Valore di misurazione dell'effetto  $E_d$  = 2,00  $\cdot$  1,35 + 3,00  $\cdot$  1,5 =  $\underline{7,20~kN}.$ 

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 8,0 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





 $a_2$  = min. 40 mm,  $a_{2,\varepsilon}$  = min. 24 mm, k = min. 12 mm

del collegamento Ruk a norma FTA-11/0024

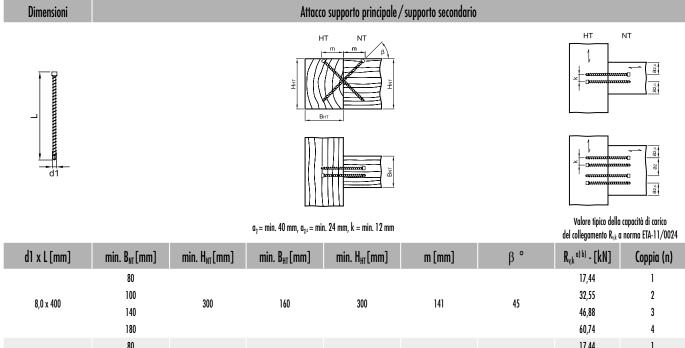
|             |                           |                           |                           |                           |        |    | uei tollegulliellio k <sub>i,k</sub> t | I IIUIIIIU EIA-I I/UUZ4 |
|-------------|---------------------------|---------------------------|---------------------------|---------------------------|--------|----|----------------------------------------|-------------------------|
| d1 x L [mm] | min. B <sub>NT</sub> [mm] | min. H <sub>NT</sub> [mm] | min. B <sub>HT</sub> [mm] | min. H <sub>HT</sub> [mm] | m [mm] | β° | $R_{v,k}^{a) b}$ - [kN]                | Coppia (n)              |
|             | 80                        |                           |                           |                           | 87     |    | 16,43                                  | 1                       |
| 0.0 045     | 100                       | 000                       |                           | 000                       |        | 45 | 30,66                                  | 2                       |
| 8,0 x 245   | 140                       | 200                       | 100                       | 200                       |        | 45 | 44,16                                  | 3                       |
|             | 180                       |                           |                           |                           |        |    | 57,21                                  | 4                       |
|             | 80                        |                           |                           |                           |        |    | 17,44                                  | 1                       |
| 0.0 970     | 100                       | 200                       | 100                       | 200                       | 95     | AE | 32,55                                  | 2                       |
| 8,0 x 270   | 140                       | 200                       | 100                       | 200                       |        | 45 | 46,88                                  | 3                       |
|             | 180                       |                           |                           |                           |        |    | 57,21                                  | 4                       |
|             | 80                        | 220                       | 120                       |                           | 104    |    | 17,44                                  | 1                       |
| 8,0 x 295   | 100                       |                           |                           | 220                       |        | 45 | 32,55                                  | 2                       |
| 0,0 X 27J   | 140                       |                           |                           | 220                       |        | 43 | 46,88                                  | 3                       |
|             | 180                       |                           |                           |                           |        |    | 60,74                                  | 4                       |
|             | 80                        |                           |                           |                           |        |    | 17,44                                  | 1                       |
| 8,0 x 330   | 100                       | 260                       | 140                       | 260                       | 117    | 45 | 32,55                                  | 2                       |
| 0,0 x 330   | 140                       | 200                       | 140                       | 200                       | 117    | 43 | 46,88                                  | 3                       |
|             | 180                       |                           |                           |                           |        |    | 60,74                                  | 4                       |
|             | 80                        |                           |                           |                           |        |    | 17,44                                  | 1                       |
| 8,0 x 375   | 100                       | 280                       | 160                       | 280                       | 133    | 45 | 32,55                                  | 2                       |
| 0,U X 3/ J  | 140                       | 200                       | 100                       | 280                       |        | 45 | 46,88                                  | 3                       |
|             | 180                       |                           |                           |                           |        |    | 60,74                                  | 4                       |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_R = 380 \text{ kg/m}^3$ . Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico Re, non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico Re, devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{NL}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella.}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 8,0 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





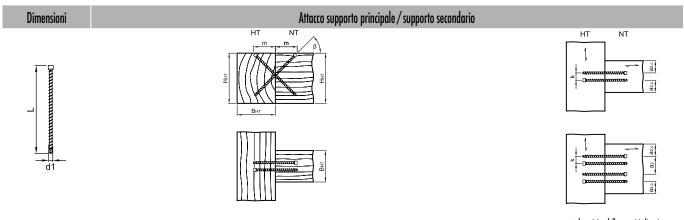
|           |     |     |     |     |     |    | ,     | • |
|-----------|-----|-----|-----|-----|-----|----|-------|---|
| 8,0 x 400 | 100 | 300 | 160 | 300 | 141 | 45 | 32,55 | 2 |
| 0,0 X 400 | 140 | 300 | 100 | 300 | 141 | 43 | 46,88 | 3 |
|           | 180 |     |     |     |     |    | 60,74 | 4 |
|           | 80  |     |     |     |     |    | 17,44 | 1 |
| 0.0 400   | 100 | 200 | 100 | 200 | 100 | 45 | 32,55 | 2 |
| 8,0 x 430 | 140 | 320 | 180 | 320 | 152 | 45 | 46,88 | 3 |
|           | 180 |     |     |     |     |    | 60,74 | 4 |
|           | 80  |     |     |     |     |    | 17,44 | 1 |
| 0.0400    | 100 | 360 | 180 | 360 | 170 | ΑΓ | 32,55 | 2 |
| 8,0 x 480 | 140 |     |     | 300 | 170 | 45 | 46,88 | 3 |
|           | 180 |     |     |     |     |    | 60,74 | 4 |
|           | 80  |     |     |     |     |    | 17,44 | 1 |
| 8,0 x 530 | 100 | 400 | 200 | 400 | 187 | 45 | 32,55 | 2 |
| 0,U X 33U | 140 | 400 | 200 | 400 | 10/ | 43 | 46,88 | 3 |
|           | 180 |     |     |     |     |    | 57,21 | 4 |
|           | 80  |     |     |     |     |    | 17,44 | 1 |
| 0 0 500   | 100 | 440 | 220 | 440 | 205 | 45 | 32,55 | 2 |
| 8,0 x 580 | 140 | 440 | 220 | 440 | 203 | 43 | 46,88 | 3 |
|           | 180 |     |     |     |     |    | 57,21 | 4 |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k = 380$  kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{th}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}.$ 

 $La\ capacit\`a\ di\ carico\ del\ collegamento\ si\ applica\ così\ come\ dimostrato,\ se\ R_d \geq E_d. \longrightarrow min\ R_k = \ R_d \cdot \gamma_M\ /\ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7.20 \text{ kN} \cdot 1.3 / 0.9 = \underline{10.40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella.}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 10,0 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





 $\alpha_2$  = min. 50 mm,  $\alpha_{2\ell}$  = min. 30 mm, k = min. 15 mm

Valore tipico della capacità di carico del collegamento  $R_{\nu k}$  a norma ETA-11/0024

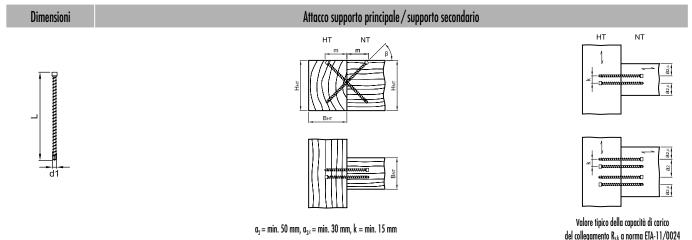
| dl x L[mm]      | min. B <sub>NT</sub> [mm] | min. H <sub>NT</sub> [mm] | min. B <sub>HT</sub> [mm]                       | min. H <sub>HT</sub> [mm] | m [mm]       | β° | R <sub>v,k</sub> a) b) - [kN] | Coppia (n)  |
|-----------------|---------------------------|---------------------------|-------------------------------------------------|---------------------------|--------------|----|-------------------------------|-------------|
| uı x L [iiiiii] |                           | IIIIII. IINTLIIIIII       | וווווו. ווון און און און און און און און און או | IIIIII. IIHTLIIIIIII      | 111 [111111] | Р  | , ,                           | Coppia (ii) |
|                 | 80                        |                           | 120                                             | 240                       | 106          | 45 | 23,67                         | 1           |
| 10,0 x 300      | 140                       | 240                       |                                                 |                           |              |    | 44,18                         | 2           |
| 10,0 X 000      | 180                       | 210                       | 120                                             | 210                       |              | 13 | 63,63                         | 3           |
|                 | 240                       |                           |                                                 |                           |              |    | 82,44                         | 4           |
|                 | 80                        |                           |                                                 |                           |              |    | 23,67                         | 1           |
| 10,0 x 330      | 140                       | 260                       | 140                                             | 260                       | 117          | 45 | 44,18                         | 2           |
|                 | 180                       | 200                       | 140                                             | 200                       | 117          | 43 | 63,63                         | 3           |
|                 | 240                       |                           |                                                 |                           |              |    | 82,44                         | 4           |
|                 | 80                        |                           | 140                                             | 280                       | 127          | 45 | 23,67                         | 1           |
| 10.0 2/0        | 140                       | 000                       |                                                 |                           |              |    | 44,18                         | 2           |
| 10,0 x 360      | 180                       | 280                       |                                                 | 200                       |              |    | 63,63                         | 3           |
|                 | 240                       |                           |                                                 |                           |              |    | 82,44                         | 4           |
|                 | 80                        |                           | 160                                             | 300                       | 141          | 45 | 23,67                         | 1           |
| 10,0 x 400      | 140                       | 300                       |                                                 |                           |              |    | 44,18                         | 2           |
| 10,0 X 400      | 180                       | 300                       |                                                 |                           |              |    | 63,63                         | 3           |
|                 | 240                       |                           |                                                 |                           |              |    | 82,44                         | 4           |
|                 | 80                        |                           |                                                 |                           |              |    | 23,67                         | 1           |
| 10.0 450        | 140                       | 040                       | 100                                             | 040                       | 150          | 45 | 44,18                         | 2           |
| 10,0 x 450      | 180                       | 340                       | 180                                             | 340                       | 159          | 45 | 63,63                         | 3           |
|                 | 240                       |                           |                                                 |                           |              |    | 82,44                         | 4           |
|                 | 80                        |                           |                                                 |                           |              |    | 23,67                         | 1           |
|                 | 140                       |                           |                                                 |                           |              |    | 44,18                         | 2           |
| 10,0 x 500      | 180                       | 380                       | 200                                             | 380                       | 177          | 45 | 63,63                         | 3           |
|                 | 240                       |                           |                                                 |                           |              |    | 82,44                         | 4           |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m<sup>2</sup>. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{tk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00 \text{ kN}$  ed effetto variabile (per es. carico della neve)  $Q_k = 3,00 \text{ kN}$ .  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $La \ capacità \ di \ carico \ del \ collegamento \ si \ applica \ così \ come \ dimostrato, se \ R_d \geq E_d. \longrightarrow min \ R_k = R_d \cdot \gamma_M \ / \ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 10,0 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





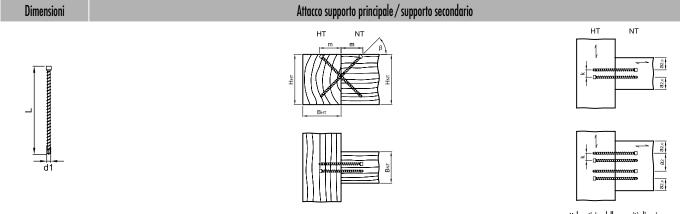
|             |                           |                           |                           |                           |        |    | uei coneguniemo k <sub>v,k</sub> u | IIIIIIIII LIA-11/0021 |
|-------------|---------------------------|---------------------------|---------------------------|---------------------------|--------|----|------------------------------------|-----------------------|
| d1 x L[mm]  | min. B <sub>NT</sub> [mm] | min. H <sub>NT</sub> [mm] | min. B <sub>HT</sub> [mm] | min. H <sub>HT</sub> [mm] | m [mm] | β° | $R_{v,k}^{a) b}$ - [kN]            | Coppia (n)            |
|             | 80                        |                           |                           |                           | 195    |    | 23,67                              | 1                     |
| 10.0 550    | 140                       | 400                       |                           |                           |        | 45 | 44,18                              | 2                     |
| 10,0 x 550  | 180                       | 400                       | 200                       | 400                       |        |    | 62,63                              | 3                     |
|             | 240                       |                           |                           |                           |        |    | 82,44                              | 4                     |
|             | 80                        |                           |                           |                           |        |    | 23,67                              | 1                     |
| 10.0 /00    | 140                       | 440                       | 000                       | 440                       | 010    | 45 | 44,18                              | 2                     |
| 10,0 x 600  | 180                       | 440                       | 220                       | 440                       | 212    | 45 | 62,63                              | 3                     |
|             | 240                       |                           |                           |                           |        |    | 82,44                              | 4                     |
|             | 80                        |                           |                           |                           |        |    | 23,67                              | 1                     |
| 10.0 ~ 450  | 140                       | 480                       | 240                       | 480                       | 230    | 45 | 44,18                              | 2                     |
| 10,0 x 650  | 180                       |                           |                           | 400                       | 230    |    | 62,63                              | 3                     |
|             | 240                       |                           |                           |                           |        |    | 82,44                              | 4                     |
|             | 80                        |                           | 260                       | 520                       | 250    | 45 | 23,67                              | 1                     |
| 10,0 x 700  | 140                       | 520                       |                           |                           |        |    | 44,18                              | 2                     |
| 10,0 x 700  | 180                       | 320                       |                           |                           |        |    | 62,63                              | 3                     |
|             | 240                       |                           |                           |                           |        |    | 82,44                              | 4                     |
|             | 80                        |                           |                           |                           |        |    | 23,67                              | 1                     |
| 10,0 x 750  | 140                       | 560                       | 280                       | 560                       | 265    | 45 | 44,18                              | 2                     |
| 10,0 x 7 30 | 180                       | 300                       | 200                       | 300                       | 203    | 43 | 62,63                              | 3                     |
|             | 240                       |                           |                           |                           |        |    | 82,44                              | 4                     |
|             | 80                        |                           |                           |                           |        |    | 23,67                              | 1                     |
| 10,0 x 800  | 140                       | 600                       | 300                       | 600                       | 280    | 45 | 44,18                              | 2                     |
| 10,0 X 000  | 180                       | 000                       | 300                       | 000                       | 280    | 45 | 62,63                              | 3                     |
|             | 240                       |                           |                           |                           |        |    | 82,44                              | 4                     |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_a$ :  $R_d = R_k \cdot k_{mod} / \gamma_{N_c}$  I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Fremnio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{NL} = 1,3$ .


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$ .

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_k \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = 10,40 \text{ kM} \rightarrow \text{Allineamento con i valori della tabella.}$ 

# KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 10,0 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





 $\alpha_2$  = min. 50 mm,  $\alpha_{2^c}$  = min. 30 mm, k = min. 15 mm

Valore tipico della capacità di carico del collegamento  $R_{\nu k}$  a norma ETA-11/0024

| dl x L[mm]  | min. B <sub>NT</sub> [mm] | min. H <sub>NT</sub> [mm] | min. B <sub>HT</sub> [mm] | min. H <sub>HT</sub> [mm] | m [mm] | β° | $R_{v,k}^{a)b}$ - [kN] | Coppia (n) |
|-------------|---------------------------|---------------------------|---------------------------|---------------------------|--------|----|------------------------|------------|
|             | 80                        |                           |                           |                           |        |    | 23,67                  | 1          |
| 10.0 000    | 140                       | /00                       | 240                       | 680                       | 320    | 45 | 44,18                  | 2          |
| 10,0 x 900  | 180                       | 680                       | 340                       | 000                       |        |    | 62,63                  | 3          |
|             | 240                       |                           |                           |                           |        |    | 82,44                  | 4          |
|             | 80                        |                           | 0/0                       | 700                       | 350    | 45 | 23,67                  | 1          |
| 10.01000    | 140                       | 700                       |                           |                           |        |    | 44,18                  | 2          |
| 10,0 x 1000 | 180                       | 720                       | 360                       | 720                       |        |    | 62,63                  | 3          |
|             | 240                       |                           |                           |                           |        |    | 82,44                  | 4          |

Misurazione a norma ETA-1 1/0024. Spessore grezzo  $\rho_k$  = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{jk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \ / \ k_{\text{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3 / 0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ .

## COSTRUZIONE DI TELAI IN LEGNO CON KONSTRUX ST

Collegamenti con viti a filettatura intera





Le viti KonstruX ST sono viti a filettatura intera universali e sono ideali per collegare gli elementi dei telai in legno, quali montanti e supporti trasversali. Soprattutto le viti KonstruX ST ZK da Ø 6 sono ideali per collegare elementi sottili dei telai in legno nella classe di utilizzo 1 e 2.

Grazie alla speciale geometria della punta di foratura è possibile sfruttare distanze dai bordi e tra gli assi ridotte. Ciò ne consente l'uso innanzitutto in sezioni molto piccole. La punta di foratura ridotta non influisce negativamente sulla resistenza all'estrazione della filettatura della vite. La filettatura doppia fine dietro la punta di foratura riduce il momento di avvitamento.

Le viti a filettatura intera vengono utilizzate in modo ottimale in presenza di sollecitazioni assiali, sarebbe a dire sulla trazione (o sulla pressione). In caso di sollecitazione solo sul taglio non sarà possibile sfruttare appieno il potenziale delle viti a filettatura intera. Pertanto, se possibile si cerca di posizionare le viti sempre in direzione della forza applicata. Se l'angolo forza-asse (da non confondere con l'angolo asse-fibra) è compreso fra 0° e 45°, basta considerare le viti come sollecitate soltanto alla trazione. Dunque non è necessario comprovarne il taglio. Quindi il collegamento, nel caso in cui sia in posizione inclinata, è notevolmente più stabile rispetto a un collegamento a vite a 90° rispetto alla forza.

Le viti KonstruX ST possono essere utilizzate indipendentemente dalla direzione della fibra, dunque anche parallelamente alle fibre. In termini di calcolo la resistenza all'estrazione resta compresa fra 45° e 90°.

#### VITI ADATTE

KonstruX ST: ZK, Ø 6,5 mm Lunghezze delle viti: 80 – 195 mm Testa cilindrica svasabile Materiale: Acciaio temprato

Rivestimento superficiale: zincatura galvanica



#### ESEMPI DI APPLICAZIONE

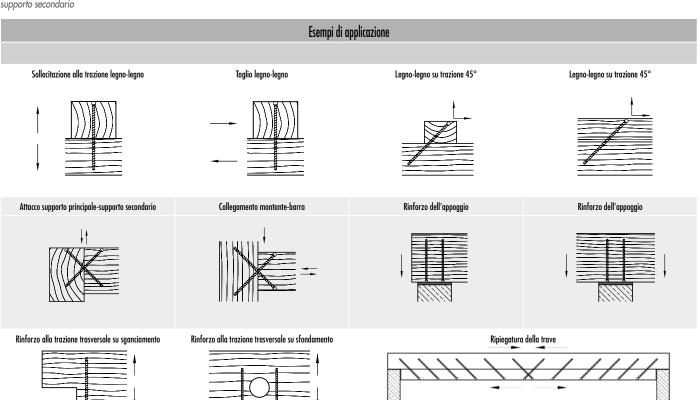
Le viti a filettatura intera hanno molteplici possibilità di applicazione. Le viti a testa cilindrica sono progettate per il collegamento di componenti legno/legno. Le teste cilindriche si possono svasare con un Langbit e inserire a fondo nel legno.

Per travi visibili gli elementi di collegamento sono quasi invisibili. Diversamente rispetto alle viti a filettatura parziale, per le viti a filettatura intera è irrilevante in quale componente si trova la testa, tranne naturalmente per gli attacchi acciaio/legno. In ogni caso è necessario rispettare le distanze minime dai bordi e tra gli assi richieste.



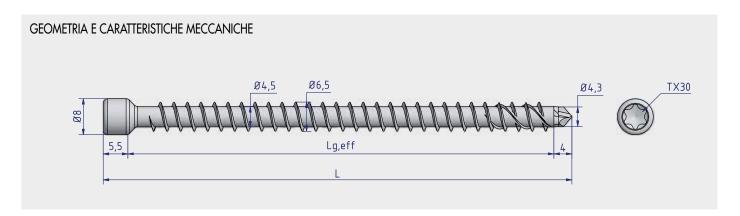
Fissaggio di supporti trasversali in strutture di telai in legno leggere




Fissaggio di supporti nelle strutture di telai in legno



Fissaggio di supporti in strutture di telai in legno e negli attacchi supporto principale/ supporto secondario

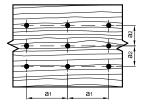



Fissaggio di supporti nelle strutture di telai in legno nelle zone dei davanzali

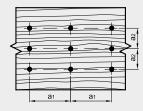


# **Eurotec**° | KonstruX

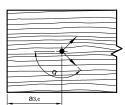
# KONSTRUX ST CON TESTA CILINDRICA 6,5 MM



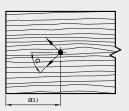

|         | KonstruX ST ZK Ø 6,5xL -TX30 |                            |                   |                                                 |                                                                               |      |                                                            |                                                            |  |  |  |  |
|---------|------------------------------|----------------------------|-------------------|-------------------------------------------------|-------------------------------------------------------------------------------|------|------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| N. art. | L<br>[mm]                    | L <sub>g,eff</sub><br>[mm] | pz./<br>Pz./conf. | Diametro di preforatura<br>Ød <sub>v</sub> [mm] | Valore tipico<br>della resistenza all'estrazione<br>f <sub>ax,k</sub> [N/mm²] |      | Momento di snervamento<br>tipico<br>M <sub>y,k</sub> [Nmm] | Limite di elasticità<br>tipico<br>f <sub>y,k</sub> [N/mm²] |  |  |  |  |
| 904808  | 80                           | 71                         | 100               | 4,5                                             | 11,4                                                                          | 17,0 | 15000                                                      | 1000                                                       |  |  |  |  |
| 904809  | 100                          | 91                         | 100               | 4,5                                             | 11,4                                                                          | 17,0 | 15000                                                      | 1000                                                       |  |  |  |  |
| 904810  | 120                          | 111                        | 100               | 4,5                                             | 11,4                                                                          | 17,0 | 15000                                                      | 1000                                                       |  |  |  |  |
| 904811  | 140                          | 131                        | 100               | 4,5                                             | 11,4                                                                          | 17,0 | 15000                                                      | 1000                                                       |  |  |  |  |
| 904812  | 160                          | 151                        | 100               | 4,5                                             | 11,4                                                                          | 17,0 | 15000                                                      | 1000                                                       |  |  |  |  |
| 904813  | 195                          | 186                        | 100               | 4,5                                             | 11,4                                                                          | 17,0 | 15000                                                      | 1000                                                       |  |  |  |  |


#### Distanze tra gli assi e dal bordo Le distanze minime per le viti KonstruX con sollecitazione solo in direzione dell'asse all'interno di fori preforati e non preforati nei componenti costruttivi con uno spessore minimo t = 65 e larghezza minima 60 mm devono essere scelte come segue Distanza tra gli assi parallela alla direzione della fibra [mm] 5 · d 33 Distanza tra gli assi perpendicolare alla direzione della fibra 5 · d 33 [mm] Distanza del baricentro della parte della vite inserita all'interno del legno dalla superficie 33 5 · d del legno tagliato trasversalmente alla fibra Distanza del baricentro della parte della vite inserita all'interno del legno dalla superficie laterale del legno $3 \cdot d$ [mm] 10 Distanza tra gli assi fra coppie di viti disposte a croce 1,5 · d [mm] Distanza tra gli assi ridotta $a_2$ perpendicolare alla direzione della fibra, se $a_1 \cdot a_2 \geq 25 \cdot d^2$ 2,5 · d 16 [mm]

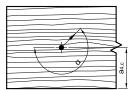
#### Le distanze tra gli assi e dal bordo sono distanze minime a norma DIN EN 1995:2014 (ECS) e si applicano in generale ai mezzi di collegamento sollecitati in direzione trasversale


a<sub>1</sub> Distanza dei mezzi di collegamento di una stessa serie in direzione della fibra

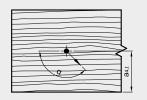



a<sub>2</sub> Distanza dei mezzi di collegamento perpendicolare alla direzione della fibra




Distanza tra il mezzo di collegamento e l'estremità non sollecitata del legno tagliato trasversalmente alla fibra  $90^\circ < \alpha \leq 270^\circ$ 

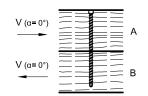


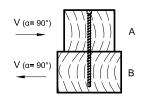

 $a_{31}$  Distanza tra il mezzo di collegamento e l'estremità sollecitata del legno tagliato trasversalmente alla fibra -90°  $\leq$   $\alpha$   $\leq$  90°



 $a_{4,c}$  Distanza tra il mezzo di collegamento e il bordo non sollecitato  $180^{\circ} \le \alpha \le 360^{\circ}$ 



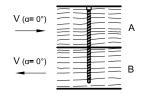

 $a_{4,1}$  Distanza tra il mezzo di collegamento e il bordo sollecitato  $0^{\circ} \le \alpha \le 180^{\circ}$ 

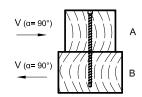





# Sono state valutate le distanze minime per le viti KonstruX sollecitate in direzione trasversale in fori preforati, come di seguito indicato in base alla posizione della direzione della fibra rispetto alle

distanze minime per le viti KonstruX sollecitate in direzione trasversale in fori preforati con un angolo forza-fibra compreso fra  $0^\circ$  e  $90^\circ$ 

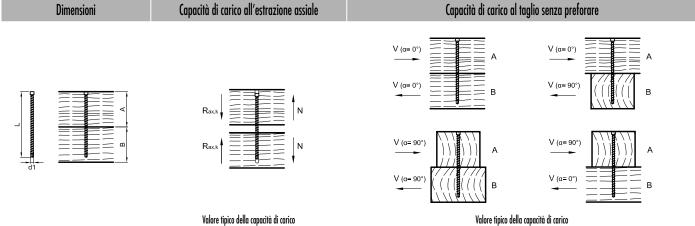



|                                                                                                                                                               |                         |      | Angolo forza- | Angolo forza-fibra α = 0° |       | fibra α = 90° |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------|---------------------------|-------|---------------|
| Distanza tra gli assi parallela alla direzione della fibra                                                                                                    | $\mathfrak{a}_1$        | [mm] | 5 · d         | 33                        | 4 · d | 33            |
| Distanza tra gli assi perpendicolare alla direzione della fibra                                                                                               | Q2                      | [mm] | 3 · d         | 20                        | 4 · d | 33            |
| Distanza del baricentro della parte della vite inserita all'interno del legno<br>dall'estremità non sollecitata del legno tagliato trasversalmente alla fibra | <b>a</b> 3,c            | [mm] | 7 · d         | 46                        | 7 · d | 46            |
| Distanza del baricentro della parte della vite inserita all'interno del legno<br>dall'estremità sollecitata del legno tagliato trasversalmente alla fibra     | <b>a</b> <sub>3,t</sub> | [mm] | 12 · d        | 78                        | 7 · d | 46            |
| Distanza tra gli assi perpendicolare al bordo non sollecitato                                                                                                 | <b>a</b> 4,c            | [mm] | 3 · d         | 20                        | 3 · d | 20            |
| Distanza tra gli assi al bordo sollecitato                                                                                                                    | Q <sub>4,1</sub>        | [mm] | 3 · d         | 20                        | 7 · d | 46            |

Sono state valutate le distanze minime per le viti KonstruX sollecitate trasversalmente in fori non preforati, come di seguito indicato in base alla posizione della direzione della fibra rispetto alle

distanze minime per le viti KonstruX sollecitate trasversalmente in fori non preforati con un angolo forza-fibra compreso fra 0° e 90°






|                                                                                                                                                               |                         |      | Angolo forza- | fibra α = 0° | Angolo forza- | fibra α = 90° |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------|--------------|---------------|---------------|
| Distanza tra gli assi parallela alla direzione della fibra                                                                                                    | $\mathfrak{a}_1$        | [mm] | 12 · d        | 78           | 5 · d         | 33            |
| Distanza tra gli assi perpendicolare alla direzione della fibra                                                                                               | a <sub>2</sub>          | [mm] | 5 · d         | 33           | 5 · d         | 33            |
| Distanza del baricentro della parte della vite inserita all'interno del legno<br>dall'estremità non sollecitata del legno tagliato trasversalmente alla fibra | <b>a</b> <sub>3,c</sub> | [mm] | 10 · d        | 65           | 10 · d        | 65            |
| Distanza del baricentro della parte della vite inserita all'interno del legno<br>dall'estremità sollecitata del legno tagliato trasversalmente alla fibra     | <b>a</b> <sub>3,i</sub> | [mm] | 15 · d        | 98           | 10 · d        | 65            |
| Distanza tra gli assi perpendicolare al bordo non sollecitato                                                                                                 | <b>Q</b> 4,c            | [mm] | 5 · d         | 33           | 5 · d         | 33            |
| Distanza tra ali assi al bordo sollecitato                                                                                                                    | Q4+                     | [mm] | 5 · d         | 33           | 10 · d        | 65            |

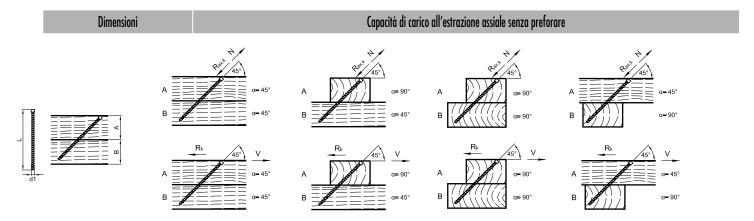
# KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 6,5 MM: CAPACITÀ DI CARICO AL TAGLIO SENZA PREFORARE





 $\label{eq:Valore tipico della capacità di carico} Valore tipico della capacità di carico \\ del collegamento R_{ex,k} a norma ETA-11/0024$ 

Valore tipico della capacità di carico del collegamento R<sub>k</sub> a norma ETA-11/0024


| ØdlxL[mm] | A [mm] | B [mm] | $R_{\alpha x,k}{}^{a)}$ - [kN] | $R_k^{a)}$ - [kN] | $R_k^{a}$ - [kN] | $R_k^{a}$ - [kN]                  | $R_k^{a}$ - [kN]                  |
|-----------|--------|--------|--------------------------------|-------------------|------------------|-----------------------------------|-----------------------------------|
|           |        |        |                                | α= <b>0</b> °     | α= <b>90</b> °   | $\alpha_{\mathtt{A}} = 0^{\circ}$ | $\alpha_{A}$ = 90°                |
|           |        |        |                                | α= υ              | α= 70            | $\alpha_{B}$ = 90°                | $\alpha_{\mathtt{B}} = 0^{\circ}$ |
| 6,5 x 120 | 60     | 80     | 4,35                           | 3,83              | 3,37             | 3,83                              | 3,37                              |
| 6,5 x 140 | 80     | 80     | 4,43                           | 3,85              | 3,39             | 3,39                              | 3,85                              |
| 6,5 x 160 | 80     | 100    | 5,94                           | 4,22              | 3,76             | 4,22                              | 3,76                              |
| 6,5 x 195 | 100    | 100    | 7,20                           | 4,54              | 4,08             | 4,08                              | 4,54                              |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 380 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{yk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_d \ge E_d$ ).

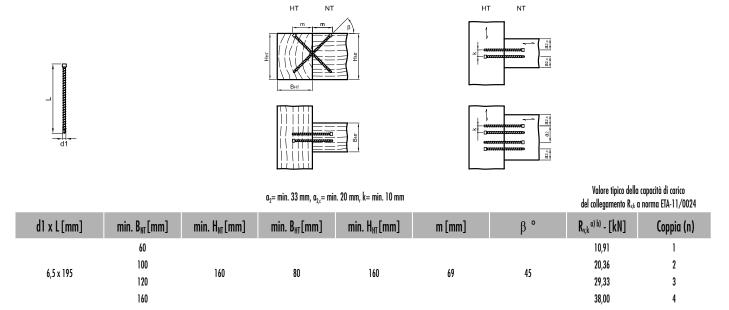
# KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 6,5 MM: CAPACITÀ DI CARICO ALL'ESTRAZIONE ASSIALE SENZA PREFORARE





Valore tipico della capacità di carico del collegamento  $R_{k}$  a norma ETA-11/0024

| Ød1 x L [mm] | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha)}$ - [kN] | $R_k^{a}$ - [kN] | $R_{\alpha x,k}^{\alpha}$ - [kN] | $R_k^{\alpha}$ - [kN] | $R_{\alpha x,k}^{\alpha}$ - [kN] | $R_k^{\alpha}$ - [kN] | $R_{\alpha x,k}^{\alpha}$ - [kN] | $R_k^{a}$ - [kN] |
|--------------|--------|--------|-----------------------------------|------------------|----------------------------------|-----------------------|----------------------------------|-----------------------|----------------------------------|------------------|
|              |        |        | α=                                | 45°              | $\alpha_{A}=$ $\alpha_{B}=$      |                       | $\alpha_{A}=$ $\alpha_{B}=$      |                       | $\alpha_A = \alpha_B = \alpha_B$ |                  |
| 6,5 x 160    | 60     | 80     | 5,51                              | 3,90             | 5,51                             | 3,90                  | 5,51                             | 3,90                  | 5,51                             | 3,90             |
| 6,5 x 195    | 80     | 80     | 6,04                              | 4,27             | 6,04                             | 4,27                  | 6,04                             | 4,27                  | 6,04                             | 4,27             |


Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_{i}$ = 380 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{th}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_d \ge E_d$ ).

# KONSTRUX ST CON TESTA CILINDRICA E TESTA DI FORATURA 6,5 MM: ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO

Dimensioni





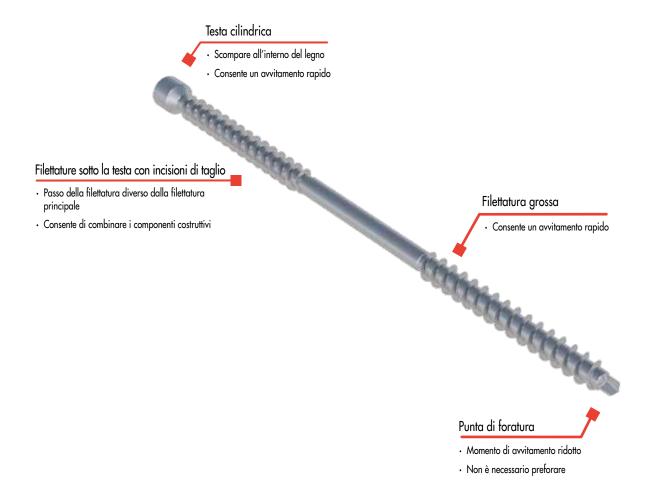
Attacco supporto principale/supporto secondario

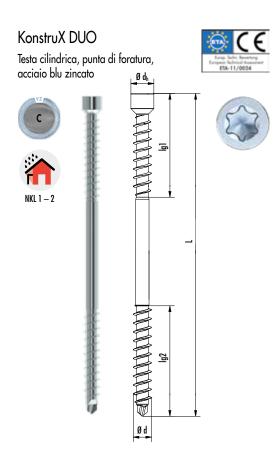
Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{th}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_d \ge E_d$ ).

# **KONSTRUX DUO**

Vite a filettatura intera con effetto di restringimento




KonstruX DUO è una vite a filettatura intera innovativa, che combina i punti di forza delle viti a filettatura intera e di quelle a filettatura parziale:

Massimizzazione della capacità di carico del collegamento grazie a una resistenza all'estrazione uniformemente elevata in entrambi i componenti costruttivi. KonstruX DUO ha una limitata resistenza alla corrosione e si può utilizzare nelle classi di utilizzo 1 e 2 a norma DIN EN 1995 (Eurocode 5).

Gli ambiti di applicazione riguardano sia le nuove costruzioni che la ristrutturazione degli edifici.





| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg1 / lg2 [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|----------------|--------|-----------|
| 100606  | 6,5      | 90    | 8,0       | 40/40          | TX30 • | 100       |
| 100607  | 6,5      | 130   | 8,0       | 43/43          | TX30 • | 100       |
| 100608  | 6,5      | 160   | 8,0       | 67/67          | TX30 • | 100       |
| 100609  | 6,5      | 190   | 8,0       | 82/82          | TX30 • | 100       |
| 100611  | 8,0      | 160   | 10,0      | 67/67          | TX40 • | 100       |
| 100612  | 8,0      | 190   | 10,0      | 92/92          | TX40 • | 100       |
| 100613  | 8,0      | 220   | 10,0      | 92/92          | TX40 • | 100       |
| 100614  | 8,0      | 245   | 10,0      | 107/107        | TX40 • | 100       |
| 100615  | 8,0      | 280   | 10,0      | 107/107        | TX40 • | 100       |
| 100616  | 8,0      | 300   | 10,0      | 137/137        | TX40 • | 100       |
| 100617  | 8,0      | 330   | 10,0      | 137/137        | TX40 • | 100       |
| 100618  | 8.0      | 400   | 10.0      | 137 / 137      | TX40 • | 100       |

# ESEMPI DI APPLICAZIONE

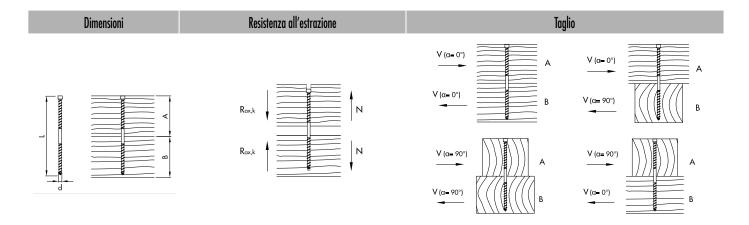


KonstruX DUO per la costruzione della struttura di base di una scala



KonstruX DUO vista in sezione fra due componenti costruttivi




KonstruX DUO per il fissaggio di una copertura



KonstruX DUO per il fissaggio di una trave

## INFORMAZIONI TECNICHE KONSTRUX DUO, ACCIAIO BLU ZINCATO





| dxL[mm]   | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha j}$ - [kN] | $R_k^{\alpha}$ - [kN] | R <sub>k</sub> <sup>o)</sup> - [kN] | R <sub>k</sub> a) - [kN] | $R_k^{\alpha}$ - [kN]    |
|-----------|--------|--------|------------------------------------|-----------------------|-------------------------------------|--------------------------|--------------------------|
|           |        |        |                                    | <b>0</b> °            | 00°                                 | $\alpha_{A}=0^{\circ}$   | $\alpha_{A}=90^{\circ}$  |
|           |        |        |                                    | α= <b>0</b> °         | α= <b>90</b> °                      | $\alpha_{B}$ = 90°       | $\alpha_{B} = 0^{\circ}$ |
| 6,5 x 90  | 40     | 40     | 0,96                               | 3,00                  | 2,51                                | 2,75                     | 2,64                     |
| 6,5 x 130 | 60     | 60     | 1,04                               | 3,02                  | 2,57                                | 2,77                     | 2,77                     |
| 6,5 x 160 | 80     | 80     | 1,71                               | 3,19                  | 2,74                                | 2,94                     | 2,94                     |
| 6,5 x 190 | 100    | 100    | 2,12                               | 3,29                  | 2,85                                | 3,04                     | 3,04                     |
| 6,5 x 220 | 120    | 120    | 2,54                               | 3,40                  | 2,95                                | 3,14                     | 3,14                     |
| 8,0 x 160 | 80     | 80     | 5,74                               | 5,37                  | 4,72                                | 5,00                     | 5,00                     |
| 8,0 x 190 | 100    | 100    | 8,11                               | 5,97                  | 5,31                                | 5,60                     | 5,60                     |
| 8,0 x 220 | 120    | 120    | 8,11                               | 5,97                  | 5,31                                | 5,60                     | 5,60                     |
| 8,0 x 245 | 120    | 120    | 9,53                               | 6,32                  | 5,67                                | 5,95                     | 5,95                     |
| 8,0 x 280 | 140    | 140    | 9,53                               | 6,32                  | 5,67                                | 5,95                     | 5,95                     |
| 8,0 x 300 | 160    | 160    | 12,38                              | 7,03                  | 6,38                                | 6,66                     | 6,66                     |
| 8,0 x 330 | 180    | 180    | 12,38                              | 7,03                  | 6,38                                | 6,66                     | 6,66                     |
| 8.0 x 400 | 200    | 200    | 12.38                              | 7.03                  | 6.38                                | 6.66                     | 6 66                     |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{N^c}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{ik} = 1,3$ .  $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = \frac{7,20}{20}$  kN. La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\rightarrow$  min  $R_k = R_d \cdot \gamma_{ik} / k_{mod}$ . Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_{ik} / k_{mod} \rightarrow R_k = 7,20$  kN ·  $1,3/0,9 = \frac{10,40}{20}$  kN  $\rightarrow$  Allineamento con i valori della tabella.

# INFORMAZIONI TECNICHE KONSTRUX DUO, ACCIAIO BLU ZINCATO



| Dimensioni | Attacco di trazione |                  |
|------------|---------------------|------------------|
|            |                     | V                |
|            |                     | α= 45°<br>α= 90° |

| Valore tipico della capacità di carico del collegamento Raxk | oppure R <sub>k</sub> a norma ETA-11/0024 |
|--------------------------------------------------------------|-------------------------------------------|
|                                                              |                                           |

| dxL[mm]   | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha)}$ - [kN] | $R_k^{a)}$ - [kN] | $R_{\alpha x,k}^{a)}$ - [kN]                    | $R_k^{a)}$ - [kN] | $R_{\alpha x,k}^{a)}$ - [kN] | $R_k^{\alpha)}$ - [kN]                                  | $R_{\alpha x,k}^{a)}$ - [kN] | $R_k^{a}$ - [kN]                      |  |
|-----------|--------|--------|-----------------------------------|-------------------|-------------------------------------------------|-------------------|------------------------------|---------------------------------------------------------|------------------------------|---------------------------------------|--|
|           |        |        | α= <b>45</b> °                    |                   | $\alpha_A = 90^{\circ}$ $\alpha_B = 45^{\circ}$ |                   |                              | $ \alpha_{A} = 90^{\circ} $ $ \alpha_{B} = 90^{\circ} $ |                              | $\alpha_{A}$ = 45° $\alpha_{B}$ = 90° |  |
| 6,5 x 90  | 40     | 40     | 0,68                              | 0,48              | 0,68                                            | 0,48              | 0,68                         | 0,48                                                    | 0,68                         | 0,48                                  |  |
| 6,5 x 130 | 40     | 40     | 0,74                              | 0,52              | 0,74                                            | 0,52              | 0,74                         | 0,52                                                    | 0,74                         | 0,52                                  |  |
| 6,5 x 160 | 60     | 60     | 1,21                              | 0,86              | 1,21                                            | 0,86              | 1,21                         | 0,86                                                    | 1,21                         | 0,86                                  |  |
| 6,5 x 190 | 60     | 60     | 1,50                              | 1,06              | 1,50                                            | 1,06              | 1,50                         | 1,06                                                    | 1,50                         | 1,06                                  |  |
| 6,5 x 220 | 80     | 80     | 1,80                              | 1,27              | 1,80                                            | 1,27              | 1,80                         | 1,27                                                    | 1,80                         | 1,27                                  |  |
| 8,0 x 160 | 60     | 60     | 4,06                              | 2,87              | 4,06                                            | 2,87              | 4,06                         | 2,87                                                    | 4,06                         | 2,87                                  |  |
| 8,0 x 190 | 60     | 60     | 5,73                              | 4,05              | 5,73                                            | 4,05              | 5,73                         | 4,05                                                    | 5,73                         | 4,05                                  |  |
| 8,0 x 220 | 80     | 80     | 5,73                              | 4,05              | 5,73                                            | 4,05              | 5,73                         | 4,05                                                    | 5,73                         | 4,05                                  |  |
| 8,0 x 245 | 100    | 100    | 6,74                              | 4,77              | 6,74                                            | 4,77              | 6,74                         | 4,77                                                    | 6,74                         | 4,77                                  |  |
| 8,0 x 280 | 100    | 100    | 6,74                              | 4,77              | 6,74                                            | 4,77              | 6,74                         | 4,77                                                    | 6,74                         | 4,77                                  |  |
| 8,0 x 300 | 120    | 120    | 8,75                              | 6,19              | 8,75                                            | 6,19              | 8,75                         | 6,19                                                    | 8,75                         | 6,19                                  |  |
| 8,0 x 330 | 120    | 120    | 8,75                              | 6,19              | 8,75                                            | 6,19              | 8,75                         | 6,19                                                    | 8,75                         | 6,19                                  |  |
| 8 0 x 400 | 140    | 140    | 8.75                              | 6 19              | 8.75                                            | 6 19              | 8.75                         | 6 19                                                    | 8.75                         | 619                                   |  |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_l$ = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.

 $\rightarrow$  Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5=  $\overline{7,20 \text{ kN}}$ .

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \ / \ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min R<sub>i</sub>= R<sub>d</sub> · γ<sub>M</sub> · / k<sub>mod</sub> → R<sub>i</sub>= 7,20 kN · 1,3/0,9= 10,40 kN → Allineamento con i valori della tabella.

# KONSTRUX DUO, ACCIAIO BLU ZINCATO ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO



# Dimensioni Attacco supporto principale/supporto secondario

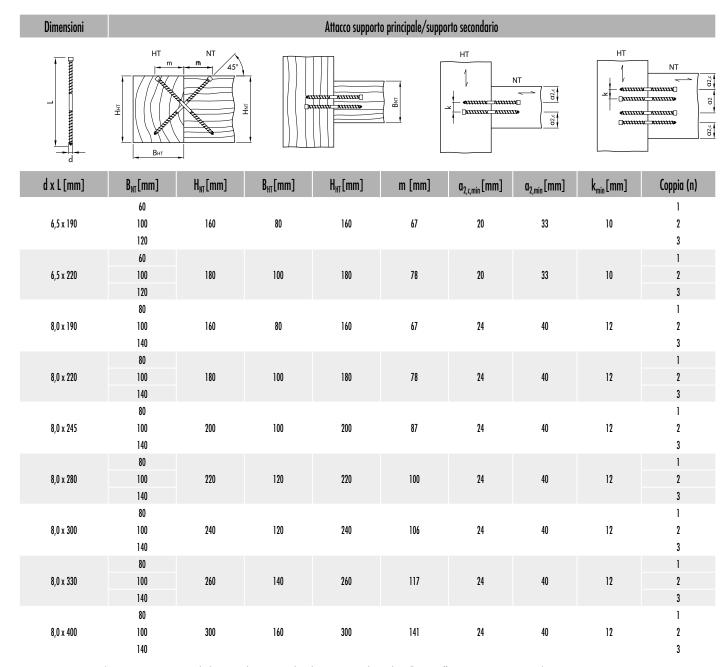
| d x L [mm] | min. B <sub>NT</sub> [mm] | min. H <sub>NT</sub> [mm] | min. B <sub>HT</sub> [mm] | min. H <sub>HT</sub> [mm] | F <sub>v,Rd</sub> [kN] |                 | Coppia (n) |
|------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------|-----------------|------------|
|            |                           |                           |                           |                           | $k_{mod} = 0.8$        | $k_{mod} = 0.9$ |            |
|            | 60                        |                           |                           |                           | 1,84                   | 2,08            | 1          |
| 6,5 x 190  | 100                       | 160                       | 80                        | 160                       | 3,43                   | 3,88            | 2          |
|            | 120                       |                           |                           |                           | 4,95                   | 5,59            | 3          |
|            | 60                        |                           |                           | 180                       | 2,21                   | 2,49            | 1          |
| 6,5 x 220  | 100                       | 180                       | 100                       |                           | 4,13                   | 4,64            | 2          |
|            | 120                       |                           |                           |                           | 5,94                   | 6,69            | 3          |
|            | 80                        |                           |                           |                           | 7,06                   | 7,94            | 1          |
| 8,0 x 190  | 100                       | 160                       | 80                        | 160                       | 13,17                  | 14,81           | 2          |
|            | 140                       |                           |                           |                           | 18,97                  | 21,34           | 3          |
|            | 80                        | 180                       | 100                       |                           | 7,06                   | 7,94            | 1          |
| 8,0 x 220  | 100                       |                           |                           | 180                       | 13,17                  | 14,81           | 2          |
|            | 140                       |                           |                           |                           | 18,97                  | 21,34           | 3          |
|            | 80                        | 200                       | 100                       | 200                       | 8,30                   | 9,33            | 1          |
| 8,0 x 245  | 100                       |                           |                           |                           | 15,48                  | 17,41           | 2          |
|            | 140                       |                           |                           |                           | 22,30                  | 25,08           | 3          |
|            | 80                        |                           | 120                       | 220                       | 8,30                   | 9,33            | 1          |
| 8,0 x 280  | 100                       | 220                       |                           |                           | 15,48                  | 17,41           | 2          |
|            | 140                       |                           |                           |                           | 22,30                  | 25,08           | 3          |
|            | 80                        |                           |                           |                           | 10,77                  | 12,12           | 1          |
| 8,0 x 300  | 100                       | 240                       | 120                       | 240                       | 20,10                  | 22,61           | 2          |
|            | 140                       |                           |                           |                           | 28,95                  | 32,57           | 3          |
|            | 80                        |                           |                           |                           | 10,77                  | 12,12           | 1          |
| 8,0 x 330  | 100                       | 260                       | 140                       | 260                       | 20,10                  | 22,61           | 2          |
|            | 140                       |                           |                           |                           | 28,95                  | 32,57           | 3          |
|            | 80                        |                           |                           |                           | 10,77                  | 12,12           | 1          |
| 8,0 x 400  | 100                       | 300                       | 160                       | 300                       | 20,10                  | 22,61           | 2          |
|            | 140                       |                           |                           |                           | 28,95                  | 32,57           | 3          |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{y_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_d \ge E_k$ ).

#### Fremnin

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.


 $\rightarrow$  Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_L \longrightarrow min R_L = R_d \cdot \gamma_M / k_{mod}$  Sarebbe a dire il valore minimo tipico della capacità di carico si misura come segue:  $min R_L = R_d \cdot \gamma_M / k_{mod} \longrightarrow R_L = 7,20 \text{ kN} \cdot 1,3/0,9 = 10.40 \text{ kN} \longrightarrow \text{Allineamento ai valori della tabella}$ .

b) Rilevato con il numero effettivo di coppie di viti come segue:  $n^{0,9}$ .

# KONSTRUX DUO, ACCIAIO BLU ZINCATO ATTACCO SUPPORTO PRINCIPALE / SUPPORTO SECONDARIO





Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 380 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico Rk non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico Rk devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione Rd: Rd= Rk · kmed / γk. I valori di misurazione della capacità di carico Rd devono essere contrapposti ai valori di misurazione degli effetti Ed (Rd ≥ Ed).

#### Fremnio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{tt} = 1,3$ .

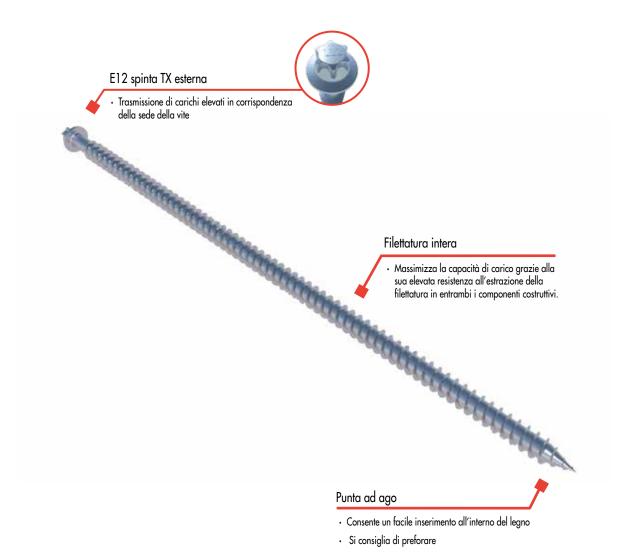
→ Valore di misurazione dell'effetto  $E_d$ = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\rightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$  Sarebbe a dire il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10.40 \text{ kN}} \rightarrow \text{Allineamento ai valori della tabella}$ .

b) Rilevato con il numero effettivo di coppie di viti come segue:  $n^{0,9}$ .

# KONSTRUX, 13 MM E12

Per ampie campate nelle costruzioni in legno






Le viti KonstruX con spinta E12 hanno molteplici applicazioni nell'ingegneria civile delle costruzioni in legno, nella carpenteria, nella costruzione di telai in legno, nella costruzione di capannoni e di elementi in legno nonché nella ristrutturazione di coperture per piani e molto altro ancora. Le viti a filettatura intera KonstruX massimizzano la capacità di carico dei collegamenti grazie alla loro elevata resistenza all'estrazione della filettatura in entrambi i componenti costruttivi.

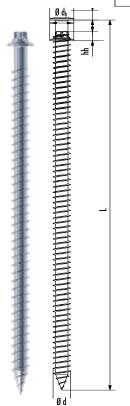
Con una filettatura grossa sull'intera lunghezza della vite e un diametro esterno di 13 mm questa vite è progettata per una resistenza all'estrazione assiale straordinaria all'interno dei componenti costruttivi in legno. Grazie alla sua incredibile resistenza alla trazione di 75 kN la vite riesce a sfruttare appieno la sua lunghezza massima di 1400 mm ed è dunque particolarmente adatta a grandi progetti di rinforzo.

Applicazioni tipiche si trovano con gli elementi in legno lamellare o con i mattoni di punta con ampie campate, rinforzi di travi e attacchi, rinforzi della trazione trasversale, rinforzi di intagli su sganciamenti, rinforzi di sfondamento nonché di supporti, per aumentare, ottenere oppure ripristinare la capacità di carico e ridurre eventuali deformazioni sul lungo termine.





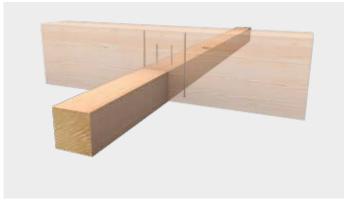
# **Eurotec** | KonstruX


#### KonstruX, 13 mm E12

E12 spinta TX esterna, blu zincato



| N. art.              | Ø d [mm] | L[mm] | Ø dh [mm] | hh [mm] | Spinta | Pz./conf. |
|----------------------|----------|-------|-----------|---------|--------|-----------|
| 904840               | 13,0     | 300   | 18        | 10      | TX50 ● | 20        |
| 904841               | 13,0     | 320   | 18        | 10      | TX50 ● | 20        |
| 904842               | 13,0     | 340   | 18        | 10      | TX50 ● | 20        |
| 904843               | 13,0     | 360   | 18        | 10      | TX50 ● | 20        |
| 904844               | 13,0     | 380   | 18        | 10      | TX50 ● | 20        |
| 904845               | 13,0     | 420   | 18        | 10      | TX50 ● | 20        |
| 904846               | 13,0     | 460   | 18        | 10      | TX50 ● | 20        |
| 904847               | 13,0     | 500   | 18        | 10      | TX50 ● | 20        |
| 904848               | 13,0     | 540   | 18        | 10      | TX50 ● | 20        |
| 904849               | 13,0     | 580   | 18        | 10      | TX50 ● | 20        |
| 904850               | 13,0     | 620   | 18        | 10      | TX50 ● | 20        |
| 904851               | 13,0     | 660   | 18        | 10      | TX50 ● | 20        |
| 904852               | 13,0     | 700   | 18        | 10      | TX50 ● | 20        |
| 904853               | 13,0     | 750   | 18        | 10      | TX50 ● | 20        |
| 904854               | 13,0     | 800   | 18        | 10      | TX50 ● | 20        |
| 904855               | 13,0     | 900   | 18        | 10      | TX50 ● | 20        |
| 904856               | 13,0     | 1000  | 18        | 10      | TX50 ● | 20        |
| 904861 <sup>a)</sup> | 13,0     | 1200  | 18        | 10      | TX50 ● | 20        |
| 904862 <sup>a)</sup> | 13,0     | 1400  | 18        | 10      | TX50 ● | 20        |
| v <del>.</del>       | Table 1  | (FT4) |           |         |        |           |


a) È stata richiesta la valutazione tecnica europea (ETA).



# ESEMPI DI APPLICAZIONE

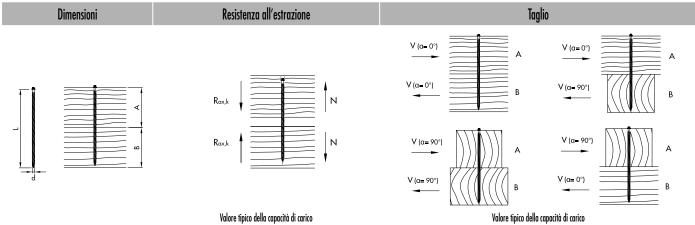


Rinforzo di aperture delle travi



Rinforzo dei sostegni del supporto principale e del supporto secondario




Rinforzo di travi intagliate



Rinforzo di travi trapezoidali

# INFORMAZIONI TECNICHE KONSTRUX, 13 MM E12, ACCIAIO BLU ZINCATO





del collegamento  $R_{\alpha x,k}$  a norma ETA-11/0024

del collegamento R<sub>k</sub> a norma ETA-11/0024

|              |        |        | uei toileguilleillo k <sub>ox,k</sub> u liotillu LiA-11/ 0024 |                       | uei tollegulliello ik u | IIUIIIIU LIA-I I/ UUZT                         |                                                |
|--------------|--------|--------|---------------------------------------------------------------|-----------------------|-------------------------|------------------------------------------------|------------------------------------------------|
| d x L [mm]   | A [mm] | B [mm] | $R_{\alpha x,k}^{a}$ - [kN]                                   | $R_k^{\alpha}$ - [kN] | $R_k^{\alpha)}$ - [kN]  | $R_k^{a}$ - [kN]                               | $R_k^{a}$ - [kN]                               |
|              |        |        |                                                               | α= <b>0</b> °         | α= <b>90</b> °          | $\alpha_{A}=0^{\circ}$ $\alpha_{B}=90^{\circ}$ | $\alpha_{A}=90^{\circ}$ $\alpha_{B}=0^{\circ}$ |
| 13,0 x 300   | 150    | 150    | 22,49                                                         | 16,20                 | 14,13                   | 15,00                                          | 15,00                                          |
| 13,0 x 340   | 170    | 170    | 25,49                                                         | 16,95                 | 14,88                   | 15,75                                          | 15,75                                          |
| 13,0 x 380   | 190    | 190    | 28,49                                                         | 17,70                 | 15,63                   | 16,50                                          | 16,50                                          |
| 13,0 x 420   | 210    | 210    | 31,49                                                         | 18,45                 | 16,38                   | 17,25                                          | 17,25                                          |
| 13,0 x 460   | 230    | 230    | 34,49                                                         | 19,20                 | 17,02                   | 18,00                                          | 18,00                                          |
| 13,0 x 500   | 250    | 250    | 37,49                                                         | 19,25                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 540   | 270    | 270    | 40,49                                                         | 20,70                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 580   | 290    | 290    | 43,48                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 620   | 310    | 310    | 46,48                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 660   | 330    | 330    | 49,48                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 700   | 350    | 350    | 52,48                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 750   | 375    | 375    | 56,23                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 800   | 400    | 400    | 59,98                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 900   | 450    | 450    | 67,48                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 1000  | 500    | 500    | 74,97                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 1200* | 600    | 600    | 75,00                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
| 13,0 x 1400* | 700    | 700    | 75,00                                                         | 21,15                 | 17,02                   | 18,75                                          | 18,75                                          |
|              |        |        |                                                               |                       |                         |                                                |                                                |

Misurazione a norma ETA-11/0024. Spessore grezzo  $ho_k$ = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico Ra non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico Ra devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione R.; R.d= R.k. k.moel / γ.g.. I valori di misurazione della capacità di carico R.d devono essere contrapposti ai valori di misurazione degli effetti E.d (R.d = E.).

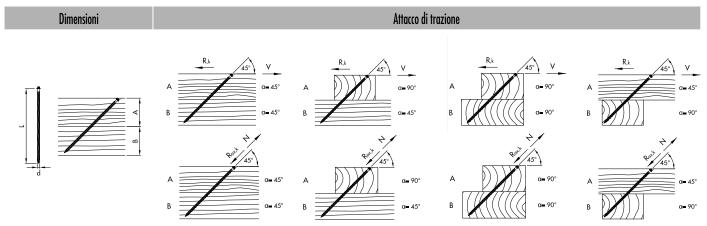
#### Esempio:

Valore tipico di un effetto costante (carico strutturale) G<sub>k</sub>= 2,00 kN ed effetto variabile (per es. carico della neve) Q<sub>k</sub>= 3,00 kN. km₀d= 0,9. γ<sub>M</sub>= 1,3. → Valore di misurazione dell'effetto Ed= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN. La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ . Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod}$   $\rightarrow R_k = 7,20$  kN  $\cdot$ 1,3/0,9=  $\underline{10,40~\text{kN}}$   $\longrightarrow$  Allineamento con i valori della tabella.

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

#### 1/2" BUSSOLA ESTERNA TX






| N. art. | Spinta | Pz./conf. |
|---------|--------|-----------|
| 800420  | E12    | 1         |

<sup>\*</sup> È stata richiesta la valutazione tecnica europea (ETA).

## INFORMAZIONI TECNICHE KONSTRUX, 13 MM E12, ACCIAIO BLU ZINCATO





Valore tipico della capacità di carico del collegamento  $R_{\alpha x,k}$  oppure  $R_k$  a norma ETA-11/0024

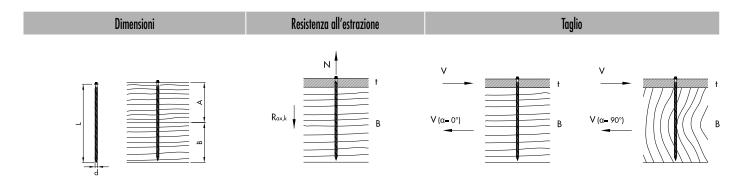
| d x L [mm]  | A [mm] | B [mm] | $R_{\alpha x,k}^{\alpha}$ - [kN] | $R_k^{a)}$ - [kN] | $R_{\alpha x,k}^{\alpha}$ - [kN] | $R_k^{a)}$ - [kN] | $R_{\alpha x,k}^{a}$ - [kN]                   | $R_k^{a)}$ - [kN] | $R_{\alpha x,k}^{\alpha}$ - [kN] | $R_k^{a}$ - [kN] |
|-------------|--------|--------|----------------------------------|-------------------|----------------------------------|-------------------|-----------------------------------------------|-------------------|----------------------------------|------------------|
|             |        |        | α =                              | : 45°             |                                  | : 90°<br>: 45°    | $\alpha_{\mathtt{A}} = \alpha_{\mathtt{B}} =$ |                   | $\alpha_A = \alpha_B = \alpha_B$ | 45°<br>90°       |
| 13,0 x 300  | 105    | 105    | 15,75                            | 11,14             | 15,75                            | 11,14             | 15,75                                         | 11,14             | 15,75                            | 11,14            |
| 13,0 x 340  | 120    | 120    | 17,99                            | 12,72             | 17,99                            | 12,72             | 17,99                                         | 12,72             | 17,99                            | 12,72            |
| 13,0 x 380  | 135    | 135    | 20,05                            | 14,18             | 20,05                            | 14,18             | 20,05                                         | 14,18             | 20,05                            | 14,18            |
| 13,0 x 420  | 150    | 150    | 22,05                            | 15,59             | 22,05                            | 15,59             | 22,05                                         | 15,59             | 22,05                            | 15,59            |
| 13,0 x 460  | 160    | 160    | 23,99                            | 16,96             | 23,99                            | 16,96             | 23,99                                         | 16,96             | 23,99                            | 16,96            |
| 13,0 x 500  | 180    | 180    | 26,02                            | 18,40             | 26,02                            | 18,40             | 26,02                                         | 18,40             | 26,02                            | 18,40            |
| 13,0 x 540  | 190    | 190    | 28,49                            | 20,15             | 28,49                            | 20,15             | 28,49                                         | 20,15             | 28,49                            | 20,15            |
| 13,0 x 580  | 205    | 205    | 30,74                            | 21,74             | 30,74                            | 21,74             | 30,74                                         | 21,74             | 30,74                            | 21,74            |
| 13,0 x 620  | 220    | 220    | 32,76                            | 23,16             | 32,76                            | 23,16             | 32,76                                         | 23,16             | 32,76                            | 23,16            |
| 13,0 x 660  | 235    | 235    | 34,75                            | 24,57             | 34,75                            | 24,57             | 34,75                                         | 24,57             | 34,75                            | 24,57            |
| 13,0 x 700  | 250    | 250    | 36,73                            | 25,97             | 36,73                            | 25,97             | 36,73                                         | 25,97             | 36,73                            | 25,97            |
| 13,0 x 750  | 265    | 265    | 39,74                            | 28,10             | 39,74                            | 28,10             | 39,74                                         | 28,10             | 39,74                            | 28,10            |
| 13,0 x 800  | 285    | 285    | 42,09                            | 29,76             | 42,09                            | 29,76             | 42,09                                         | 29,76             | 42,09                            | 29,76            |
| 13,0 x 900  | 320    | 320    | 47,45                            | 33,55             | 47,45                            | 33,55             | 47,45                                         | 33,55             | 47,45                            | 33,55            |
| 13,0 x 1000 | 355    | 355    | 52,80                            | 37,34             | 52,80                            | 37,34             | 52,80                                         | 37,34             | 52,80                            | 37,34            |
| 13,0 x 1200 | 425    | 425    | 53,03                            | 37,50             | 53,03                            | 37,50             | 53,03                                         | 37,50             | 53,03                            | 37,50            |
| 13,0 x 1400 | 500    | 500    | 53,03                            | 37,50             | 53,03                            | 37,50             | 53,03                                         | 37,50             | 53,03                            | 37,50            |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{yk}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.


→ Valore di misurazione dell'effetto Ed= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN.</u>

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min Ri= Ri ·  $\dot{\gamma}_{M}$  /  $k_{mod}$   $\rightarrow$  Ri= 7,20 kN · 1,3/0,9 =  $\underline{10,40 \text{ kN}}$   $\rightarrow$  Allineamento con i valori della tabella.

# INFORMAZIONI TECNICHE KONSTRUX, 13 MM E12, ACCIAIO BLU ZINCATO





| d x L [mm]  | t [mm] | B [mm] | $R_{\sigma x,k}^{a)}$ - [kN] | R <sub>k</sub> a) - [kN] | $R_{k}^{a)}$ - [kN]   |
|-------------|--------|--------|------------------------------|--------------------------|-----------------------|
|             |        |        |                              | $\alpha = 0^{\circ}$     | $\alpha = 90^{\circ}$ |
| 13,0 x 300  | 20     | 300    | 41,99                        | 25,45                    | 22,53                 |
| 13,0 x 340  | 20     | 340    | 47,98                        | 26,95                    | 24,03                 |
| 13,0 x 380  | 20     | 380    | 53,98                        | 28,45                    | 24,07                 |
| 13,0 x 420  | 20     | 420    | 59,98                        | 29,91                    | 24,07                 |
| 13,0 x 460  | 20     | 460    | 65,98                        | 29,91                    | 24,07                 |
| 13,0 x 500  | 20     | 500    | 71,97                        | 29,91                    | 24,07                 |
| 13,0 x 540  | 20     | 540    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 580  | 20     | 580    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 620  | 20     | 620    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 660  | 20     | 660    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 700  | 20     | 700    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 750  | 20     | 750    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 800  | 20     | 800    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 900  | 20     | 900    | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 1000 | 20     | 1000   | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 1200 | 20     | 1200   | 75,00                        | 29,91                    | 24,07                 |
| 13,0 x 1400 | 20     | 1400   | 75,00                        | 29,91                    | 24,07                 |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 380 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$ . I valori di misurazione della capacità di carico  $R_k$  devono essere contrapposti ai valori di misurazione degli effetti  $E_k$  ( $R_k \ge E_k$ ).

#### Esemplo

Valore tipico di un effetto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.

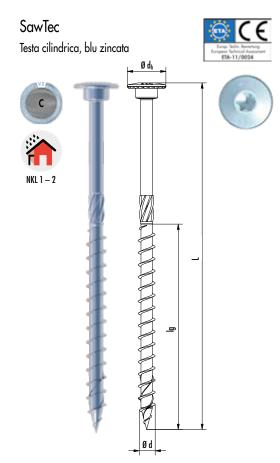
 $\rightarrow$  Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5=  $\overline{7,20}$  kN.

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

# **SAWTEC**

Vite per legno in acciaio al carbonio temprato




SawTec è una vite per legno con una punta speciale e denti di sega sotto la testa. La vite è dotata di una testa cilindrica doppia. La speciale geometria della punta della vite garantisce una riduzione del momento di avvitamento e limita, inoltre, l'effetto di fessurazione in fase di avvitamento.

#### Testa cilindrica doppia con denti di sega I denti di sega sotto la testa riducono la formazione di trucioli Denti di sega · Ideale per i rivestimenti sotto la testa! · Avvitando accuratamente il legno non si sfilaccia e non si frammenta. · Testa cilindrica e testa a disco originali · Valori di perforazione della testa più elevati rispetto alla testa svasata, effetto di fessurazione ridotto rispetto alla testa piatta (in caso di avvitamento obliquo) Gambo di attrito · L'attrito crea spazio per il gambo, così Passo della filettatura doppio ribaltato si riduce la resistenza all'avvitamento. La speciale geometria della punta della vite DAG garantisce una riduzione del momento di avvitamento e limita, inoltre, l'effetto di fessurazione in fase di avvitamento. Filettatura grossa · Consente un avvitamento rapido



# **Eurotec**° | SawTec



| N. art.          | Ø d [mm] | L[mm]      | Ø dh [mm] | lg [mm]  | Spinta | Pz./conf. |
|------------------|----------|------------|-----------|----------|--------|-----------|
| 954115           | 5,0      | 40         | 10,5      | 24       | TX25 ● | 200       |
| 954117           | 5,0      | 50         | 10,5      | 30       | TX25 • | 200       |
| 954118           | 5,0      | 60         | 10,5      | 36       | TX25 • | 200       |
| 954119           | 5,0      | 70         | 10,5      | 42       | TX25 • | 200       |
| 954120           | 5,0      | 80         | 10,5      | 48       | TX25 • | 200       |
| 954121           | 5,0      | 90         | 10,5      | 54       | TX25 • | 200       |
| 954122           | 5,0      | 100        | 10,5      | 60       | TX25 • | 200       |
| 954124           | 5,0      | 120        | 10,5      | 60       | TX25 • | 200       |
| 954128           | 6,0      | 60         | 13,0      | 36       | TX30 • | 100       |
| 954129           | 6,0      | 70         | 13,0      | 42       | TX30 • | 100       |
| 954130           | 6,0      | 80         | 13,0      | 48       | TX30 • | 100       |
| 954131           | 6,0      | 100        | 13,0      | 60       | TX30 • | 100       |
| 954133           | 6,0      | 120        | 13,0      | 60       | TX30 • | 100       |
| 954135           | 6,0      | 140        | 13,0      | 70       | TX30 • | 100       |
| 954137           | 6,0      | 160        | 13,0      | 70       | TX30 • | 100       |
| 954138           | 6,0      | 180        | 13,0      | 70       | TX30 • | 100       |
| 954145           | 8,0      | 80         | 18,0      | 48       | TX40 • | 50        |
| 954146           | 8,0      | 100        | 18,0      | 60       | TX40 • | 50        |
| 954147           | 8,0      | 120        | 18,0      | 60       | TX40 • | 50        |
| 954148           | 8,0      | 140        | 18,0      | 95       | TX40 • | 50        |
| 954149           | 8,0      | 160        | 18,0      | 95       | TX40 • | 50        |
| 954150           | 8,0      | 180        | 18,0      | 95       | TX40 • | 50        |
| 954151           | 8,0      | 200        | 18,0      | 95       | TX40 • | 50        |
| 954152           | 8,0      | 220        | 18,0      | 95       | TX40 • | 50        |
| 954153           | 8,0      | 240        | 18,0      | 95       | TX40 • | 50        |
| 954154           | 8,0      | 260        | 18,0      | 95       | TX40 • | 50        |
| 954155           | 8,0      | 280        | 18,0      | 95       | TX40 • | 50        |
| 954156           | 8,0      | 300        | 18,0      | 95       | TX40 • | 50        |
| 954157           | 8,0      | 320        | 18,0      | 95       | TX40 • | 50        |
| 954158           | 8,0      | 340        | 18,0      | 95       | TX40 • | 50        |
| 954159           | 8,0      | 360        | 18,0      | 95       | TX40 • | 50        |
| 954160           | 8,0      | 380        | 18,0      | 95       | TX40 • | 50        |
| 954161           | 8,0      | 400        | 18,0      | 95       | TX40 • | 50        |
| 954181           | 8,0      | 420        | 18,0      | 95       | TX40 • | 50        |
| 954182           | 8,0      | 440        | 18,0      | 95       | TX40 • | 50        |
| 954183           | 8,0      | 460        | 18,0      | 95       | TX40 • | 50        |
| 954184           | 8,0      | 480        | 18,0      | 95       | TX40 • | 50        |
| 954185           | 8,0      | 500        | 18,0      | 95       | TX40 • | 50        |
| 954186           | 8,0      | 550        | 18,0      | 95       | TX40 • | 50        |
| 954187           | 8,0      | 600        | 18,0      | 95       | TX40 • | 50        |
| 954162           | 10,0     | 100        | 22,0      | 60       | TX50 ● | 50        |
| 954163           | 10,0     | 120        | 22,0      | 60       | TX50 ● | 50        |
| 954164           | 10,0     | 140        | 22,0      | 95       | TX50 ● | 50        |
| 954165           | 10,0     | 160        | 22,0      | 95       | TX50 ● | 50        |
| 954166           | 10,0     | 180        | 22,0      | 95       | TX50 ● | 50        |
| 954167           | 10,0     | 200        | 22,0      | 95       | TX50 ● | 50        |
| 954168           | 10,0     | 220        | 22,0      | 95       | TX50 ● | 50        |
| 954169           | 10,0     | 240        | 22,0      | 95       | TX50 ● | 50        |
| 954170           | 10,0     | 260        | 22,0      | 95       | TX50 ● | 50        |
| 954171<br>954171 | 10,0     | 280        | 22,0      | 95       | TX50 ● | 50        |
|                  |          | 300        |           | 95<br>95 |        | 50        |
| 954172           | 10,0     | 300<br>320 | 22,0      | 95       | TX50 ● | 50        |
| 954173           | 10,0     |            | 22,0      |          | TX50 ◆ |           |
| 954174           | 10,0     | 340        | 22,0      | 95       | TX50 ● | 50        |
| 954175           | 10,0     | 360        | 22,0      | 95       | TX50 ◆ | 25        |
| 954176           | 10,0     | 380        | 22,0      | 95       | TX50 ● | 25        |
| 954177           | 10,0     | 400        | 22,0      | 95       | TX50 ◆ | 25        |

# INFORMAZIONI TECNICHE SAWTEC, TESTA CILINDRICA, ACCIAIO BLU ZINCATO



| Dimensioni             |                 | Resistenza all'estrazione | Resistenza di perforazione della testa | Taglio legno-legno            |                              |                            |                                                                                                                                                                               | Taglio acciaio-legno       |                                  |              |                         |                            |
|------------------------|-----------------|---------------------------|----------------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|--------------|-------------------------|----------------------------|
| - dk                   | N Q Q Fax,90,Rk |                           |                                        | Fax,head,Rk                   | V (a= 0°)  V (a= 0°)  AD     |                            | AD $V(a=90^{\circ})$ AD ET $V(a=90^{\circ})$ AD $V(a=90^{\circ})$ AD $V(a=90^{\circ})$ AD $V(a=90^{\circ})$ AD $V(a=90^{\circ})$ AD $V(a=90^{\circ})$ AD $V(a=90^{\circ})$ ET |                            | V (a= 0°)  V (a= 90°)            |              |                         |                            |
| dl x L<br>[mm]         | dk<br>[mm]      | AD<br>[mm]                | ET<br>[mm]                             | F <sub>ox,90,Rk</sub><br>[kN] | F <sub>ax,head,Rk</sub> [kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]                                                                                                                                                    | F <sub>la,Rk</sub> [kN]    | F <sub>la,Rk</sub><br>[kN]       | t<br>[mm]    | F <sub>lo,Rk</sub> [kN] | F <sub>lo,Rk</sub><br>[kN] |
|                        |                 |                           |                                        |                               |                              | •                          | 200                                                                                                                                                                           | $\alpha_{AD} = 0^{\circ}$  | $\alpha_{AD} = 90^{\circ}$       |              | •••                     |                            |
|                        |                 |                           |                                        |                               |                              | α= <b>0</b> °              | α= <b>90</b> °                                                                                                                                                                | $\alpha_{\text{EI}}$ = 90° | $\alpha_{\text{ET}} = 0^{\circ}$ |              | α= <b>0</b> °           | α= <b>90</b> °             |
| 5,0 x 40               | 10,5            | 16                        | 24                                     | 1,45                          | 1,10                         |                            | 1,09                                                                                                                                                                          |                            |                                  | 2            | 1,44                    |                            |
| 5,0 x 50               | 10,5            | 20                        | 30                                     | 1,82                          | 1,10                         |                            | 1,22                                                                                                                                                                          |                            |                                  | 2            | 1,67                    |                            |
| 5,0 x 60               | 10,5            | 24                        | 36                                     | 2,18                          | 1,10                         | 1,31                       |                                                                                                                                                                               |                            | 2                                | 1,76         |                         |                            |
| 5,0 x 70               | 10,5            | 28                        | 42                                     | 2,54                          | 1,10                         | 1,41                       |                                                                                                                                                                               |                            | 2                                | 1,85         |                         |                            |
| 5,0 x 80               | 10,5            | 32                        | 48                                     | 2,90                          | 1,10                         | 1,49                       |                                                                                                                                                                               |                            | 2                                | 1,94         |                         |                            |
| 5,0 x 90               | 10,5            | 36                        | 54                                     | 3,27                          | 1,10                         | 1,49                       |                                                                                                                                                                               |                            |                                  | 2 2,03       |                         |                            |
| 5,0 x 100              | 10,5            | 40                        | 60                                     | 3,63                          | 1,10                         | 1,49                       |                                                                                                                                                                               |                            |                                  | 2            |                         |                            |
| 5,0 x 120              | 10,5            | 60                        | 60                                     | 3,63                          | 1,10                         | 1,49                       |                                                                                                                                                                               |                            | 2                                |              |                         |                            |
| 6,0 x 60               | 13,0            | 24                        | 36                                     | 2,46                          | 1,69                         | 1,70                       |                                                                                                                                                                               |                            |                                  | 2            |                         | ,26                        |
| 6,0 x 70               | 13,0            | 28                        | 42                                     | 2,87                          | 1,69                         | 1,81                       |                                                                                                                                                                               |                            |                                  |              | 2 2,36<br>2 2,46        |                            |
| 6,0 x 80               | 13,0            | 32                        | 48                                     | 3,28                          | 1,69                         | 1,92                       |                                                                                                                                                                               |                            | 2                                |              |                         |                            |
| 6,0 x 90               | 13,0            | 36                        | 54                                     | 3,69                          | 1,69                         | 2,04                       |                                                                                                                                                                               |                            |                                  | 2            | · ·                     |                            |
| 6,0 x 100              | 13,0            | 40                        | 60                                     | 4,10                          | 1,69                         | 2,07<br>2,07               |                                                                                                                                                                               |                            |                                  |              | 2 2,67                  |                            |
| 6,0 x 110              | 13,0            | 50<br>60                  | 60<br>60                               | 4,10                          | 1,69                         | 2,07                       |                                                                                                                                                                               |                            |                                  | 2            | 2 2,67<br>2 2,67        |                            |
| 6,0 x 120<br>6,0 x 130 | 13,0<br>13,0    | 60                        | 70                                     | 4,10<br>4,79                  | 1,69<br>1,69                 | 2,07                       |                                                                                                                                                                               |                            | 2                                | 2,07<br>2,84 |                         |                            |
| 6,0 x 140              | 13,0            | 70                        | 70                                     | 4,79                          | 1,69                         | 2,07                       |                                                                                                                                                                               |                            | 2                                | 2,84         |                         |                            |
| 6,0 x 140              | 13,0            | 80                        | 70                                     | 4,79                          | 1,69                         | 2,07                       |                                                                                                                                                                               |                            |                                  | 2            | 2,84                    |                            |
| 6,0 x 160              | 13,0            | 90                        | 70                                     | 4,79                          | 1,69                         | 2,07                       |                                                                                                                                                                               |                            | 2                                |              | ,84                     |                            |
| 6,0 x 180              | 13,0            | 110                       | 70                                     | 4,79                          | 1,69                         | 2,07                       |                                                                                                                                                                               |                            | 2                                |              | ,84                     |                            |
| 8,0 x 80               | 18,0            | 30                        | 50                                     | 4,77                          | 3,24                         | 3,89                       | 3,08                                                                                                                                                                          | 3,89                       | 3,08                             | 3            | 4,61                    | 3,94                       |
| 8,0 x 100              | 18,0            | 40                        | 60                                     | 5,33                          | 3,24                         | 4,31                       | 3,48                                                                                                                                                                          | 4,31                       | 3,48                             | 3            | 4,83                    | 4,20                       |
| 8,0 x 120              | 18,0            | 60                        | 60                                     | 5,33                          | 3,24                         | 4,31                       | 3,68                                                                                                                                                                          | 4,31                       | 3,68                             | 3            | 4,83                    | 4,20                       |
| 8,0 x 140              | 18,0            | 40                        | 100                                    | 8,44                          | 3,24                         | 4,31                       | 3,48                                                                                                                                                                          | 4,31                       | 3,48                             | 3            | 5,60                    | 4,20                       |
| 8,0 x 140              | 18,0            | 60                        | 100                                    | 8,44                          | 3,24                         | 4,31                       | 3,68                                                                                                                                                                          | 4,31                       | 3,68                             | 3            | 5,60                    | 4,98                       |
| 8,0 x 180              | 18,0            | 80                        | 100                                    | 8,44                          | 3,24                         | 4,31                       | 3,68                                                                                                                                                                          | 4,31                       | 3,68                             | 3            | 5,60                    | 4,70                       |
| 8,0 x 200              | 18,0            | 100                       | 100                                    | 8,44                          | 3,24                         | 4,31                       | 3,68                                                                                                                                                                          | 3,68                       | 4,31                             | 3            | 5,60                    | 4,70                       |
| U,U A 200              | 10,0            | 100                       | 100                                    | υ <sub>/</sub> 1Τ             | J, LT                        | T, J I                     | J,00                                                                                                                                                                          | 3,00                       | II,JI                            | J            | J,00                    | 7,70                       |

Altre dimensioni da 8 sulla pagine seguente

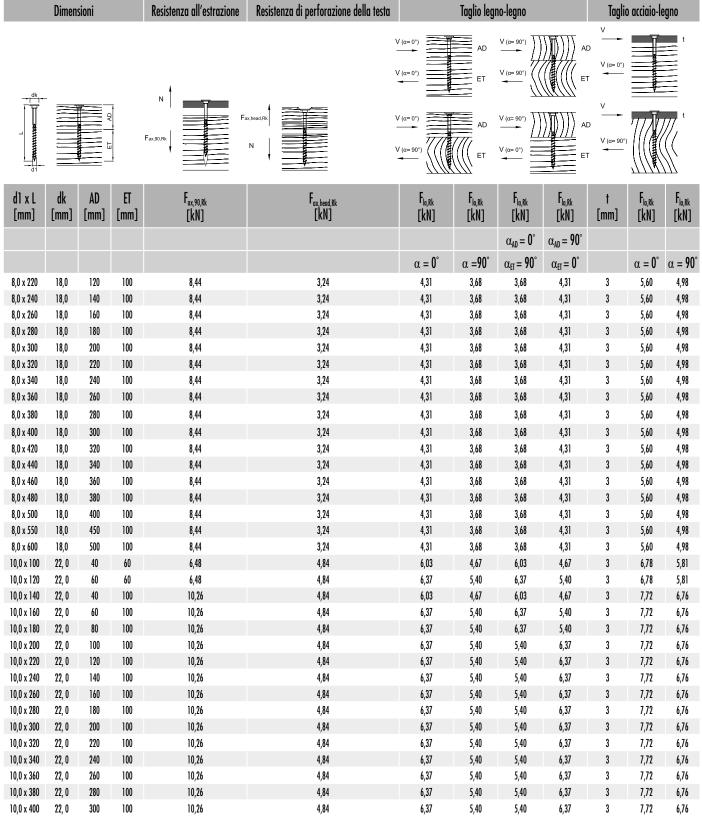
Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{Nc}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{N} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.


La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M \ / \ k_{mod}$ 

Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella.}$ 

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

Attenzione: Verificare le ipotesi effettuate. Il valore, il tipo e la quantità dei mezzi di collegamento indicati si riferiscono a una misurazione preliminare. I progetti devono essere misurati esclusivamente da persone autorizzate ai sensi del regolamento edilizio tedesco. Per un documento a comprova della stabilità a titolo oneroso si prega di rivolgersi a un/a progettista di opere strutturali ai sensi del regolamento edilizio tedesco (LBauO). Saremo lieti di fornirvi i contatti.

# **Eurotec**® | SawTec



Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

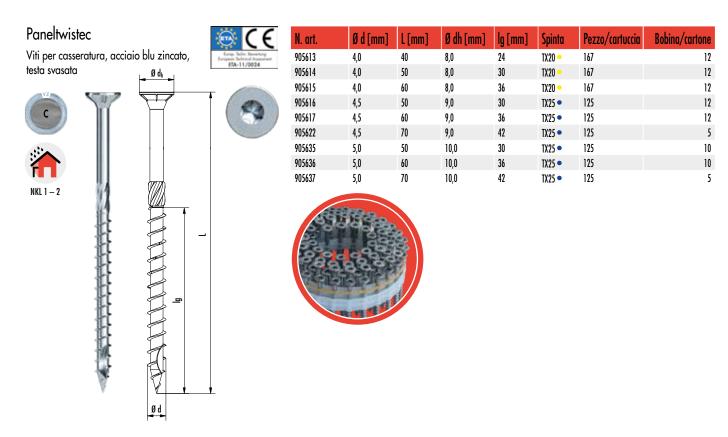
Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

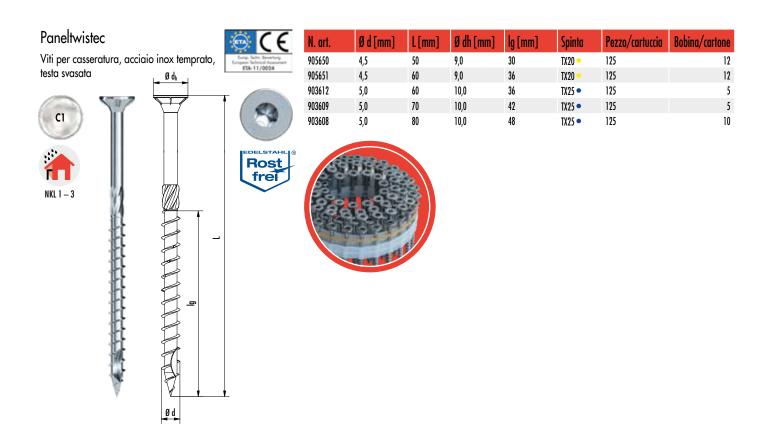
a) I valori tipici della capacità di carico R<sub>k</sub> non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico R<sub>k</sub> devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione R<sub>d</sub>: R<sub>d</sub>= R<sub>k</sub> · k<sub>mod</sub> / γ<sub>dk</sub>. I valori di misurazione della capacità di carico R<sub>d</sub> devono essere contrapposti ai valori di misurazione degli effetti E<sub>d</sub> (R<sub>d</sub> ≥ E<sub>d</sub>).

#### Esempio:

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00 \text{ kN}$  ed effetto variabile (per es. carico della neve)  $Q_k = 3,00 \text{ kN}$ .  $k_{mod} = 0,9$ .  $\gamma_M = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d$ = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.


 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} / k_{\text{mod}}$ 


Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

## VITI PER CASSERATURA

Sistema Holzher









# INFORMAZIONI TECNICHE PANELTWISTEC VITI PER CASSERATURA, ACCIAIO BLU ZINCATO



|                    | Dimens     | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione della testa     |                            | Taglio le                  | gno-legno                         |                            | Tagli                                      | o acciaio-                 | -legno                     |
|--------------------|------------|------------|------------|-------------------------------|--------------------------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------|--------------------------------------------|----------------------------|----------------------------|
| dk dk distribution |            |            | ET AD      | N Fax,90,Rk                   | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 0°) |                            | ET V(c                     | = 90°)<br>= 90°)<br>= 0°)         | AD ET ET                   | V (\alpha = 0^\circ) V (\alpha = 90^\circ) |                            |                            |
| dl x L<br>[mm]     | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ox,90,Rk</sub><br>[kN] | F <sub>ox,head,Rk</sub><br>[kN]            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN] | t<br>[mm]                                  | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                    |            |            |            |                               |                                            |                            |                            | $\alpha_{AD} = 0^{\circ}$         | $\alpha_{AD} = 90^{\circ}$ |                                            |                            |                            |
|                    |            |            |            |                               |                                            | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{ET}} = 90^{\circ}$ | $\alpha_{\rm EI}$ = 0°     |                                            | α= <b>0</b> °              | α= <b>90</b> °             |
| 4,0 x 40           | 8,0        | 16         | 24         | 1,24                          | 0,77                                       |                            | 0                          | ,84                               | -                          | 2                                          |                            | ,15                        |
| 4,0 x 50           | 8,0        | 20         | 30         | 1,55                          | 0,77                                       |                            | 0                          | ,92                               |                            | 2                                          | 1,                         | ,23                        |
| 4,0 x 60           | 8,0        | 24         | 36         | 1,86                          | 0,77                                       |                            | 1,                         | ,01                               |                            | 2                                          | 1,                         | ,31                        |
| 4,0 x 70           | 8,0        | 28         | 42         | 2,17                          | 0,77                                       |                            |                            | ,03                               |                            | 2                                          | 1,                         | ,38                        |
| 4,5 x 50           | 9,0        | 20         | 30         | 1,69                          | 0,97                                       |                            |                            | ,08                               |                            | 2                                          |                            | ,44                        |
| 4,5 x 60           | 9,0        | 24         | 36         | 2,03                          | 0,97                                       |                            |                            | ,17                               |                            | 2                                          |                            | ,53                        |
| 5,0 x 50           | 10,0       | 20         | 30         | 1,82                          | 1,20                                       |                            |                            | ,24                               |                            | 2                                          |                            | ,67                        |
| 5,0 x 60           | 10,0       | 24         | 36         | 2,18                          | 1,20                                       | 1,34                       |                            | 2                                 |                            | ,76                                        |                            |                            |
| 5,0 x 70           | 10,0       | 28         | 42         | 2,54                          | 1,20                                       | 1,44                       |                            |                                   |                            | 2                                          |                            | ,85                        |
| 5,0 x 80           | 10,0       | 32         | 48         | 2,90                          | 1,20                                       |                            | 1                          | ,52                               |                            | 2                                          | 1,                         | ,94                        |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_{i}$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

#### Esempio

 $Valore\ \ tipico\ di\ un\ effetto\ costante\ (carico\ strutturale)\ G_k=2,00\ kN\ ed\ effetto\ variabile\ (per\ es.\ carico\ della\ neve)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{kl}=1,3.$ 

→ Valore di misurazione dell'effetto  $E_d$ = 2,00 · 1,35 + 3,00 · 1,5=  $\frac{7,20 \text{ kN}}{2}$ .

 $\text{La capacità di carico del collegamento si applica così come dimostrato, } \overline{\text{se } R_d \geq E_d.} \rightarrow \text{min } R_k = R_d \cdot \gamma_\text{M} \, / \, k_\text{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ 

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

o'l valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{HL}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

# INFORMAZIONI TECNICHE PANELTWISTEC VITI PER CASSERATURA, ACCIAIO INOX TEMPRATO



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dimen      | sioni      |            | Resistenza all'estrazione     | Resistenza di perforazione d    | della testa                                |                            | Taglio le                  | gno-legno                         |                                  | Tagl               | io acciaio-                | legno                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|-------------------------------|---------------------------------|--------------------------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|--------------------|----------------------------|----------------------------|
| dk distribution of the state of |            |            | ET AD      | N Fax,90,Rk                   | Fax,head,Rk                     | V (a= 0°)  V (a= 0°)  V (a= 0°)  V (a= 0°) |                            | AD V(c                     | = 90°)<br>= 90°)                  | AD ET                            | V (α= 0°) V (α= 90 |                            | t                          |
| dl x L<br>[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ox,head,Rk</sub><br>[kN] |                                            | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN]       | †<br>[mm]          | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |            |                               |                                 |                                            |                            |                            | $\alpha_{AD} = 0^{\circ}$         | $\alpha_{AD} = 90^{\circ}$       |                    |                            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |            |                               |                                 |                                            | α= <b>0</b> °              | α= <b>90</b> °             | $\alpha_{\text{ET}} = 90^{\circ}$ | $\alpha_{\text{ET}} = 0^{\circ}$ |                    | α= <b>0</b> °              | α= <b>90</b> °             |
| 4,5 x 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,0        | 20         | 30         | 1,69                          | 0,97                            |                                            |                            | 1                          | ,08                               |                                  | 2                  | 1,                         | 44                         |
| 4,5 x 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,0        | 24         | 36         | 2,03                          | 0,97                            |                                            |                            | 1                          | ,17                               |                                  | 2                  | 1,                         | 53                         |
| 5,0 x 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 24         | 36         | 2,18                          | 1,20                            |                                            |                            |                            | ,34                               |                                  | 2                  |                            | 76                         |
| 5,0 x 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 28         | 42         | 2,54                          | 1,20                            |                                            |                            |                            | ,44                               |                                  | 2                  |                            | 85                         |
| 5,0 x 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0       | 32         | 48         | 2,90                          | 1,20                            |                                            |                            | 1                          | ,52                               |                                  | 2                  | 1,                         | 94                         |

Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m². Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max.) I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_d$ :  $R_d = R_k \cdot k_{mod} / \gamma_{y_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ .  $\gamma_{M} = 1,3$ .

 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$ 

Giò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

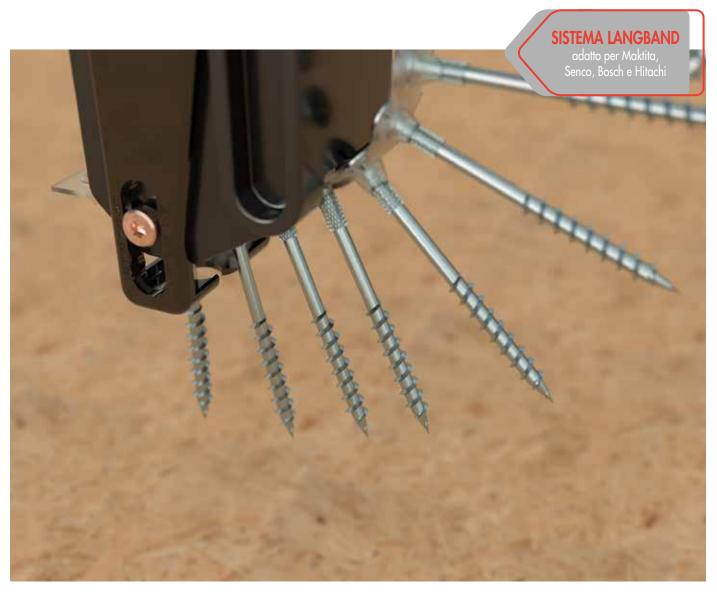
## VITI PER LEGNO UNIVERSALI

Viti per casseratura per la costruzione di telai in legno e legno massiccio

**HBS** 

Viti per casseratura, acciaio blu zincato




| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 945080  | 4,2      | 41    | 7,5       | 30      | PH 2   | 1000      |
| 945081  | 4,2      | 55    | 7,5       | 30      | PH 2   | 1000      |

#### VANTAGGI

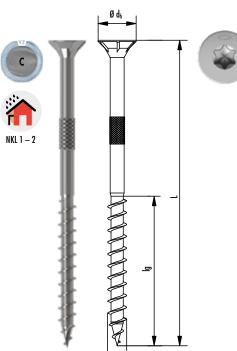
- · Uso universale
- · Lavorazione rapida grazie al magazzino
- · L'attrito sotto la testa crea un arresto ottimale nel campo di applicazione
- Le nervature di fresatura sulla testa svasata impediscono che il legno si sfilacci durante l'avvitamento

#### USO UNIVERSALE, PER ES.

- · Per il fissaggio di pannelli di derivati del legno su strutture base in legno
- · Per il fissaggio all'interno di strutture dei telai in legno e strutture in legno massiccio



## VITI PER CASSERATURA


Sistema Holzher

## Paneltwistec a filettatura corta,

Viti per casseratura, acciaio blu zincato



| N. art. | Ød[mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pezzo/cartuccia | Bobina/cartone |
|---------|--------|-------|-----------|---------|--------|-----------------|----------------|
| 905638  | 5,0    | 70    | 10,0      | 35      | TX20 - | 125             | 5              |
| 905642  | 5,0    | 80    | 10,0      | 40      | TX20 - | 125             | 5              |

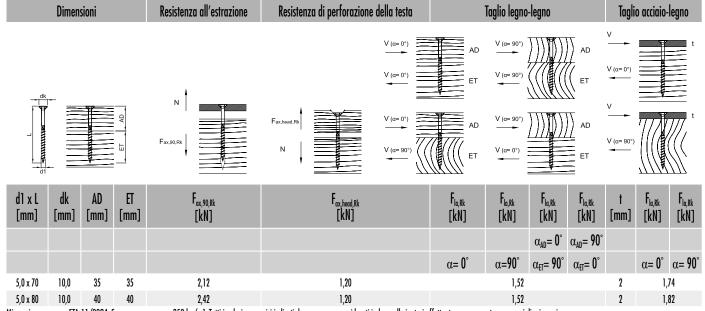


#### VANTAGGI

- · La lunghezza della filettatura ridotta consente la pressione di componenti più rigidi
- · Resistente alle sollecitazioni meccaniche
- · La scanalatura autopulente garantisce un avvitamento semplice e rapido

#### **APPLICAZIONE**

• Per strutture in legno portanti tra i componenti costruttivi in legno massiccio, legno lamellare, pannelli OSB e legno lamellare impiallacciato






Le viti per casseratura Paneltwistec consentono un avvitamento semplice e rapido all'interno di applicazioni legno-legno grazie all'uso di appositi avvitatori.

# INFORMAZIONI TECNICHE PANELTWISTEC VITI PER CASSERATURA, ACCIAIO BLU ZINCATO





Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ = 350 kg/m³. Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione.

Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione  $R_k$ :  $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

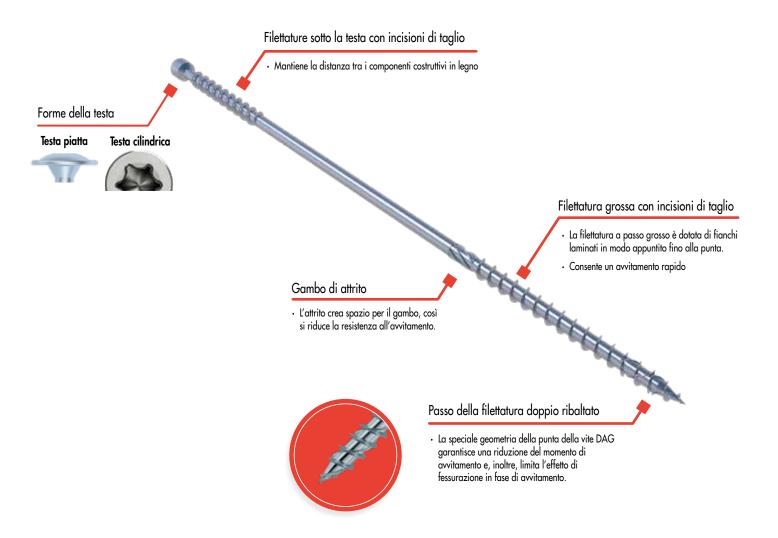
#### Esempio:

 $Valore\ tipico\ di\ un\ effetto\ costante\ (carico\ strutturale)\ G_k=2,00\ kN\ ed\ effetto\ variabile\ (per\ es.\ carico\ della\ neve)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{M}=1,3.$ 

 $\rightarrow$  Valore di misurazione dell'effetto E<sub>d</sub>= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $\text{La capacità di carico del collegamento si applica così come dimostrato, se } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}} \: / \: k$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \frac{1}{\gamma_M} / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

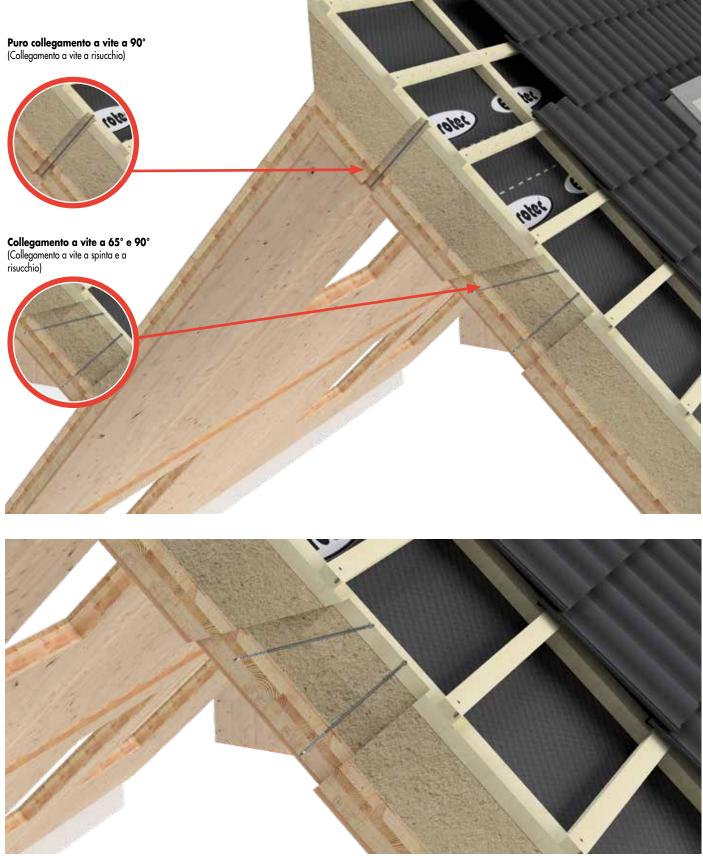

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

## VITE PER TETTI TOPDUO

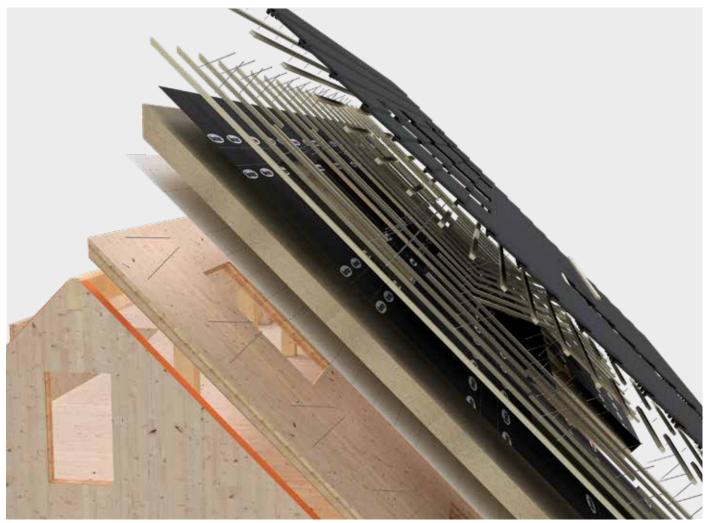
La vite per tetti per tutti i sistemi di isolamento delle travi



Con la vite per tetti Topduo si possono fissare gli isolamenti delle travi sia pressurizzati sia non pressurizzati. La resistenza all'estrazione elevata in entrambi i legni di attacco rende, inoltre, la vite Topduo interessante anche per numerose altre applicazioni nelle costruzioni in legno. La vite è dotata di una filettatura doppia ed è disponibile con testa piatta e testa cilindrica.







# **Eurotec**° | Vite per tetti Topduo

## POSSIBILITÀ DI AVVITAMENTO

Topduo è ideale per isolamenti pressurizzati ( $\geq$  50 kPa) e non pressurizzati. La resistenza alla pressione  $O_{10\%}$  è indicata sulla scheda dati del prodotto del produttore del materiale isolante.

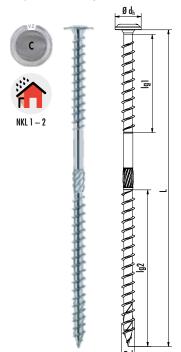


Topduo testa cilindrica per il fissaggio di materiali isolanti



Costruzione di tetti con Topduo




Costruzione di facciate con Topduo

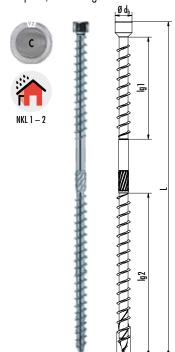
## VITE PER TETTI TOPDUO

La vite per tetti per tutti i sistemi di isolamento delle travi

### Vite per tetti Topduo

Testa piatta, acciaio al carbonio temprato, zincatura galvanica








| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg1/lg2[mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|-------------|--------|-----------|
| 945870  | 8,0      | 165   | 16,0      | 60/66       | TX40 • | 50        |
| 945871  | 8,0      | 195   | 16,0      | 60/95       | TX40 • | 50        |
| 945813  | 8,0      | 225   | 16,0      | 60/95       | TX40 • | 50        |
| 945814  | 8,0      | 235   | 16,0      | 60/95       | TX40 • | 50        |
| 945815  | 8,0      | 255   | 16,0      | 60/95       | TX40 • | 50        |
| 945816  | 8,0      | 275   | 16,0      | 60/95       | TX40 • | 50        |
| 945817  | 8,0      | 302   | 16,0      | 60/95       | TX40 • | 50        |
| 945818  | 8,0      | 335   | 16,0      | 60/95       | TX40 • | 50        |
| 945819  | 8,0      | 365   | 16,0      | 60/95       | TX40 • | 50        |
| 945820  | 8,0      | 397   | 16,0      | 60/95       | TX40 • | 50        |
| 945821  | 8,0      | 435   | 16,0      | 60/95       | TX40 • | 50        |
| 945843  | 8,0      | 472   | 16,0      | 60/95       | TX40 • | 50        |

## Vite per tetti Topduo

Testa cilindrica, acciaio al carbonio temprato, zincatura galvanica







| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg1/lg2[mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|-------------|--------|-----------|
| 945956  | 8,0      | 225   | 10,0      | 60/95       | TX40 • | 50        |
| 945965  | 8,0      | 235   | 10,0      | 60/95       | TX40 • | 50        |
| 945957  | 8,0      | 255   | 10,0      | 60/95       | TX40 • | 50        |
| 945958  | 8,0      | 275   | 10,0      | 60/95       | TX40 • | 50        |
| 945960  | 8,0      | 302   | 10,0      | 60/95       | TX40 • | 50        |
| 945961  | 8,0      | 335   | 10,0      | 60/95       | TX40 • | 50        |
| 945962  | 8,0      | 365   | 10,0      | 60/95       | TX40 • | 50        |
| 945963  | 8,0      | 397   | 10,0      | 60/95       | TX40 • | 50        |
| 945964  | 8.0      | 435   | 10.0      | 60/95       | TX40 • | 50        |



Topduo testa piatta per il fissaggio di materiali isolanti

# RILEVAZIONE DELLA QUANTITÀ DI VITI PER TETTO TOPDUO MATERIALI ISOLANTI STATICAMENTE NON PRESSURIZZATI CON $\Sigma_{10\%}$ < 50 KPA

| Esempio di mis                                                   | Esempio di misurazione per le ipotesi effettuate, la misurazione legata al progetto può dare risultati notevolmente più convenienti |           |                       |         |         |         |         |         |         |         |         |         |         |         |         |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Quantità di viti                                                 | Topduo per m²                                                                                                                       |           |                       |         |         |         |         |         |         |         |         |         |         |         |         |
| Spessore de                                                      | l materiale isolante                                                                                                                | 40        | 60                    | 80      | 100     | 120     | 140     | 140     | 160     | 180     | 200     | 220     | 240     | 260     | 280     |
| Spessore della casso                                             | ıforma (sulla trave)                                                                                                                | 24        | 24                    | 24      | 24      | 24      | -       | 24      | 24      | 24      | 24      | 24      | 24      | 24      | 24      |
| Dimensione Topduo TK oppure ZKa)                                 |                                                                                                                                     | 8 x 165b) | 8 x 195 <sup>b)</sup> | 8 x 225 | 8 x 235 | 8 x 255 | 8 x 275 | 8 x 302 | 8 x 335 | 8 x 335 | 8 x 365 | 8 x 365 | 8 x 397 | 8 x 435 | 8 x 435 |
|                                                                  |                                                                                                                                     | [mm]      | [mm]                  | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    |
| Zona soggetta al peso                                            | $0^{\circ} \leq DN \leq 10^{\circ}$                                                                                                 | 2,20      | 2,20                  | 2,38    | 2,38    | 2,38    | 2,38    | 2,38    | 2,29    | 2,29    | 2,48    | 3,01    | 3,57    | 4,08    | 4,76    |
| della neve 2°a<br>Zona esposta al vento 4ª                       | $10^{\circ} < \text{DN} \leq 25^{\circ}$                                                                                            | 2,38      | 2,38                  | 2,60    | 2,60    | 2,60    | 2,60    | 2,60    | 2,60    | 2,60    | 3,17    | 3,81    | 4,40    | e)      | e)      |
| Altezza sopra il livello                                         | $25^{\circ} < \text{DN} \leq 40^{\circ}$                                                                                            | 2,72      | 2,72                  | 3,01    | 3,01    | 3,01    | 3,01    | 3,01    | 3,01    | 3,01    | 3,57    | 4,40    | 5,19    | e)      | e)      |
| del mare ≤ 285 m                                                 | $40^{\circ} < DN \leq 60^{\circ}$                                                                                                   | 2,86      | 3,01                  | 3,17    | 3,17    | 3,36    | 3,36    | 3,36    | 3,36    | 3,36    | 3,57    | 4,40    | 5,19    | e)      | e)      |
| Zona soggetta al peso                                            | $0^{\circ} \leq DN \leq 10^{\circ}$                                                                                                 | 1,79      | 1,79                  | 1,97    | 2,04    | 2,04    | 2,04    | 2,04    | 2,12    | 2,60    | 3,81    | 4,40    | 5,19    | e)      | e)      |
| della neve 3 <sup>f)</sup> Zona esposta al vento 2 <sup>g)</sup> | $10^{\circ} < \text{DN} \leq 25^{\circ}$                                                                                            | 2,29      | 2,29                  | 2,48    | 2,60    | 2,60    | 2,60    | 2,60    | 2,72    | 3,36    | 4,76    | e)      | e)      | e)      | e)      |
| Altezza sopra il livello                                         | $25^{\circ} < \text{DN} \leq 40^{\circ}$                                                                                            | 2,38      | 2,48                  | 2,72    | 2,72    | 2,72    | 2,86    | 2,86    | 2,86    | 3,57    | 5,19    | e)      | e)      | e)      | e)      |
|                                                                  | $40^{\circ} < DN \leq 60^{\circ}$                                                                                                   | 2,60      | 2,60                  | 2,86    | 2,86    | 2,86    | 2,86    | 2,86    | 3,01    | 3,57    | 5,19    | e)      | e)      | e)      | e)      |

a) La quantità si riferisce sempre al valore peggiore fra Topduo TK e ZK

#### Ulteriori ipotesi:

Misurazione con il software di misurazione ECS a norma ETA-11/0024; angolo di avvitamento 65°; tetto a capanna; altezza di colmo sopra il terreno max. 18 m; spessore grezzo isolamento 1,50 kN/m³; travetto inclinato C24 8/≥12 cm; controlistello C24 4/6 cm; distanza tra gli assi del travetto inclinato 0,70 m; peso proprio copertura 0,55 kN/m²; dispositivo di raccolta della neve presente; rilevazione della quantità riferita al risucchio del vento in base alla zona del tetto più sfavorevole

Tutti i valori indicati devono essere considerati in base alle ipotesi fatte. Pertanto, rappresentano esempi di misurazione e si applicano salvo errori di set o di pressione.

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

# RILEVAZIONE DELLA QUANTITÀ DI VITI PER TETTO TOPDUO MATERIALI ISOLANTI STATICAMENTE PRESSURIZZATI CON $\Sigma_{10\%} \geq 50$ KPA

| Esempio di mis                                                   | Esempio di misurazione per le ipotesi effettuate, la misurazione legata al progetto può dare risultati notevolmente più convenienti |                       |         |         |         |         |         |         |         |         |         |         |         |         |                       |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------|
| Quantità di viti Topduo per m²                                   |                                                                                                                                     |                       |         |         |         |         |         |         |         |         |         |         |         |         |                       |
| Spessore de                                                      | l materiale isolante                                                                                                                | 40                    | 60      | 80      | 100     | 120     | 140     | 160     | 180     | 200     | 220     | 240     | 260     | 280     | 300                   |
| Spessore della cassa                                             | ıforma (sulla trave)                                                                                                                | 24                    | 24      | 24      | 24      | 24      | 24      | 24      | 24      | 24      | 24      | 24      | 24      | 24      | 24                    |
| Dimensione Top                                                   | duo TK oppure ZK <sup>a)</sup>                                                                                                      | 8 x 195 <sup>b)</sup> | 8 x 225 | 8 x 235 | 8 x 255 | 8 x 275 | 8 x 302 | 8 x 335 | 8 x 335 | 8 x 365 | 8 x 365 | 8 x 397 | 8 x 435 | 8 x 435 | 8 x 472 <sup>b)</sup> |
|                                                                  |                                                                                                                                     | [mm]                  | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]    | [mm]                  |
| Zona soggetta al peso                                            | $0^{\circ} \leq DN \leq 10^{\circ}$                                                                                                 | 1,96                  | 2,06    | 2,06    | 2,06    | 2,06    | 2,06    | 2,06    | 2,06    | 2,06    | 2,06    | 2,12    | 1,80    | 2,40    | 2,32                  |
| della neve 2'cl<br>Zona esposta al vento 4ªl                     | $10^{\circ} < \text{DN} \leq 25^{\circ}$                                                                                            | 2,11                  | 2,05    | 1,97    | 1,94    | 1,97    | 1,90    | 1,85    | 2,14    | 2,01    | 2,74    | 2,57    | 2,38    | 3,23    | 2,93                  |
| Altezza sopra il livello                                         | $25^{\circ} < \text{DN} \leq 40^{\circ}$                                                                                            | 2,48                  | 2,41    | 2,28    | 2,35    | 2,41    | 2,35    | 2,18    | 2,67    | 2,49    | 3,48    | 3,22    | 2,96    | 4,42    | 3,79                  |
| del mare ≤ 285 m                                                 | $40^{\circ} < \text{DN} \leq 60^{\circ}$                                                                                            | 2,31                  | 2,30    | 2,56    | 2,65    | 2,74    | 2,65    | 2,42    | 2,96    | 2,74    | 4,00    | 3,70    | 3,48    | 4,87    | 4,47                  |
| Zona soggetta al peso                                            | $0^{\circ} \leq DN \leq 10^{\circ}$                                                                                                 | 2,65                  | 2,54    | 2,39    | 2,34    | 2,26    | 2,23    | 2,34    | 2,34    | 2,16    | 2,46    | 2,32    | 2,19    | 2,86    | 2,65                  |
| della neve 3 <sup>f)</sup> Zona esposta al vento 2 <sup>g)</sup> | $10^{\circ} < \text{DN} \leq 25^{\circ}$                                                                                            | 4,04                  | 3,81    | 3,55    | 3,33    | 3,33    | 3,15    | 3,15    | 2,99    | 2,99    | 3,66    | 3,37    | 3,06    | 4,37    | 3,74                  |
| Altezza sopra il livello del                                     | $25^{\circ} < \text{DN} \leq 40^{\circ}$                                                                                            | 4,46                  | 4,16    | 3,84    | 3,58    | 3,58    | 3,58    | 3,37    | 3,37    | 3,37    | 4,67    | 4,20    | 3,92    | e)      | e)                    |
| mare ≤ 400 m                                                     | $40^{\circ} < \text{DN} \leq 60^{\circ}$                                                                                            | 3,55                  | 3,26    | 3,26    | 3,26    | 3,44    | 3,26    | 2,96    | 3,66    | 3,44    | e)      | 4,67    | 4,27    | e)      | e)                    |

a) La quantità si riferisce sempre al valore peggiore fra Topduo TK e ZK

#### Ulteriori ipotesi:

Misurazione con software di misurazione ECS a norma ETA-11/0024; angolo di avvitamento vite di spinta del tetto 65°/vite per risucchio del vento 90°; tetto a capanna; altezza di colmo sopra il terreno max. 18 m; spessore grezzo isolamento 1,50 kN/m³; travetto inclinato C24 8/≥12 cm; controlistello C24 4/6 cm; distanza tra gli assi del tetto 0,70 m; peso proprio copertura 0,55 kN/m²; dispositivo di raccolta della neve presente; rilevazione della quantità riferita al risucchio del vento in base alla zona del tetto più sfavorevole.

Tutti i valori indicati devono essere considerati in base alle ipotesi fatte. Pertanto, rappresentano esempi di misurazione e si applicano salvo errori di set o di pressione.

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

b) Solo Topduo TK, c) Comprende la zona soggetta al peso della neve 1, 2 e 2\*, d) Comprende tutte le zone esposte al vento tranne le isole del mare del Nord

e) Si consiglia di rivolgersi al nostro servizio di assistenza per la misurazione del progetto Gli esempi di misurazione elencati rappresentano casi sfavorevoli, sarebbe a dire staticamente sicuri.

f) Comprende la zona soggetta al peso della neve 1, 2 e 3, g) Comprende la zona esposta al vento 1 e 2 (zona interna)

b) Solo Topduo TK, c) Comprende la zona soggetta al peso della neve 1, 2 e 2\* con raccolta della neve, d) Comprende tutte le zone esposte al vento tranne le isole del mare del Nord

e) Si consiglia di rivolgersi al nostro servizio di assistenza per la misurazione del progetto Gli esempi di misurazione elencati rappresentano casi sfavorevoli, sarebbe a dire staticamente sicuri.

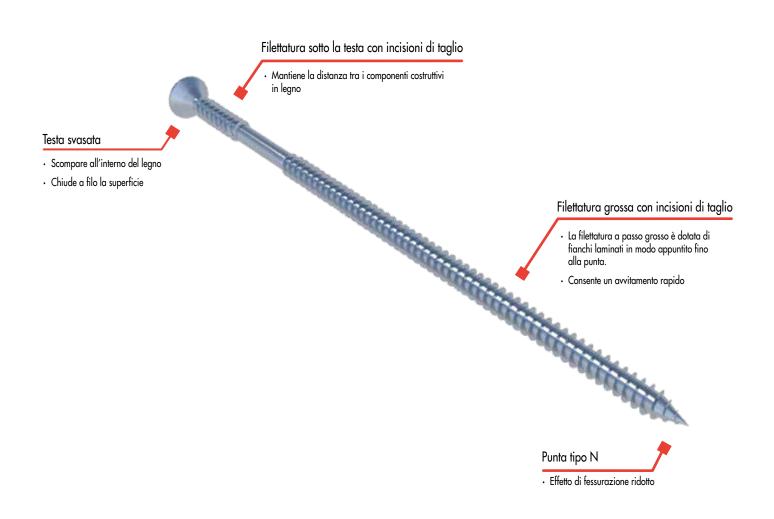
f) Comprende la zona soggetta al peso della neve 1, 2 e 3, g) Comprende la zona esposta al vento 1 e 2 (zona interna)

## Eurotec - Servizio di dimensionamento Isolamento su falsi puntoni secondo ETA-11/0024

per telefono 02331 6245-444 · per fax a 2331 62 45-200 · tramite mail indirizzata a technik@eurotec.team

Contatta il nostro ufficio tecnico o usa il gratuito Servizio di progettazione nell'area del servizio sulla nostra homepage.

| Rivenditore:                                                                                                              | _         | Realizzatore:                                                                                                  | _               |
|---------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|-----------------|
| Interlocutore:                                                                                                            | _         | Interlocutore:                                                                                                 | _               |
| E-mail:                                                                                                                   | _         | Telefono:                                                                                                      | _               |
| Progetto di costruzione:                                                                                                  | _         | E-mail:                                                                                                        | _               |
| Informazioni sul progetto di costruzione                                                                                  |           |                                                                                                                | _               |
| ☐ Tetto a falda unica ☐ Tetto a due falde ☐ Tetto a padigl                                                                |           | Sporgenza grondo Sporgenza del bordo Inazia della folda                                                        |                 |
| Lunghezza del lato gronda dell'edificio:                                                                                  | _ m       | Lorghezza fraetone  Lorghezza del lata granda                                                                  |                 |
| Larghezza del frontone:                                                                                                   | _ m       | Larghezza del controlistello:                                                                                  | _ mm            |
| Lunghezza dei falsi puntoni: (indicazione facoltativa)                                                                    | _ m       | Altezza del controlistello: (min. 40 mm)                                                                       | _ mm            |
| Altezza del colmo:<br>(misurata dal suolo)                                                                                | _ m       | Lunghezza della controlistello: (lunghezza dei controlistelli effettivamente installati)                       | _ m             |
| Sporgenza del tetto: <u>Gronda</u> /Bordo frontale della falda (calcolo delle quantità per l'intera superficie del tetto) | _ m       | Carico dovuto alle coperture ed ai listelli:                                                                   |                 |
| Inclinazione del tetto: Tetto principale /Falda triangolare                                                               | 0         | <ul><li>☐ copertura in lamiera aggraffata</li><li>☐ tegola in calcestruzzo, tegola</li><li>☐ 0,35 kl</li></ul> |                 |
| Isolamento:                                                                                                               | _         | □ tegole a coda di castoro – 0,75 kl copertura doppia/copertura a corona                                       |                 |
| Spessore di coibentazione:                                                                                                | _ mm      | oppurek                                                                                                        | N/m²            |
| Larghezza dei falsi puntoni:                                                                                              | _ mm      | CAP del luogo di realizzazione:<br>(per determinazione della zona di carico da vento e da neve)                |                 |
| Altezza dei falsi puntoni:                                                                                                | _ mm      | carico caratt. di neve sul terreno sk: (per determinazione della zona di carico da vento e da neve)            | /m <sup>2</sup> |
| Distanza centrale dei passeri:                                                                                            | _ mm      | Quota del suolo sul livello del mare: (importante per comunità con complessi rilievi altimetrici)              | m               |
| Spessore del rivestimento:                                                                                                | _ mm      | Sono previste griglie paraneve? □ Sì □ No                                                                      |                 |
| Scelta vite                                                                                                               |           |                                                                                                                |                 |
| ☐ Paneltwistec a testa svasata* ☐ Paneltwistec con testa a                                                                | piattella | * □ Topduo Testa larga** □ Topduo Testa cilindrica**                                                           |                 |


<sup>\*</sup>solo per materiali isolanti con resistenza alla compressione di almeno 50 kPa \*\*anche per materiali isolanti non resistenti alla compressione

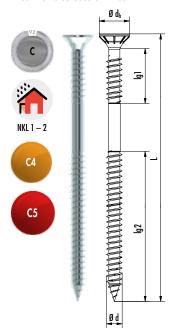
## VITI PER SISTEMI BLUE POWER

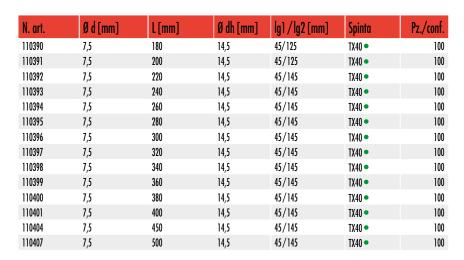
Per il fissaggio di strutture base in legno su calcestruzzo oppure opere in muratura

Il sistema di fissaggio delle facciate Blue Power offre la soluzione ottimale per il fissaggio rapido di strutture base in legno su calcestruzzo oppure opere in muratura. Le viti per sistemi superano senza fatica le forze di trazione e di taglio, in particolare nelle applicazioni sugli isolamenti delle facciate. Il materiale isolante assorbe una parte delle forze di taglio e richiede una resistenza alla pressione di almeno 50 kPa a una compressione del 10 %. Per garantire la massima stabilità la sezione del listello portante in C24 deve essere almeno di 30 x 50 mm.

Il sistema è resistente alla corrosione a norma EN 12944-6 in lunghezza C4 e lunghezza C5-M, ideale per le classi di utilizzo 1 e 2 a norma EN 1995-1-1. Resiste alle sollecitazioni meccaniche, tuttavia non è adatto ai legni concianti. Grazie al montaggio senza tasselli e a tempi di installazione brevi il sistema di fissaggio delle facciate Blue Power è la soluzione pratica per progetti in campo edilizio efficienti.







## VITI PER SISTEMI BLUE POWER

Per il fissaggio di strutture base in legno su calcestruzzo oppure opere in muratura

#### Viti per sistemi Blue Power

testa svasata, acciaio al carbonio temprato, rivestimento su base di zinco





#### Spessore del componente **MONTAGGIO** Preforare il listello portante a 6,5 mm Preforare il substrato *ummu* Posizionare le viti per sistemi Blue Power con il listello portante nel substrato 000000 000 Spessore del Tavolato Profondità di posa materiale isolante portante spesso Lunghezza della vite



# **Eurotec** Viti per sistemi Blue Power

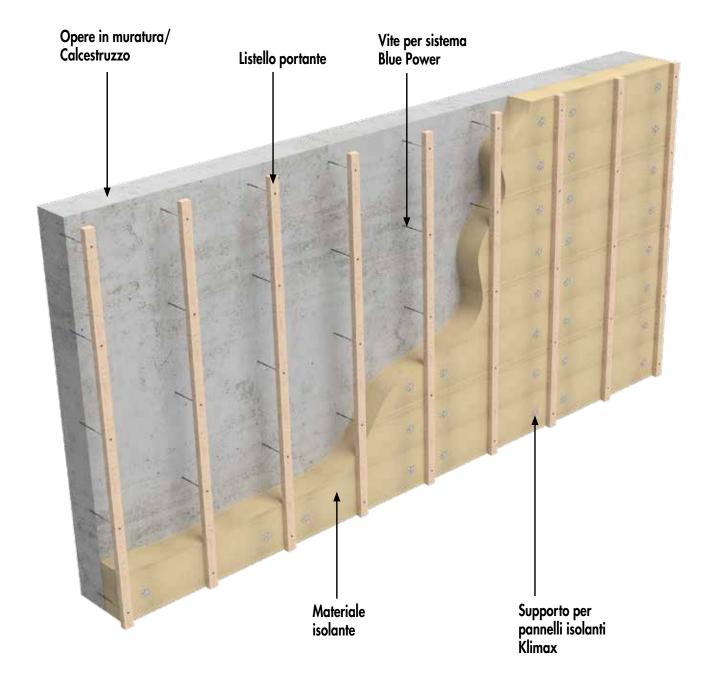
## **VALORI STATICI**

| Substrato               | Punta Ø<br>Substrato<br>[mm] | min.<br>profondità del<br>foro [mm] | min.<br>profondità della<br>sede vite<br>[mm] | Processo di<br>foraturaª) | min.<br>spessore del<br>componente<br>[mm] | min.<br>distanza dal bordo<br>[mm] | min.<br>distanza tra gli<br>assi [mm] | tipica<br>portata trasversale<br>N <sub>Rk</sub> <sup>b)</sup> [kN] | tipica<br>Portata trasversale<br>V <sub>RK</sub> [kN] |
|-------------------------|------------------------------|-------------------------------------|-----------------------------------------------|---------------------------|--------------------------------------------|------------------------------------|---------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|
| Calcestruzzo C20/25     | 6,0                          | 70                                  | 50                                            | H                         | 100                                        | 50                                 | 100                                   | 2,5                                                                 | 0,75                                                  |
| Mattone Mz              | 6,0                          | 70                                  | 50                                            | H                         | 115                                        | 50                                 | 100                                   | 3,5                                                                 | 0,6                                                   |
| Arenaria calcarea       | 6,0                          | 70                                  | 50                                            | H                         | 115                                        | 50                                 | 100                                   | 3,5                                                                 | 0,5                                                   |
| Calcestruzzo cellulare  | 5,0                          | 85                                  | 70                                            | D                         | 115                                        | 50                                 | 100                                   | 0,9                                                                 | 0,3                                                   |
| Mattone forato calcareo | 5,0                          | 85                                  | 70                                            | D                         | 115                                        | 50                                 | 100                                   | 2,0                                                                 | 0,6                                                   |
| Mattone forato alto HLz | 6,5                          | 140                                 | 120                                           | D                         | 175                                        | 50                                 | 100                                   | 0,5                                                                 | 0,4                                                   |
| Legno                   | c)                           | c)                                  | 50                                            | D                         | 60                                         | 25                                 | 100                                   | d)                                                                  | d)                                                    |

a)  $\boldsymbol{H}=\boldsymbol{foratura}$  a percussione,  $\boldsymbol{D}=\boldsymbol{foratura}$  circolare

d) Misurare a norma EN 1995-1-1:2010-12.

|         | Per materiali isolanti con spessore fino α <sup>a)</sup> |                                                             |                                        |  |  |  |  |  |  |  |  |
|---------|----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|--|--|--|--|--|--|--|--|
| N. art. | Calcestruzzo, mattone e arenaria calcarea [mm]º)         | Calcestruzzo cellulare e mattone forato calcareo $[mm]^{o}$ | Mattone forato alto [mm] <sup>a)</sup> |  |  |  |  |  |  |  |  |
| 110390  | 100                                                      | 80                                                          | 30                                     |  |  |  |  |  |  |  |  |
| 110391  | 120                                                      | 100                                                         | 50                                     |  |  |  |  |  |  |  |  |
| 110392  | 140                                                      | 120                                                         | 70                                     |  |  |  |  |  |  |  |  |
| 110393  | 160                                                      | 140                                                         | 90                                     |  |  |  |  |  |  |  |  |
| 110394  | 180                                                      | 160                                                         | 110                                    |  |  |  |  |  |  |  |  |
| 110395  | 200                                                      | 180                                                         | 130                                    |  |  |  |  |  |  |  |  |
| 110396  | 220                                                      | 200                                                         | 150                                    |  |  |  |  |  |  |  |  |
| 110397  | 240                                                      | 220                                                         | 170                                    |  |  |  |  |  |  |  |  |
| 110398  | 260                                                      | 240                                                         | 190                                    |  |  |  |  |  |  |  |  |
| 110399  | 280                                                      | 260                                                         | 210                                    |  |  |  |  |  |  |  |  |
| 110400  | 300                                                      | 280                                                         | 230                                    |  |  |  |  |  |  |  |  |
| 110401  | 320                                                      | 300                                                         | 250                                    |  |  |  |  |  |  |  |  |
| 110404  | 340                                                      | 320                                                         | 270                                    |  |  |  |  |  |  |  |  |
| 110407  | 360                                                      | 340                                                         | 290                                    |  |  |  |  |  |  |  |  |


a) a fronte di uno spessore del listello portante di 30 mm

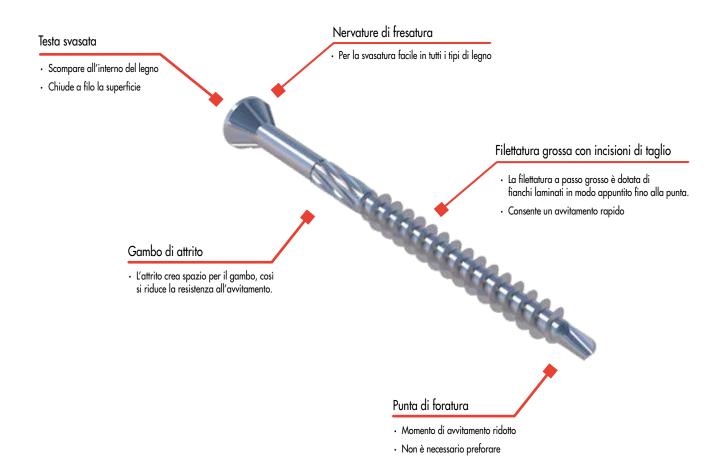
Lunghezza della vite ≥ min. profondità della sede + spessore del materiale isolante + spessore del listello portante

b) Tenere conto della tipica resistenza di perforazione della testa  $F_{\alpha\kappa,lead,Rd}$  nel listello portante.  $F_{\alpha\kappa,lead,Rd}$  ( $\rho_k$  350)= 1,45 kN. Preforare il listello portante a 6,5 mm.

c) Non è necessario preforare il substrato in legno.

## STRUTTURA SCHEMATICA




## **HOBOTEC**

Acciaio zincato e acciaio inox temprato





Le viti Hobotec consentono di collegare in modo facile, rapido e pulito strutture composite legno-legno. Queste viti sono particolarmente adatte ad applicazioni con un elevato rischio di rottura e fessurazione. La filettatura di nuova generazione e la punta di foratura innovativa garantiscono una sede pulita e valori di estrazione elevati. Le viti Hobotec sono disponibili in acciaio inox temprato e in acciaio zincato.





## **Eurotec** Hobotec

### Hobotec testa svasata Acciaio inox temperato

Combinabile con il nostro nastro per facciate in **EPDM** 











| N. art. | Dimensioni / lunghezza filettatura [mm] | Spinta        | Pz./conf. |
|---------|-----------------------------------------|---------------|-----------|
| 903323  | 4,0 x 30 / 21                           | TX15 ●        | 500       |
| 110299  | 4,0 x 40 / 26                           | TX15 ●        | 500       |
| 110300  | 4,0 x 45 / 28                           | TX15 ●        | 500       |
| 110301  | 4,0 x 50/30                             | TX15 ●        | 500       |
| 110302  | 4,0 x 60 / 36                           | TX15 ●        | 500       |
| 110319  | 4,5 x 40 / 26                           | TX20 •        | 200       |
| 944839  | 4,5 x 45 / 28                           | TX20 •        | 200       |
| 110303  | 4,5 x 50 / 30                           | TX20 •        | 200       |
| 110304  | 4,5 x 60 / 36                           | TX20 •        | 200       |
| 110305  | 4,5 x 70 / 42                           | TX20 •        | 200       |
| 110306  | 4,5 x 80 / 48                           | TX20 •        | 200       |
| 110307  | 5,0 x 50/30                             | TX25 ●        | 200       |
| 110308  | 5,0 x 60 / 36                           | TX25 <b>●</b> | 200       |
| 110309  | 5,0 x 70 / 42                           | TX25 •        | 200       |
| 110310  | 5,0 x 80 / 48                           | TX25 <b>●</b> | 200       |
| 110311  | 5,0 x 90 / 54                           | TX25 <b>●</b> | 200       |
| 110312  | 5,0 x 100/60                            | TX25 <b>●</b> | 200       |
| 110313  | 6,0 x 80 / 48                           | TX25 ●        | 100       |
| 110314  | 6,0 x 90 / 54                           | TX25 <b>●</b> | 100       |
| 110315  | 6,0 x 100/60                            | TX25 •        | 100       |
| 110316  | 6,0 x 120/60                            | TX25 ●        | 100       |
| 110317  | 6,0 x 140/70                            | TX25 •        | 100       |

TX25 •

100

#### VANTAGGI

- · Non necessita di preforatura
- · Nessuna formazione di crepe e fessure in prossimità dei bordi
- · Nessun colpo delle viti grazie all'Spinta TX

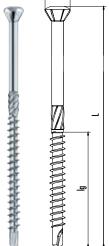
### Hobotec testa ornamentale Acciaio inox temperato





110318

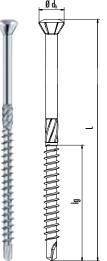
6,0 x 160/70









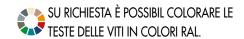





· Recinzioni

Terrazze




#### Attenzione

Le viti del diametro = 3,2 mm non sono regolamentate in base a ETA e l'omologazione dell'Ispettorato Lavori Edili.

| N. art.                  | Dimensioni / lunghezza filettatura [mm] | Spinta | Pz./conf. |
|--------------------------|-----------------------------------------|--------|-----------|
| 900782                   | 3,2 x 25*                               | TX10°  | 500       |
| 110294                   | 3,2 x 30/17,5                           | TX10°  | 500       |
| 110295                   | 3,2 x 35/19                             | TX10°  | 500       |
| 110296                   | 3,2 x 40 / 24                           | TX10°  | 500       |
| 110297                   | 3,2 x 50/34                             | TX10 O | 500       |
| 110298                   | 3,2 x 60 / 44                           | TX10°  | 500       |
| 945040                   | 4,0 x 40/24                             | TX15 • | 500       |
| 945653                   | 4,0 x 45/27                             | TX15 • | 500       |
| 945041                   | 4,0 x 50/30                             | TX15 ● | 500       |
| 945042                   | 4,0 x 60/36                             | TX15 • | 500       |
| 945043                   | 4,0 x 70 / 42                           | TX15 • | 500       |
| 945044                   | 4,0 x 80 / 48                           | TX15 ● | 500       |
| 945045                   | 4,5 x 40/24                             | TX20 • | 200       |
| 945046                   | 4,5 x 45/27                             | TX20 - | 200       |
| 945047                   | 4,5 x 50/30                             | TX20 • | 200       |
| 945048                   | 4,5 x 60/36                             | TX20 • | 200       |
| 945049                   | 4,5 x 70 / 42                           | TX20 • | 200       |
| 945050                   | 4,5 x 80/48                             | TX20 • | 200       |
| 945051                   | 5,0 x 50/30                             | TX25 • | 200       |
| 945052                   | 5,0 x 60/36                             | TX25 • | 200       |
| 945053                   | 5,0 x 70 / 42                           | TX25 • | 200       |
| 945054                   | 5,0 x 80 / 48                           | TX25 • | 200       |
| 945055                   | 5,0 x 90/54                             | TX25 • | 200       |
| 945056                   | 5,0 x 100/60                            | TX25 • | 200       |
| *senza nervature fresate |                                         |        |           |

La filettatura di nuova concezione e l'innovativa punta perforante consentono un montaggio preciso con elevati valori di resistenza all'estrazione. Particolarmente adatto a legni fragili. Non adatto a legni tanninici come cumarù, rovere, merbau, robinia, eccetera.





#### Hobotec testa ornamentale

Acciaio inox temperato, nero





| N. art.      | Dimensioni<br>Ød x L [mm] | Lunghezza del<br>filetto lg [mm] | Diametro testa<br>Ødh [mm] | Spinta | Pz./conf. |
|--------------|---------------------------|----------------------------------|----------------------------|--------|-----------|
| 110295/black | 3,2 x 35                  | 19                               | 5,2                        | TX10 O | 500       |
| 110296/black | 3,2 x 40                  | 24                               | 5,2                        | TX10 O | 500       |
| 110297/black | 3,2 x 50                  | 34                               | 5,2                        | TX10 O | 500       |
| 110298/black | 3,2 x 60                  | 44                               | 5,2                        | TX10 O | 500       |



- La nuova filettatura e l'innovativa punta di foratura garantiscono un fissaggio pulito e valori di estrazione elevati.
- · Particolarmente indicato per legni fragili
- Non adatto per legni ricchi di tannini come cumaru, quercia, merbau, robinia ecc.

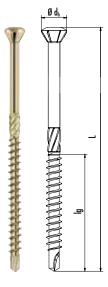
#### **APPLICAZIONE**

- · Listelli di copertura nella costruzione di facciate
- Recinzioni
- · Listelli nella costruzione di terrazze

# L

#### Attenzione

Le viti del diametro = 3,2 mm non sono regolamentate in base a ETA e l'omologazione dell'Ispettorato Lavori Edili.


# Hobotec testa ornamentale

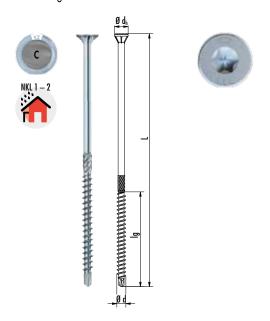
Acciaio zincato giallo





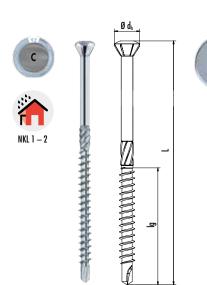
NKL 1 – 2








| N. art. | Dimensioni [mm] | Spinta | Pz./conf. |
|---------|-----------------|--------|-----------|
| 110280  | 3,2 x 20*       | TX10 ° | 500       |
| 110281  | 3,2 x 25*       | TX10 O | 500       |
| 110282  | 3,2 x 30        | TX10 O | 500       |
| 110283  | 3,2 x 35        | TX10°  | 500       |
| 110284  | 3,2 x 40        | TX10 O | 500       |
| 110285  | 3,2 x 50        | TX10 O | 500       |
| 110286  | 3,2 x 60        | TX10 O | 500       |
| 944778  | 4,2 x 70        | TX15 ● | 200       |
| 944779  | 4,2 x 80        | TX15 ● | 200       |


\*senza nervature fresate

### Hobotec testa svasata Acciaio al carbonio indurito, blu, zincatura galvanica.



| N. art. | Dimensioni<br>Ød x L [mm] | Lunghezza del<br>filetto lg [mm] | Diametro testa<br>Ødh [mm] | Spinta | Pz./conf. |
|---------|---------------------------|----------------------------------|----------------------------|--------|-----------|
| 111494  | 4,0 x 30                  | 21                               | 7,7                        | TX15 ● | 1000      |
| 111495  | 4,0 x 35                  | 24                               | 7,7                        | TX15 • | 1000      |
| 111496  | 4,0 x 40                  | 26                               | 7,7                        | TX15 • | 1000      |
| 111497  | 4,0 x 45                  | 28                               | 7,7                        | TX15 • | 500       |
| 111498  | 4,0 x 50                  | 30                               | 7,7                        | TX15 • | 500       |
| 111499  | 4,0 x 60                  | 36                               | 7,7                        | TX15 • | 200       |
| 111501  | 4,5 x 35                  | 24                               | 8,7                        | TX20 - | 500       |
| 111502  | 4,5 x 40                  | 26                               | 8,7                        | TX20 - | 500       |
| 111503  | 4,5 x 45                  | 28                               | 8,7                        | TX20 - | 500       |
| 111504  | 4,5 x 50                  | 30                               | 8,7                        | TX20 - | 500       |
| 111505  | 4,5 x 60                  | 36                               | 8,7                        | TX20 - | 200       |
| 111506  | 4,5 x 70                  | 42                               | 8,7                        | TX20 • | 200       |
| 111507  | 5,0 x 40                  | 26                               | 9,7                        | TX25 • | 200       |
| 111508  | 5,0 x 50                  | 30                               | 9,7                        | TX25 • | 200       |
| 111509  | 5,0 x 60                  | 36                               | 9,7                        | TX25 • | 200       |
| 111510  | 5,0 x 70                  | 42                               | 9,7                        | TX25 • | 200       |
| 111511  | 5,0 x 80                  | 48                               | 9,7                        | TX25 • | 200       |
| 111512  | 5,0 x 90                  | 54                               | 9,7                        | TX25 • | 200       |
| 903623  | 5,0 x 100                 | 60                               | 9,7                        | TX25 • | 200       |
| 903117  | 6,0 x 80                  | 48                               | 11,7                       | TX25 • | 200       |
| 903118  | 6,0 x 90                  | 54                               | 11,7                       | TX25 • | 100       |
| 903119  | 6,0 x 100                 | 60                               | 11,7                       | TX25 • | 100       |
| 903120  | 6,0 x 120                 | 60                               | 11,7                       | TX25 • | 100       |
| 903121  | 6,0 x 140                 | 70                               | 11,7                       | TX25 • | 100       |
| 903122  | 6,0 x 160                 | 70                               | 11,7                       | TX25 • | 100       |

### Hobotec testa ornamentale Acciaio al carbonio indurito, blu, zincatura galvanica.



| 110288    | 3,2 x 25* | Fil |
|-----------|-----------|-----|
| 110289    | 3,2 x 30  | 17  |
| 110290    | 3,2 x 35  | 19  |
| 110291    | 3,2 x 40  | 24  |
| 110292    | 3,2 x 50  | 34  |
| 110293    | 3,2 x 60  | 44  |
| w110288** | 3,2 x 25* | Fil |
| w110289** | 3,2 x 30  | 17  |
| 110200**  | 2 2 20    | 10  |

Dimensioni

Ød x L [mm]

|           |           | 0                    |     |        |     |
|-----------|-----------|----------------------|-----|--------|-----|
| 110287    | 3,2 x 20* | Filettatura completa | 5,2 | TX10°  | 500 |
| 110288    | 3,2 x 25* | Filettatura completa | 5,2 | TX10 o | 500 |
| 110289    | 3,2 x 30  | 17,5                 | 5,2 | TX10 O | 500 |
| 110290    | 3,2 x 35  | 19                   | 5,2 | TX10 o | 500 |
| 110291    | 3,2 x 40  | 24                   | 5,2 | TX10 o | 500 |
| 110292    | 3,2 x 50  | 34                   | 5,2 | TX10 o | 500 |
| 110293    | 3,2 x 60  | 44                   | 5,2 | TX10 O | 500 |
| w110288** | 3,2 x 25* | Filettatura completa | 5,2 | TX10 o | 500 |
| w110289** | 3,2 x 30  | 17,5                 | 5,2 | TX10°  | 500 |
| w110290** | 3,2 x 35  | 19                   | 5,2 | TX10 o | 500 |
| w110291** | 3,2 x 40  | 24                   | 5,2 | TX10 O | 500 |
| w110292** | 3,2 x 50  | 34                   | 5,2 | TX10 o | 500 |
| w110293** | 3,2 x 60  | 44                   | 5,2 | TX10°  | 500 |

Diametro testa

Ødh [mm]

Spinta

Lunghezza del

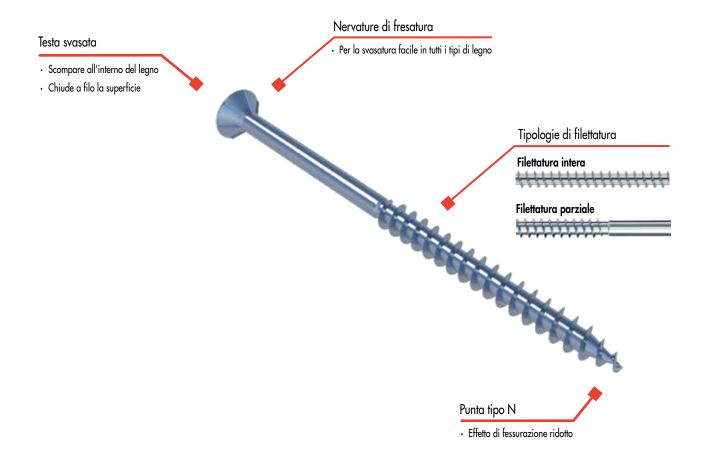
filetto la [mm]

N. art.

Pz./conf.

<sup>\*</sup>senza nervature fresate
\*\*verniciato a testa, bianco

## **Eurotec** | EcoTec

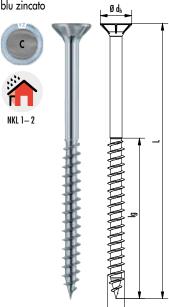

## **ECOTEC**

Viti per pannelli di serraggio per interni



Le viti per pannelli di serraggio EcoTec sono viti per legno utilizzate soprattutto per interni.

Sono disponibili in acciaio al carbonio zincato, temprato e in A2. Inoltre, sono disponibili sia a filettatura parziale per il collegamento dinamico di più componenti in legno sia a filettatura intera per l'assorbimento di forze di trazione e di pressione elevate.






# **Eurotec** | EcoTec

## EcoTec

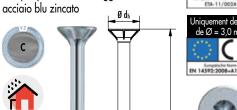
Vite per pannelli di serraggio, acciaio blu zincato  $\emptyset d_h$ 

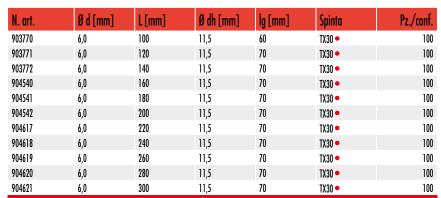




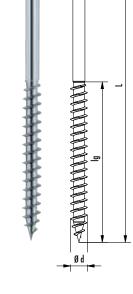


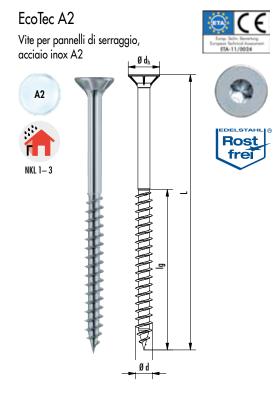
| N. art.          | Ød[mm] | L[mm] | lg [mm]                                  | Spinta               | Pz./conf.        |
|------------------|--------|-------|------------------------------------------|----------------------|------------------|
| 903714           | 3,0    | 13    | Filettatura intera                       | TX10°                | 1000             |
| 903715           | 3,0    | 15    | Filettatura intera                       | TX10°                | 1000             |
| 903716           | 3,0    | 20    | Filettatura intera                       | TX10°                | 1000             |
| 903717           | 3,0    | 25    | Filettatura intera                       | TX10 o               | 1000             |
| 903718           | 3,0    | 30    | Filettatura intera                       | TX10 o               | 1000             |
| 903719           | 3,0    | 35    | Filettatura intera                       | TX10°                | 1000             |
| 903720           | 3,0    | 40    | 23                                       | TX10 °               | 1000             |
| 903721           | 3,0    | 45    | 23                                       | TX10 °               | 1000             |
| 903722           | 3,5    | 12    | Filettatura intera                       | TX20 •               | 1000             |
| 903723           | 3,5    | 15    | Filettatura intera                       | TX20 •               | 1000             |
| 903724           | 3,5    | 20    | Filettatura intera                       | TX20 •               | 1000             |
| 903725           | 3,5    | 25    | Filettatura intera                       | TX20 •               | 1000             |
| 903726           | 3,5    | 30    | Filettatura intera                       | TX20 •               | 1000             |
| 903727           | 3,5    | 35    | 21                                       | TX20 •               | 1000             |
| 903728           | 3,5    | 40    | 23                                       | TX20 •               | 1000             |
| 903729           | 3,5    | 45    | 25                                       | TX20 -               | 500              |
| 903730           | 3,5    | 50    | 30                                       | TX20 -               | 500              |
| 903731           | 4,0    | 15    | Filettatura intera                       | TX20 -               | 1000             |
| 903732           |        | 20    | Filettatura intera                       | TX20 •               | 1000             |
| 903733           | 4,0    |       |                                          |                      |                  |
|                  | 4,0    | 25    | Filettatura intera<br>Filettatura intera | TX20 •               | 1000             |
| 903734<br>903735 | 4,0    | 30    |                                          | TX20 •               | 1000<br>1000     |
|                  | 4,0    | 35    | Filettatura intera                       | TX20 •               |                  |
| 903736           | 4,0    | 40    | 23                                       | TX20 •               | 1000             |
| 903737           | 4,0    | 45    | 25                                       | TX20 •               | 500              |
| 903738           | 4,0    | 50    | 30                                       | TX20 •               | 500              |
| 903739           | 4,0    | 60    | 39                                       | TX20 •               | 200              |
| 903740           | 4,0    | 70    | 44                                       | TX20 •               | 200              |
| 903783           | 4,0    | 80    | 44                                       | TX20 •               | 200              |
| 903741           | 4,5    | 20    | Filettatura intera                       | TX20 •               | 500              |
| 903742           | 4,5    | 25    | Filettatura intera                       | TX20 •               | 500              |
| 903743           | 4,5    | 30    | Filettatura intera                       | TX20 •               | 500              |
| 903744           | 4,5    | 35    | Filettatura intera                       | TX20 -               | 500              |
| 903745           | 4,5    | 40    | 23                                       | TX20 •               | 500              |
| 903746           | 4,5    | 45    | 25                                       | TX20 •               | 500              |
| 903747           | 4,5    | 50    | 30                                       | TX20 -               | 500              |
| 903748           | 4,5    | 60    | 39                                       | TX20 -               | 200              |
| 903749           | 4,5    | 70    | 44                                       | TX20 •               | 200              |
| 903750           | 4,5    | 80    | 44                                       | TX20 •               | 200              |
| 903751           | 5,0    | 20    | Filettatura intera                       | TX20 •               | 500              |
| 903752           | 5,0    | 25    | Filettatura intera                       | TX20 -               | 500              |
| 903753           | 5,0    | 30    | Filettatura intera                       | TX20 •               | 500              |
| 903754           | 5,0    | 35    | Filettatura intera                       | TX20 •               | 500              |
| 903755           | 5,0    | 40    | 23                                       | TX20 •               | 200              |
| 903756           | 5,0    | 45    | 25                                       | TX20 •               | 200              |
| 903757           | 5,0    | 50    | 30                                       | TX20 -               | 200              |
| 903758           | 5,0    | 60    | 39                                       | TX20 •               | 200              |
| 903759           | 5,0    | 70    | 44                                       | TX20 •               | 200              |
| 903760           | 5,0    | 80    | 44                                       | TX20 •               | 200              |
| 903761           | 5,0    | 90    | 54                                       | TX20 •               | 200              |
| 903762           | 5,0    | 100   | 54                                       | TX20 •               | 200              |
| 903763           | 5,0    | 120   | 70                                       | TX20 •               | 200              |
| 903764           | 6,0    | 40    | Filettatura intera                       | TX30 •               | 200              |
| 903765           | 6,0    | 50    | Filettatura intera                       | TX30 •               | 200              |
| 903766           | 6,0    | 60    | 39                                       | TX30 •               | 200              |
| 903767           | 6,0    | 70    | 44                                       | TX30 •               | 200              |
| 903768           | 6,0    | 80    | 44                                       | TX30 •               | 200              |
| 903768           |        | 90    | 54                                       | TX30 •               | 100              |
| 703/07           | 6,0    | 7U    | J <del>4</del>                           |                      |                  |
|                  |        |       |                                          | Altre dimensioni sul | u puyma seguente |


ATTENZIONE: Le viti con  $\varnothing$  = 3,0 mm non sono regolamentate a norma


## EcoTec | Eurotec°



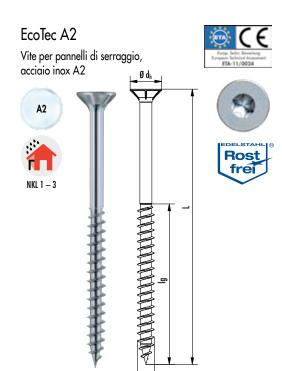

NKL 1-2


Vite per pannelli di serraggio,



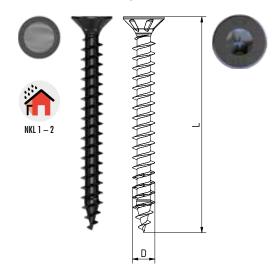


ATTENZIONE: Le viti con  $\emptyset$  = 3,0 mm non sono regolamentate a norma






| N. art. | Ø d [mm]                | L[mm] | Ø dh [mm] | lg [mm]            | Spinta | Pz./conf. |
|---------|-------------------------|-------|-----------|--------------------|--------|-----------|
| 903680* | 3,0                     | 16    | 6,0       | Filettatura intera | TX100  | 500       |
| 903681* | 3,0                     | 20    | 6,0       | Filettatura intera | TX100  | 500       |
| 903682* | 3,0                     | 25    | 6,0       | Filettatura intera | TX100  | 500       |
| 903683* | 3,0                     | 30    | 6,0       | 18                 | TX100  | 500       |
| 903600* | 3,0                     | 35    | 6,0       | Filettatura intera | TX10>  | 500       |
| 903684  | 3,5                     | 16    | 7,0       | Filettatura intera | TX100  | 500       |
| 903685  | 3,5                     | 20    | 7,0       | Filettatura intera | TX100  | 500       |
| 903686  | 3,5                     | 25    | 7,0       | Filettatura intera | TX100  | 500       |
| 903775  | 3,5                     | 30    | 7,0       | 18                 | TX100  | 500       |
| 903776  | 3,5                     | 35    | 7,0       | 21                 | TX100  | 500       |
| 903777  | 3,5                     | 40    | 7,0       | 23                 | TX100  | 200       |
| 903601  | 4,0                     | 20    | 8,0       | Filettatura intera | TX20-  | 500       |
| 903602  | 4,0                     | 25    | 8,0       | Filettatura intera | TX20-  | 500       |
| 903824  | 4,0                     | 30    | 8,0       | Filettatura intera | TX20 - | 500       |
| 903791  | 4,0                     | 35    | 8,0       | 24                 | TX20 - | 1000      |
| 903792  | 4,0                     | 40    | 8,0       | 24                 | TX20 - | 1000      |
| 903793  | 4,0                     | 45    | 8,0       | 30                 | TX20 - | 500       |
| 903794  | 4,0                     | 50    | 8,0       | 30                 | TX20 - | 500       |
| 903795  | 4,0                     | 60    | 8,0       | 36                 | TX20 - | 200       |
| 903796  | 4,0                     | 70    | 8,0       | 42                 | TX20 - | 200       |
| 903797  | 4,0                     | 80    | 8,0       | 48                 | TX20 - | 200       |
| 903836  | 4,5                     | 20    | 9,0       | Filettatura intera | TX20 - | 500       |
| 903837  | 4,5                     | 25    | 9,0       | Filettatura intera | TX20 - | 500       |
| 903838  | 4,5                     | 30    | 9,0       | Filettatura intera | TX20 - | 500       |
| 903839  | 4,5                     | 35    | 9,0       | Filettatura intera | TX20 - | 500       |
| 903840  | 4,5                     | 40    | 9,0       | 23                 | TX20 - | 500       |
| 903798  | 4,5                     | 45    | 9,0       | 30                 | TX20 - | 500       |
| 903799  | 4,5                     | 50    | 9,0       | 30                 | TX20 - | 500       |
| 903800  | 4,5                     | 60    | 9,0       | 36                 | TX20 - | 200       |
| 903801  | 4,5                     | 70    | 9,0       | 42                 | TX20 - | 200       |
| 903802  | 4,5                     | 80    | 9,0       | 48                 | TX20 - | 200       |
| 903841  | 5,0                     | 40    | 10,0      | 23                 | TX25 • | 500       |
| 903803  | 5,0                     | 50    | 10,0      | 30                 | TX25 • | 200       |
| 903804  | 5,0                     | 60    | 10,0      | 36                 | TX25 • | 200       |
| 903805  | 5,0                     | 70    | 10,0      | 42                 | TX25 • | 200       |
| 903806  | 5,0                     | 80    | 10,0      | 48                 | TX25 • | 200       |
|         | aolamentato secondo ETA |       |           |                    |        |           |


\*EcoTec A2 non regolamentato secondo ETA-11/0024.

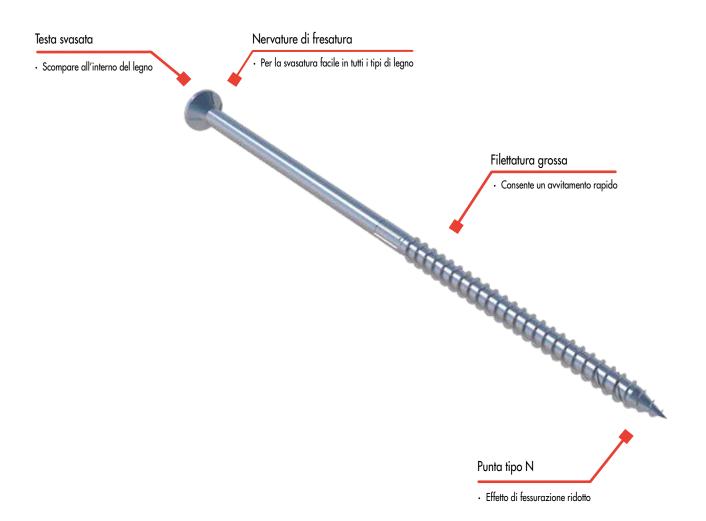
# **Eurotec** | EcoTec



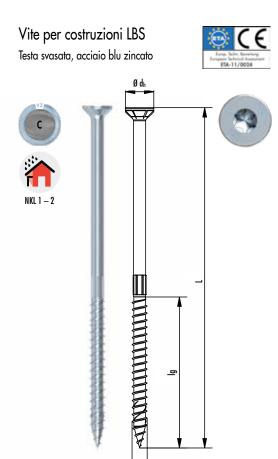
| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 903807  | 5,0      | 90    | 10,0      | 54      | TX25 • | 200       |
| 903808  | 5,0      | 100   | 10,0      | 60      | TX25 • | 200       |
| 903809  | 5,0      | 120   | 10,0      | 70      | TX25 • | 200       |
| 903810  | 6,0      | 50    | 12,0      | 30      | TX25 • | 200       |
| 903811  | 6,0      | 60    | 12,0      | 36      | TX25 • | 200       |
| 903812  | 6,0      | 70    | 12,0      | 42      | TX25 • | 200       |
| 903813  | 6,0      | 80    | 12,0      | 48      | TX25 • | 200       |
| 903814  | 6,0      | 90    | 12,0      | 54      | TX25 • | 100       |
| 903815  | 6,0      | 100   | 12,0      | 70      | TX25 • | 100       |
| 903816  | 6,0      | 120   | 12,0      | 70      | TX25 • | 100       |
| 903817  | 6,0      | 140   | 12,0      | 70      | TX25 • | 100       |
| 903818  | 6,0      | 160   | 12,0      | 70      | TX25 • | 100       |
| 903825  | 6,0      | 180   | 12,0      | 70      | TX25 • | 100       |
| 903826  | 6,0      | 200   | 12,0      | 70      | TX25 • | 100       |

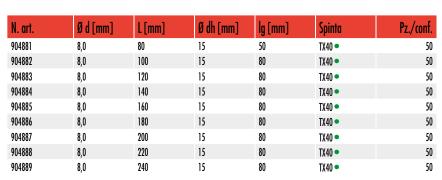
Eco-Black-Tec Vite per pannelli truciolare, acciaio al carbonio indurito, rivestimento nero




| N. art.      | Ø d [mm] | L[mm] | Ø dh [mm] | Spinta       | Pz./conf. |
|--------------|----------|-------|-----------|--------------|-----------|
| 903715/BLACK | 3,0      | 16    | 6,0       | TX10 O       | 200       |
| 903716/BLACK | 3,0      | 20    | 6,0       | TX10 O       | 200       |
| 903717/BLACK | 3,0      | 25    | 6,0       | TX10 O       | 200       |
| 903718/BLACK | 3,0      | 30    | 6,0       | TX10 $\circ$ | 200       |
| 903723/BLACK | 3,5      | 16    | 7,0       | TX20 -       | 200       |
| 903724/BLACK | 3,5      | 20    | 7,0       | TX20 -       | 200       |
| 903725/BLACK | 3,5      | 25    | 7,0       | TX20 -       | 200       |
| 903726/BLACK | 3,5      | 30    | 7,0       | TX20 -       | 200       |
| 903695/BLACK | 3,5      | 40    | 7,0       | TX20 -       | 200       |
| 903731/BLACK | 4,0      | 16    | 7,5       | TX20 -       | 200       |
| 903732/BLACK | 4,0      | 20    | 7,5       | TX20 -       | 200       |
| 903733/BLACK | 4,0      | 25    | 7,5       | TX20 -       | 200       |
| 903734/BLACK | 4,0      | 30    | 7,5       | TX20 -       | 200       |
| 903735/BLACK | 4,0      | 35    | 7,5       | TX20 -       | 200       |
| 903696/BLACK | 4,0      | 40    | 7,5       | TX20 -       | 200       |
| 903697/BLACK | 4,0      | 50    | 7,5       | TX20 -       | 200       |
| 903698/BLACK | 4,5      | 40    | 8,5       | TX20 -       | 200       |
| 903699/BLACK | 4,5      | 50    | 8,5       | TX20 •       | 200       |
| 903702/BLACK | 5,0      | 40    | 9,5       | TX20 •       | 200       |
| 903789/BLACK | 5,0      | 50    | 9,5       | TX20 -       | 200       |

## VITE PER COSTRUZIONI LBS


Vite per legno duro per il fissaggio di elementi in legno di faggio compensato impiallacciato




La vite per costruzioni Eurotec LBS è una vite per legno che consente di unire componenti in legno di faggio compensato impiallacciato oppure fissare su questi ultimi componenti in altri legni, derivati del legno e acciaio. La vite per costruzioni LBS è progettata per l'uso in strutture portanti nelle classi di utilizzo 1 e 2. Grazie al rivestimento scorrevole ottimizzato è ideale per l'uso nel legno duro. La speciale geometria della filettatura e il momento di rottura particolarmente elevato consentono di posizionare la vite senza preforare.



# **Eurotec** | Vite per costruzioni LBS







Vite per costruzioni LBS in legno di faggio compensato impiallacciato

## INFORMAZIONI TECNICHE VITE PER COSTRUZIONI LBS, TESTA SVASATA, ACCIAIO BLU ZINCATO



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dimensi    | oni        |            | Resistenza all'estrazione     | Resistenza di perforazione della testa                                                                                                                              | Taglio legno-legno         |                               |                                   |                                  | Taglio acciaio-legno   |                            |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-----------------------------------|----------------------------------|------------------------|----------------------------|----------------------------|
| distribution of the state of th | ' ≣        |            | ET AD      | N Fax,90,Rk                   | $\begin{array}{c c} V \ (\alpha=0^\circ) \\ \hline V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=90^\circ) \\ \hline \end{array}$ |                            | AD V(a**  ET V(a**  AD V(a**) | = 90°)                            | AD ET                            | V (\arr 0)  V (\arr 9) |                            | t t                        |
| d1 x L<br>[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dk<br>[mm] | AD<br>[mm] | ET<br>[mm] | F <sub>ax,90,Rk</sub><br>[kN] | F <sub>ox,head,Rk</sub><br>[kN]                                                                                                                                     | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN]    | F <sub>la,Rk</sub><br>[kN]        | F <sub>la,Rk</sub><br>[kN]       | †<br>[mm]              | F <sub>la,Rk</sub><br>[kN] | F <sub>la,Rk</sub><br>[kN] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |            |                               |                                                                                                                                                                     |                            |                               | $\alpha_{AD} = 0^{\circ}$         | $\alpha_{AD} = 90^{\circ}$       |                        |                            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |            |                               |                                                                                                                                                                     | α= <b>0</b> °              | α= <b>90</b> °                | $\alpha_{\text{ET}} = 90^{\circ}$ | $\alpha_{\text{ET}} = 0^{\circ}$ |                        | α= <b>0</b> °              | α= <b>90</b> °             |
| 8,0 x 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15,0       | 40         | 40         | 9,60                          | 9,93                                                                                                                                                                | 9,58                       | 8,37                          | 9,58                              | 8,37                             | 3                      | 9,58                       | 8,37                       |
| 8,0 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 40         | 60         | 14,40                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 9,66                              | 8,46                             | 3                      | 10,78                      | 9,57                       |
| 80, x 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 40         | 80         | 19,20                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 9,66                              | 8,46                             | 3                      | 11,98                      | 10,77                      |
| 8,0 x 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 60         | 80         | 19,20                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 9,66                              | 8,46                             | 3                      | 11,98                      | 10,77                      |
| 8,0 x 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 80         | 80         | 19,20                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 9,66                              | 8,46                             | 3                      | 11,98                      | 10,77                      |
| 8,0 x 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 100        | 80         | 19,20                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 8,46                              | 9,66                             | 3                      | 11,98                      | 10,77                      |
| 8,0 x 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 120        | 80         | 19,20                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 8,46                              | 9,66                             | 3                      | 11,98                      | 10,77                      |
| 8,0 x 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 140        | 80         | 19,20                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 8,46                              | 9,66                             | 3                      | 11,98                      | 10,77                      |
| 8,0 x 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,0       | 160        | 80         | 19,20                         | 9,93                                                                                                                                                                | 9,66                       | 8,46                          | 8,46                              | 9,66                             | 3                      | 11,98                      | 10,77                      |

Misurazione secondo valori sperimentali per ottenere la Valutazione Tecnica Europea (ETA). Spessore grezzo legno di latifoglie compensato impiallacciato pk= 730 kg/m³ (non preforato). Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico  $R_k$  non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico  $R_k$  in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico devono essere allineati ai valori di misurazione  $R_d$ :  $R_d = R_k \times k_{mod} / \gamma M$ . I valori di misurazione della capacità di carico  $R_d$  devono essere contrapposti ai valori di misurazione degli effetti  $E_d$  ( $R_d \ge E_d$ ).

#### Esempio

Valore tipico di un effetto costante (carico strutturale)  $G_k = 2,00$  kN ed effetto variabile (per es. carico della neve)  $Q_k = 3,00$  kN.  $k_{mod} = 0,9$ ,  $\gamma_{N} = 1,3$ .

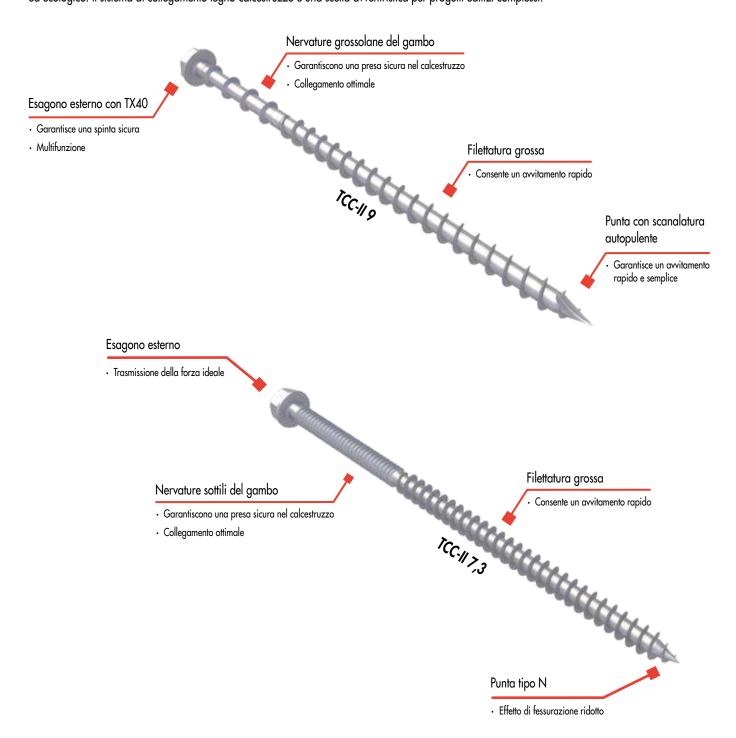
 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

 $La\ capacità\ di\ carico\ del\ collegamento\ si\ applica\ così\ come\ dimostrato,\ se\ R_d \geq E_d. \ \longrightarrow\ min\ R_k =\ R_d\cdot\gamma_M\ /\ k_{mod}$ 

Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Allineamento con i valori della tabella}$ 

Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

I valori indicati sono valori sperimentali!


## VITE DI COLLEGAMENTO LEGNO-CALCESTRUZZO



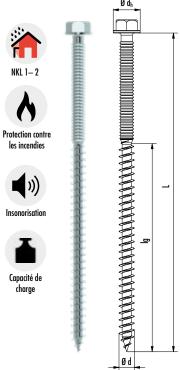
Per l'irrobustimento della struttura portante delle coperture dei piani nelle nuove costruzioni e in caso di ristrutturazione

I progetti edilizi di ampia portata e con carichi utili elevati hanno bisogno di una elevata rigidità. Le coperture delle travi in legno mostrano rapidamente i loro limiti. La struttura composita innovativa legno-calcestruzzo con le viti di collegamento consente di sfruttare in modo efficace le migliori proprietà di legno e calcestruzzo armato, il che si traduce in una struttura portante resistente.

Il sistema viene utilizzato nelle nuove costruzioni dalle portate più ampie e nelle ristrutturazioni per gli edifici con cambio di destinazione d'uso. Tra i vantaggi vi è l'aumento della capacità di carico, una maggiore rigidità, un migliore isolamento acustico e una maggiore resistenza al fuoco. In fase di ristrutturazione il vantaggio è dato dall'ottenimento delle travi esistenti e spesso anche dalla cassaforma – conveniente dal punto di vista economico ed ecologico. Il sistema di collegamento legno-calcestruzzo è una scelta avveniristica per progetti edilizi complessi.






## **Eurotec**° | Vite per struttura composita legno-calcestruzzo

### TCC-II 7,3

Esagono esterno, acciaio al carbonio, con rivestimento speciale



| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta          | Pz./conf. |
|---------|----------|-------|-----------|---------|-----------------|-----------|
| 981841  | 7,3      | 150   | 12,7      | 98      | Esagono esterno | 200       |

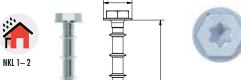




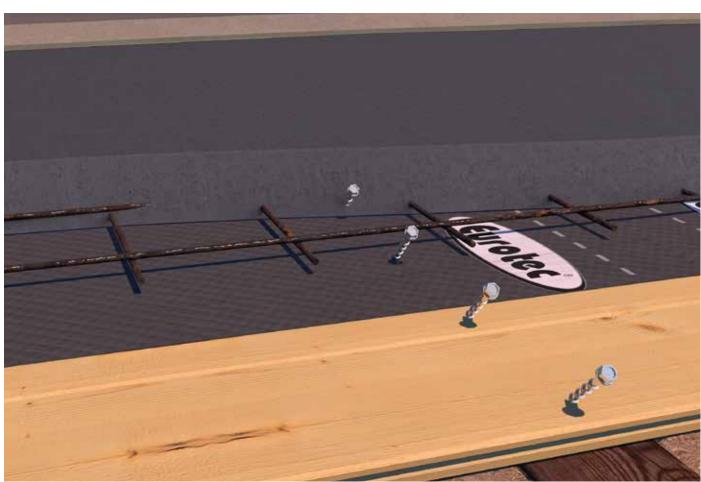
Copertura HBV nel dettaglio

TCC-II 9

Protection contre les incendies


(( Insonorisation

Capacité de charge


Esagono esterno, acciaio al carbonio, con rivestimento speciale

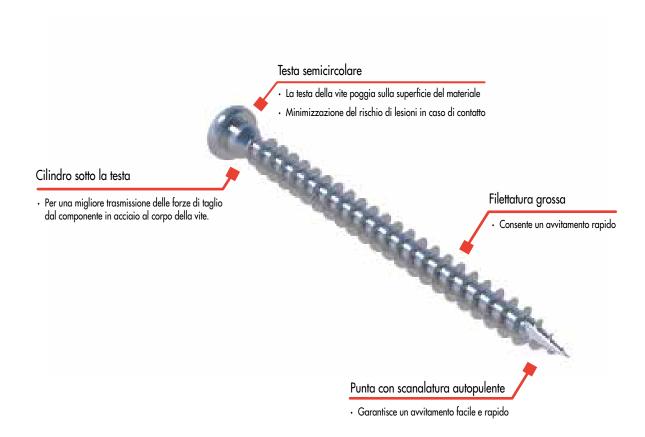


| N. art. | Ø d [mm] | L[mm] | Ø dh [mm] | lg [mm] | Spinta | Pz./conf. |
|---------|----------|-------|-----------|---------|--------|-----------|
| 903592  | 9,0      | 180   | 15,5      | 125     | TX40 • | 200       |








Disaccoppiamento dal rumore dei passi e massetto sul soffitto HBV

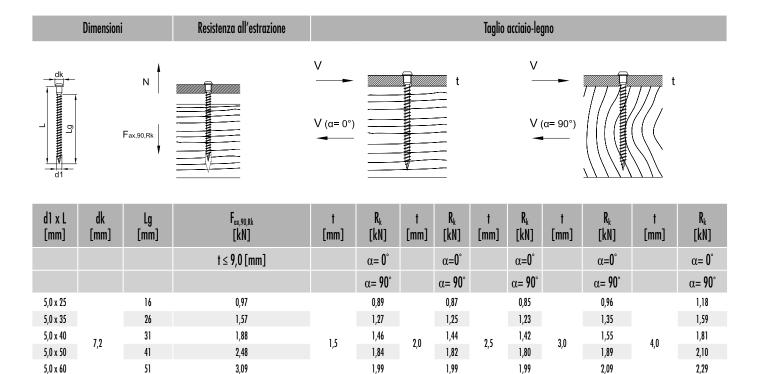
## VITI PER SERRAMENTI ANGOLARI (WBS)

Per un avvitamento rapido e facile



Le viti per serramenti angolari Eurotec (WBS) sono prodotte in acciaio al carbonio temprato e sono state progettate appositamente per collegare lamiere di acciaio e legno. L'effetto di fessurazione nel legno è ridotto grazie alla geometria della punta della vite. Inoltre, queste viti si contraddistinguono, tra le altre cose, grazie al gambo liscio sotto la testa, il che consente la trasmissione del carico in fase di taglio.






### **Eurotec** Vite per serramenti angolari



| N. art. | Ø d [mm] | L[mm] | lg [mm] | Ø dh [mm] | Spinta | Pz./conf. |
|---------|----------|-------|---------|-----------|--------|-----------|
| 945343  | 5,0      | 25    | 16      | 7,2       | TX20 - | 250       |
| 945232  | 5,0      | 35    | 26      | 7,2       | TX20 - | 250       |
| 945241  | 5,0      | 40    | 31      | 7,2       | TX20 - | 250       |
| 945233  | 5,0      | 50    | 41      | 7,2       | TX20 - | 250       |
| 945344  | 5,0      | 60    | 51      | 7,2       | TX20 - | 250       |
| 945345  | 5,0      | 70    | 61      | 7,2       | TX20 - | 250       |

### INFORMAZIONI TECNICHE VITE PER SERRAMENTI ANGOLARI, ACCIAIO BLU ZINCATO



Misurazione a norma ETA-11/0024. Spessore grezzo  $\rho_k$ =  $350 \text{ kg/m}^3$ . Tutti i valori meccanici indicati devono essere considerati in base alle ipotesi effettuate e rappresentano esempi di misurazione. Tutti i valori sono valori minimi calcolati e si applicano salvo errori di composizione e di pressione.

a) I valori tipici della capacità di carico R<sub>k</sub> non devono essere equiparati al possibile effetto max. (forza max.). I valori tipici della capacità di carico R<sub>k</sub> devono essere ridotti in riferimento alla classe di utilizzo e alla classe di durata dell'effetto del carico ai valori di misurazione R<sub>d</sub>: R<sub>d</sub>= R<sub>k</sub> · k<sub>mad</sub> / γ<sub>k</sub>. I valori di misurazione della capacità di carico R<sub>d</sub> devono essere contrapposti ai valori di misurazione degli effetti E<sub>d</sub> (R<sub>d</sub> ≥ E<sub>d</sub>).

2,14

2,14

2,14

2,24

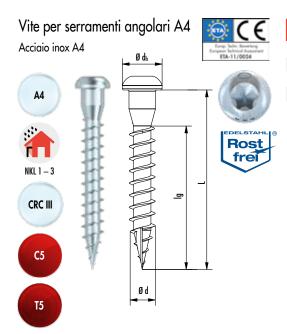
2,44

#### Fsemnio:

5,0 x 70

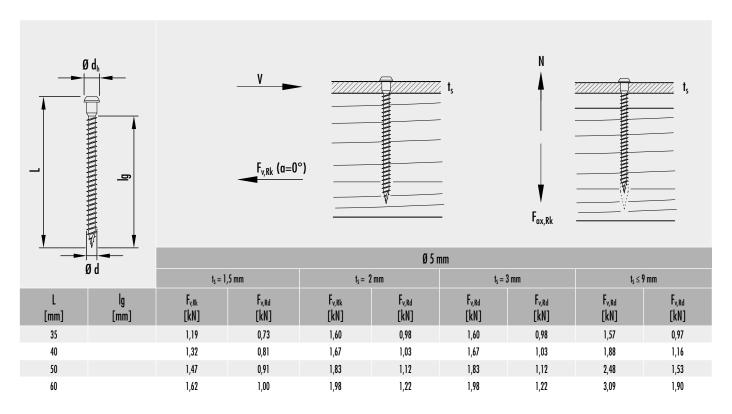
Valore tipico di un efftto costante (carico strutturale)  $G_k$ = 2,00 kN ed effetto variabile (per es. carico della neve)  $Q_k$ = 3,00 kN.  $k_{mod}$ = 0,9.  $\gamma_M$ = 1,3.

3,69


 $\rightarrow$  Valore di misurazione dell'effetto  $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$ 

La capacità di carico del collegamento si applica così come dimostrato, se  $R_d \ge E_d$ .  $\longrightarrow$  min  $R_k = R_d \cdot \gamma_M / k_{mod}$ 

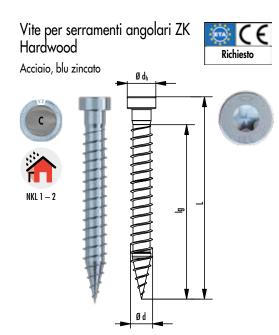
Ciò significa che il valore minimo tipico della capacità di carico si misura come segue: min  $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Allineamento con i valori della tabella}$ .


Attenzione: Quanto indicato è un aiuto per la pianificazione. I progetti devono essere misurati e calcolati esclusivamente da personale autorizzato.

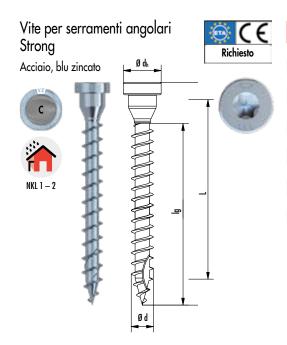
Attenzione: Verificare i collaudi effettuati. Il valore, il tipo e la quantità dei mezzi di collegamento indicati si riferiscono a una misurazione preliminare. I progetti devono essere misurati esclusivamente da persone autorizzate ai sensi del regolamento edilizio tedesco. Per un documento a comprova della stabilità a titolo oneroso si prega di rivolgersi a un/a progettista di opere strutturali ai sensi del regolamento edilizio tedesco (LBauO). Saremo lieti di fornirvi i contatti.



| N. art. | Ø d [mm] | L[mm] | lg [mm] | Ø dh [mm] | Spinta | Pz./conf. |
|---------|----------|-------|---------|-----------|--------|-----------|
| 945621  | 5,0      | 35    | 26      | 7,2       | TX20 - | 250       |
| 945622  | 5,0      | 40    | 31      | 7,2       | TX20 - | 250       |
| 945623  | 5,0      | 50    | 41      | 7,2       | TX20 - | 250       |
| 945625  | 5.0      | 60    | 51      | 7.2       | TX20 - | 250       |

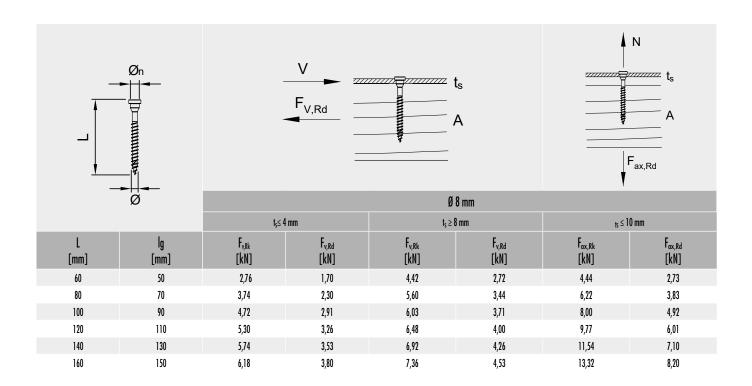

### CAPACITÀ DI CARICO DELLE VITI CON LUNGHEZZE MINIME NECESSARIE

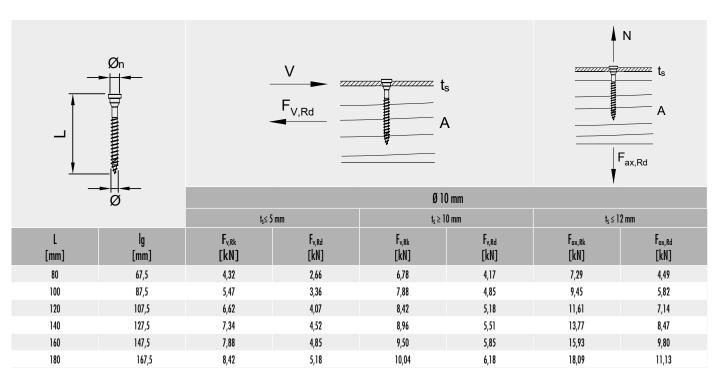



Calcolo effettuato a norma ETA-11/0024, tenendo conto dei fori non preforati e dello spessore del legno  $\rho_k = 350 \text{ kg/m}^3$ . I valori di misurazione  $F_{kl}$  sono stati calcolati tenendo conto di  $k_{mod} = 0,8$  e  $\gamma_M = 1,3$ . Come lamiera spessa si applica lo spessore di una lamiera in acciaio di ts  $\geq 2,0$  mm a norma ETA-11/0024. L è la lunghezza minima della vite necessaria a raggiungere la relativa capacità di carico.

Attenzione: Quanto indicato è un ausilio alla pianificazione. I progetti devono essere calcolati esclusivamente da personale autorizzato.

## **Eurotec** | Vite per serramenti angolari





| N. art. | Ø d [mm] | L[mm] | lg [mm] | Ø dh [mm] | Spinta | Pz./conf. |
|---------|----------|-------|---------|-----------|--------|-----------|
| 945383  | 5,0      | 35    | 31      | 7,2       | TX20 - | 250       |
| 945384  | 5,0      | 40    | 36      | 7,2       | TX20 - | 250       |
| 945385  | 5,0      | 50    | 46      | 7,2       | TX20 - | 250       |
| 945386  | 5,0      | 60    | 56      | 7,2       | TX20 - | 250       |
| 945387  | 5,5      | 70    | 61      | 7,2       | TX20 - | 250       |



| N. art. | Ød[mm] | L[mm] | lg [mm] | Ø dh [mm] | Spinta | Pz./conf. |
|---------|--------|-------|---------|-----------|--------|-----------|
| 975815  | 8,0    | 60    | 50      | 13,5      | TX40 • | 50        |
| 975816  | 8,0    | 80    | 70      | 13,5      | TX40 • | 50        |
| 975817  | 8,0    | 100   | 90      | 13,5      | TX40 • | 50        |
| 975818  | 8,0    | 120   | 110     | 13,5      | TX40 • | 50        |
| 975819  | 8,0    | 140   | 130     | 13,5      | TX40 • | 50        |
| 975820  | 8,0    | 160   | 150     | 13,5      | TX40 • | 50        |
| 975821  | 10,0   | 80    | 67,5    | 16,5      | TX50 ● | 50        |
| 975822  | 10,0   | 100   | 87,5    | 16,5      | TX50 ● | 50        |
| 975823  | 10,0   | 120   | 107,5   | 16,5      | TX50 ● | 50        |
| 975824  | 10,0   | 140   | 127,5   | 16,5      | TX50 ● | 50        |
| 975825  | 10,0   | 160   | 147,5   | 16,5      | TX50 ● | 50        |
| 975826  | 10,0   | 180   | 167,5   | 16,5      | TX50 ● | 50        |

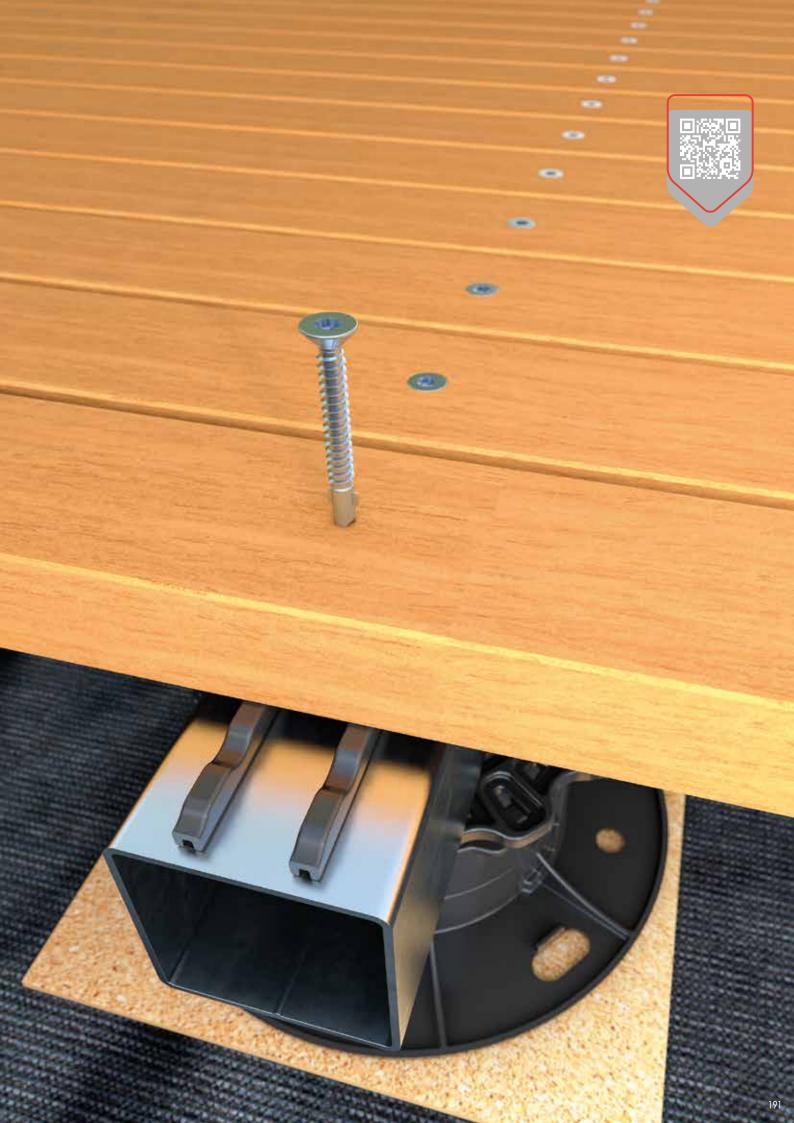
### INFORMAZIONI TECNICHE VITE PER SERRAMENTI ANGOLARI STRONG, ACCIAIO BLU ZINCATO





Calcolo effettuato a norma ETA-11/0024, tenendo conto dei fori non preforati e dello spessore del legno  $\rho_k = 350 \text{ kg/m}^3$ . I valori di misurazione  $F_{Rd}$  sono stati calcolati tenendo conto di  $k_{mod} = 0.8$  e  $\gamma_M = 1.3$ . Per spessori di lamiere differenti è possibile interpolare la resistenza al taglio tra lamiere in acciaio sottili e lamiere in acciaio spesse. L è la lunghezza minima della vite necessaria a raggiungere la relativa capacità di carico.

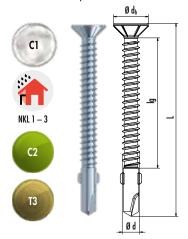
Attenzione: Quanto indicato è un ausilio alla pianificazione. I progetti devono essere calcolati esclusivamente da persone autorizzate.


### VITE AD ALETTE PER FORATURA

Per il fissaggio di profili sottili

La vite ad alette per foratura è una vite in acciaio inox temprato o in acciaio al carbonio progettata appositamente per il fissaggio di profili sottili. La vite è dotata di una punta di foratura con alette speciali e una testa svasata con spinta TX. Queste viti si contraddistinguono, poiché si possono utilizzare senza preforare, in quanto le alette effettuano un foro più grande rispetto al diametro della filettatura. Forano sia il foro principale che la controfilettatura all'interno dell'acciaio stesso.

È importante sapere che l'acciaio zincato e l'acciaio inox temprato non sono resistenti agli acidi, pertanto non sono adatti al fissaggio di legni concianti, quali il rovere. Negli ambienti esterni consigliamo di utilizzare queste viti solo per attacchi acciaio-legno, dove è sufficiente una vite per ogni punto di fissaggio.

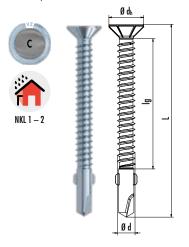





## **Eurotec** | Vite ad alette per foratura

#### Vite ad alette per foratura

Acciaio inox temprato




| N. art. | Ød[mm] | L[mm] | lg [mm] | Ø dh [mm] | Spinta | Spessore di serraggio [mm]a) | Potenza di<br>foratura | Pz./<br>conf. |
|---------|--------|-------|---------|-----------|--------|------------------------------|------------------------|---------------|
| 901990  | 4,8    | 38    | 22      | 9,5       | TX25 • | 20                           | 3                      | 200           |
| 111404  | 5,5    | 45    | 26,5    | 10,8      | TX30 • | 25                           | 3                      | 200           |
| 111405  | 5,5    | 50    | 32      | 10,8      | TX30 • | 30                           | 3                      | 200           |
| 111406  | 6,3    | 60    | 31      | 12,4      | TX30 • | 35                           | 5                      | 200           |
| 901585  | 6,3    | 70    | 41      | 12,4      | TX30 • | 45                           | 5                      | 200           |
| 904333  | 6,3    | 80    | 41      | 12,4      | TX30 • | 55                           | 5                      | 200           |
| 901581  | 6,3    | 85    | 46      | 12,4      | TX30 • | 60                           | 5                      | 100           |
| 901584  | 6,3    | 110   | 46      | 12,4      | TX30 • | 85                           | 5                      | 100           |

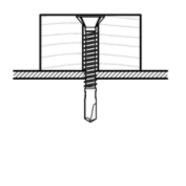
a) Spessore di serraggio = spessore del componente + spessore della lamiera t;  $t_{max}$  = potenza di foratura

#### Vite ad alette per foratura

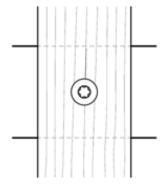
Acciaio, blu zincato

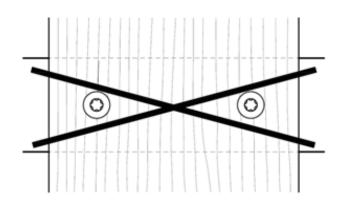





a) Spessore di serraggio = spessore del componente + spessore della lamiera t;  $t_{max}$  = potenza di foratura

#### INDICAZIONI DI UTILIZZO


La vite ad alette per foratura è progettata solo per il fissaggio di profili sottili, sarebbe a dire per applicazioni con una sola vite per ciascun punto di fissaggio.


Nel fissaggio di elementi, quali tavole, con due viti per ciascun punto di fissaggio si può formare un ostacolo reciproco, se le viti si piegano assieme al legno "che lavora" (che si muove o si deforma). Ciò causa la rottura della vite, in particolare se si utilizza un legno di conifera relativamente morbido.

La vite ad alette per foratura non è adatta per il fissaggio di strutture composite legno-alluminio.











#### FUNZIONAMENTO VITE AD ALETTE PER FORATURA

- Il foro all'interno del legno grazie alle alette è più grande del diametro della filettatura della vite.
- La punta di foratura effettua il foro all'interno dell'acciaio e forma la controfilettatura, se pre nell'acciaio.
- Tenuta sicura della filettatura nel terreno con ancoraggi in acciaio.

Funzionamento vite ad alette per foratura

## VITE DISTANZIALE/MINI, JUSTITEC

Per il fissaggio di strutture base in legno in presenza di rivestimenti di pareti e soffitti

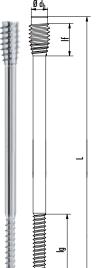
La vite distanziale è ideale per il fissaggio di strutture base in legno in presenza di rivestimenti di pareti e soffitti nonché per il montaggio di listelli di colmo. Contrariamente alle tradizionali viti la vite distanziale è dotata di due diverse filettature sulla testa e sulla punta. La filettatura della testa mantiene il controlistello da fissare (mantiene la distanza). La filettatura della punta, più sottile, consente di fissarlo nella struttura base.

Per evitare che il controlistello si apra, consigliamo di preforare il controlistello (diametro di foratura = Ø dh − 2 mm).

Con l'ausilio di Justitec il listello in legno viene posizionato nella parte superiore e inferiore. In aggiunta, la vite distanziale viene utilizzata per mantenere il listello in posizione ed evitarne un possibile spostamento.






#### Vite distanziale

Acciaio zincato, con rivestimento scorrevole









| N. art. | Ød[mm] | L[mm] | lg [mm] | Ø dh [mm] | lf [mm] | Spinta | Range di distanza [mm] | Pz./conf. |
|---------|--------|-------|---------|-----------|---------|--------|------------------------|-----------|
| 110099  | 6,0    | 60    | 40      | 10        | 20      | TX25 • | 0–15                   | 200       |
| 110100  | 6,0    | 70    | 40      | 10        | 20      | TX25 • | 15-25                  | 200       |
| 110101  | 6,0    | 80    | 40      | 10        | 20      | TX25 • | 15–35                  | 200       |
| 110102  | 6,0    | 90    | 40      | 10        | 20      | TX25 • | 25-45                  | 200       |
| 110103  | 6,0    | 100   | 40      | 10        | 20      | TX25 • | 35–55                  | 200       |
| 110104  | 6,0    | 120   | 40      | 10        | 20      | TX25 • | 55–75                  | 100       |
| 110105  | 6,0    | 135   | 40      | 10        | 20      | TX25 • | 70–90                  | 100       |
| 110106  | 6,0    | 150   | 40      | 10        | 20      | TX25 • | 75–105                 | 100       |
| 110107  | 6,0    | 180   | 40      | 10        | 20      | TX25 • | 100-135                | 100       |
| 110108  | 6,0    | 200   | 40      | 10        | 20      | TX25 • | 135–155                | 100       |
| 110109  | 6,0    | 250   | 40      | 10        | 20      | TX25 • | 180-205                | 100       |
| 110110  | 6,0    | 300   | 40      | 10        | 20      | TX25 • | 230-255                | 100       |

#### Vite distanziale Mini

Acciaio zincato, con rivestimento scorrevole





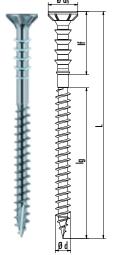








| N. art. | Ød[mm] | L[mm] | lg [mm] | Ø dh [mm] | If [mm] | Spinta | Range di distanza [mm] | Pz./conf. |
|---------|--------|-------|---------|-----------|---------|--------|------------------------|-----------|
| 110121  | 4,5    | 60    | 30      | 8         | 22      | TX25 • | 0 – 15                 | 100       |
| 110122  | 4,5    | 80    | 30      | 8         | 22      | TX25 • | 15 – 35                | 100       |
| 110123  | 4,5    | 100   | 30      | 8         | 22      | TX25 • | 35 – 55                | 100       |
| 110124  | 4,5    | 120   | 30      | 8         | 22      | TX25 • | 55 – 75                | 100       |


#### Justitec

Acciaio zincato, con rivestimento scorrevole, testa svasata













| N. art. | Ød[mm] | L[mm] | lg [mm] | Ø dh [mm] | If [mm] | Spinta | Range di regolazione [mm] | Pz./conf. |
|---------|--------|-------|---------|-----------|---------|--------|---------------------------|-----------|
| 111804  | 6,0    | 60    | 25      | 10        | 25      | TX25 • | 0-10                      | 200       |
| 111805  | 6,0    | 70    | 30      | 10        | 25      | TX25 • | 0 – 20                    | 200       |
| 111806  | 6,0    | 80    | 30      | 10        | 25      | TX25 • | 0 – 30                    | 200       |
| 111807  | 6,0    | 90    | 40      | 10        | 25      | TX25 • | 0 – 40                    | 100       |
| 111808  | 6,0    | 100   | 60      | 10        | 25      | TX25 • | 0 – 50                    | 100       |
| 111824  | 6,0    | 110   | 60      | 10        | 25      | TX25 • | 0 – 60                    | 100       |
| 111809  | 6,0    | 120   | 60      | 10        | 25      | TX25 • | 0 – 70                    | 100       |
| 905632  | 6,0    | 130   | 60      | 10        | 25      | TX25 • | 0 – 80                    | 100       |
| 905633  | 6,0    | 145   | 60      | 10        | 25      | TX25 • | 0 – 95                    | 100       |
| 905634  | 6,0    | 160   | 60      | 10        | 25      | TX25 • | 0 – 110                   | 100       |

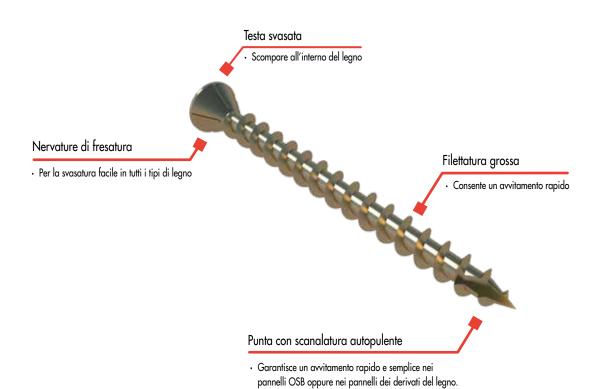
#### VANTAGGI

- · Non è necessario preforare, regolazione continua
- · Non è necessario posizionare cunei alla base, lavorazione di legno su legno



Allineamento rapido di una struttura base con Justitec.




Fissaggio di un listello in legno con l'ausilio della vite distanziale (sotto) e di Justitec (sopra).

## Eurotec | OSB Fix

## **OSB FIX**

Vite in acciaio al carbonio giallo zincato

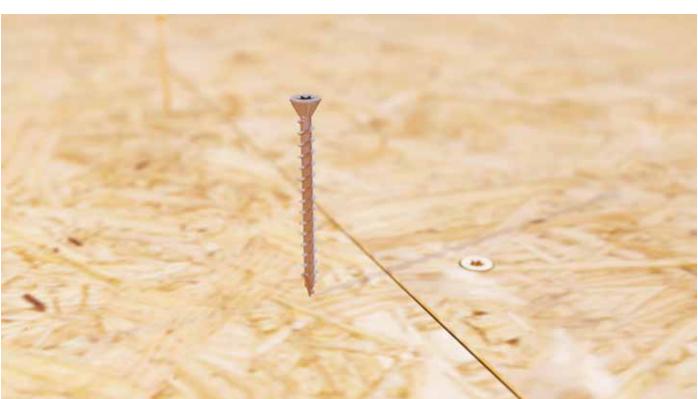
OSB Fix è una vite gialla zincata in acciaio al carbonio a testa svasata e filettatura intera. La vite a filettatura intera è dotata di una testa svasata a 60° con nervature di fresatura e spinta TX nonché di una cosiddetta punta con scanalatura autopulente (tipo 17). La speciale geometria della vite garantisce un effetto di fessurazione ridotto in fase di avvitamento.



OSB Fix

Testa svasata, acciaio giallo zincato



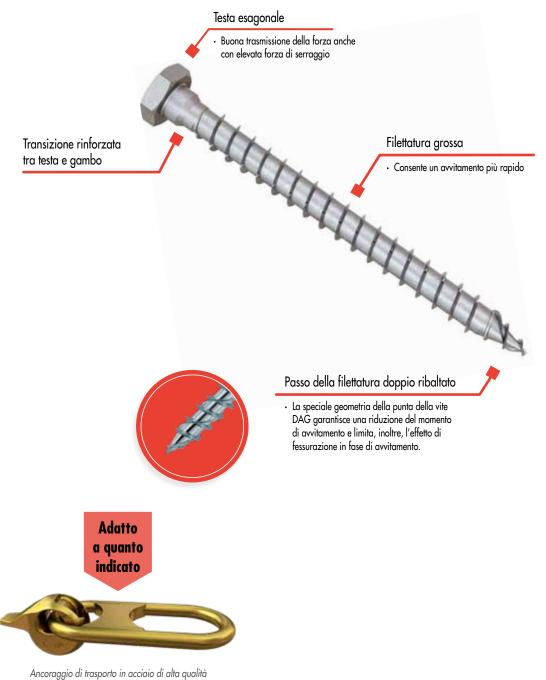



| N. art. | Dimensione [mm] | Spinta | Pz./conf. |
|---------|-----------------|--------|-----------|
| 900690  | 4,3 x 40        | TX20 • | 250       |
| 900691  | 4,3 x 45        | TX20 • | 250       |
| 900692  | 4,3 x 50        | TX20 • | 250       |
| 900693  | 4,3 x 60        | TX20 • | 250       |
| 900694  | 4,3 x 80        | TX20 • | 250       |

#### Proprietà

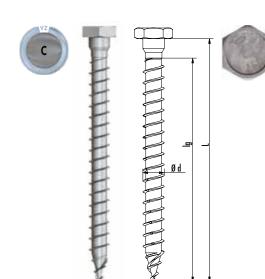
- $\cdot\,$  La filettatura intera mantiene il pannello in posizione
- · Impedisce gli scricchiolii
- · Adatta per tutti i derivati del legno
- · Superficie gialla zincata Cr3






OSB Fix per il fissaggio di pannelli OSB

### VITE PER ANCORAGGI DA TRASPORTO


Acciaio di qualità, con punta AG

L'elemento in acciaio di qualità per il sollevamento manuale consente un sicuro e agevole sollevamento di componenti in legno di qualsiasi tipo. Gli ancoraggi da trasporto per carichi fino 1,3 tonnellate possono essere impiegati esclusivamente in combinazione con le viti Ø11x160mm da ancoraggio e trasporto prodotte dalla Eurotec e collaudate secondo il Benestare Tecnico Europeo ETA-11/0024. La vite Eurotec Ø11x160 da ancoraggio e trasporto può essere utilizzata solo una volta! La vite deve essere avvitata senza preforatura in elementi in legno massiccio (legno di conifere), legno lamellare, piallacci, tavolami o travi lamellari. Un impiego in legni duri non è ammissibile! Saremo lieti di mettervi a disposizione le nostre istruzioni per l'uso con le indicazioni relative alle posizioni di montaggio possibili o consentite.





#### Vite per ancoraggi da trasporto Acciaio di qualità



| N. art. | Dimensione [mm] | Spinta | Pz./conf. |
|---------|-----------------|--------|-----------|
| 110359  | 11,0 x 125      | SW 17  | 20        |
| 110360  | 11,0 x 160      | SW 17  | 20        |
| 110371  | 11,0 x 200      | SW 17  | 20        |
| 110372  | 11,0 x 250      | SW 17  | 20        |
| 110373  | 11,0 x 300      | SW 17  | 20        |

#### VANTAGGI

- Elevato assorbimento del carico
- Sollevamento, trasporto e spostamento senza complicazioni di grandi componenti in legno
- Tre varianti di montaggio per la sollecitazione della vite per ancoraggi da trasporto con:
  - → Trazione assiale
  - $\rightarrow \text{Trazione obliqua}$
  - → Trazione obliqua con fresatura precisa della testa del giunto

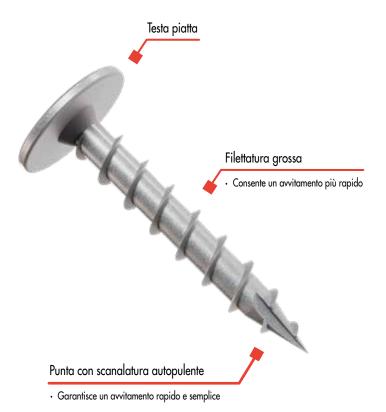
#### ISTRUZIONI DI SICUREZZA

• Prima dell'uso leggere attentamente la scheda tecnica del prodotto e le istruzioni per l'uso:





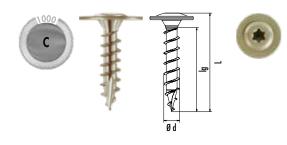
Scheda tecnica prodotto


Istruzioni per l'uso

- Gli utilizzatori devono essere addestrati prima della prima messa in esercizio
- · Le viti non necessitano di preforatura
- · Utilizzare le viti solo una volta
- Il carico del componente da sollevare non deve superare il valore ammesso
- · Sono necessari almeno due punti di ancoraggio per componente da sollevare
- L'ancoraggio da trasporto deve essere controllato ed eventualmente scartato per la presenza di danni prima di ogni utilizzo

## VITE PER CONNESSIONE SU MONTANTI

La vite per costruzioni in legno per collegamenti tra legno e lamiera d'acciaio


La vite di collegamento per montanti è una vite autofilettante con testa a tazza utilizzata per il collegamento di lamiere di acciaio al legno. Questa vite viene utilizzata, ad esempio, per collegare i pali in legno con parti in acciaio stampato come scarpe per travi, basi per pali, ancoraggi per pali (ad esempio, ancoraggi per pali ad H), nonché manicotti a terra e manicotti a vite nella costruzione di recinzioni e pergole.



#### Vite per connessione su montanti 1000



Rivestimento speciale



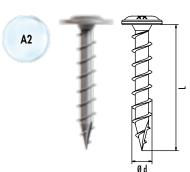
| N. art. | Dimensione [mm] | Spinta | Pz./conf. |
|---------|-----------------|--------|-----------|
| r903056 | 8 x 40          | TX40 ● | 100       |
| r903057 | 8 x 50          | TX40 • | 100       |
| 975594  | 10 x 40         | TX40 • | 50        |
| 975595  | 10 x 50         | TX40 • | 50        |

#### VANTAGGI

- Vite con testa a piattello Ø 8 mm, diametro della testa Ø 22 mm
- · Grazie alla particolare geometria della punta riduce l'effetto di fessurazione, non è necessaria la preforatura
- · Non è necessario preforare
- · Speciale protezione anticorrosione
- · Impiegata per esempio nella costruzione di recinzioni e di pergolati

Dimensione [mm]

8 x 40


8 x 50

8 x 60

#### Attenzione

Non adatta a legno tanninico!

#### Vite per connessione su montanti Α2



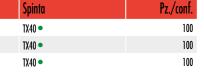








N. art.


975570

975571





- Vite con testa a piattello Ø 8 mm, diametro della testa Ø 16 mm
- Grazie alla particolare geometria della punta riduce l'effetto di fessurazione, non è necessaria la preforatura
- · Non è necessario preforare
- · Condizionatamente inossidabile, non resistente agli acidi



Non adatta a legno tanninico!



Vite per connessione su montanti ancorata in modo sicuro nel legno – per la massima stabilità delle strutture in legno da costruzione.



#### Limitatore di coppia



| N. art. | Versioni disponibili       | Inserto         | Lunghezza totale [mm] | Attacco punte   | Pz./conf. |
|---------|----------------------------|-----------------|-----------------------|-----------------|-----------|
| 100885  | Limitatore di coppia 18 Nm | Esagonale 11 mm | 120,5                 | TX40 ● o TX50 ● | 1         |
| 100886  | Limitatore di coppia 32 Nm | Esagonale 11 mm | 120,5                 | TX40 ● o TX50 ● | 1         |

#### VANTAGGI

- Riduce i danni alle viti: impedisce che le viti si spanino o si rompano, il che è particolarmente importante in presenza di collegamenti metallo-legno e di viti con testa a piattello.
- · Qualità costante: coppia di serraggio sicura e riproducibile a ogni avvitamento.
- · Senza manutenzione: L'innesto a lubrificazione permanente non richiede una manutenzione regolare.

#### Indicazione

Gli innesti ad avvitamento sono consegnati con una coppia preimpostata di 18 Nm o 32 Nm e all'occorrenza possono essere adattati a una coppia specifica del progetto.

Per la massima durata e un funzionamento affidabile si consiglia l'utilizzo di adattatori per punte adeguati e l'impiego nel range di coppia indicato.

#### Utensile di avvitamento



| N. art. | Versione                                   | Attacco utensile                                 | Lunghezza<br>[mm] | Attacco<br>punte   | Diametro<br>(esterno) [mm] | Compatibilità                                                    | Pz./conf. |
|---------|--------------------------------------------|--------------------------------------------------|-------------------|--------------------|----------------------------|------------------------------------------------------------------|-----------|
| 100883  | Utensile di<br>avvitamento piccolo<br>ESW8 | 1/4" esagonale<br>(attacco esagonale<br>interno) | ca. 65            | TX40 ● o<br>TX50 ● | 41,5                       | Viti con azionamento<br>TX40 (p.es. Paneltwistec<br>TK Ø 8 x L)  | 1         |
| 100884  | Utensile di<br>avvitamento grande<br>ESW13 | 1/4" esagonale<br>(attacco esagonale<br>interno) | ca. 65            | TX40 ● o<br>TX50 ● | 41,5                       | Viti con azionamento<br>TX40 (p.es. Paneltwistec<br>TK Ø 10 x L) | 1         |

#### VANTAGGI

- · Design robusto e durevole per l'uso in cantiere
- · Collegamento sicuro a trasmissione di forza mediante innesto preciso
- · Riduzione di slittamento e disallineamento durante l'avvitamento
- · Adatto per il montaggio preliminare e finale in costruzioni in legno, facciate, sottostrutture, ecc.

#### Nota di applicazione

L'utensile è pensato per l'utilizzo con avvitatori a batteria o trapani commerciali con attacco punte da 1/4". Durante l'utilizzo, assicurarsi che sia posizionato esattamente ad angolo retto per non danneggiare il collegamento a vite. Per montaggi in serie si consiglia di utilizzare l'innesto ad avvitamento.

#### Conservazione e manutenzione

Per preservare la funzionalità a lungo termine, si consiglia di conservare il prodotto all'asciutto e di pulirlo regolarmente per rimuovere sporco e residui di metallo. Se trattata correttamente, la superficie brunita offre una protezione affidabile contro la formazione di ruggine.

## SCAFFALE EUROTEC

Confezioni piccole

#### **VANTAGGI**

Con lo scaffale Eurotec avrete a disposizione le viti nelle dimensioni e nei materiali più richiesti in un unico scaffale. Pertanto, potrete provvedere alla fornitura di tutto il necessario per le costruzioni in legno per i vostri clienti per tutte le applicazioni quotidiane da un unico scaffale.

- La parte superiore dello scaffale contiene le viti in sacchetti da 10, 15, 20 o 45 pezzi.
- Nella parte inferiore dello scaffale ci sono le viti in cartoni da 50 o 100 pezzi. Tutti i cartoni sono dotati di un'apertura a cassetto richiudibile.
- Bit, Langbit e confezioni di Bit con le adeguate dimensioni TX secondo un sistema di colori sono parte integrante di questo ampio scaffale.

#### IN QUESTO SCAFFALE TROVERETE LE SEGUENTI TIPOLOGIE DI VITI E DIMENSIONI

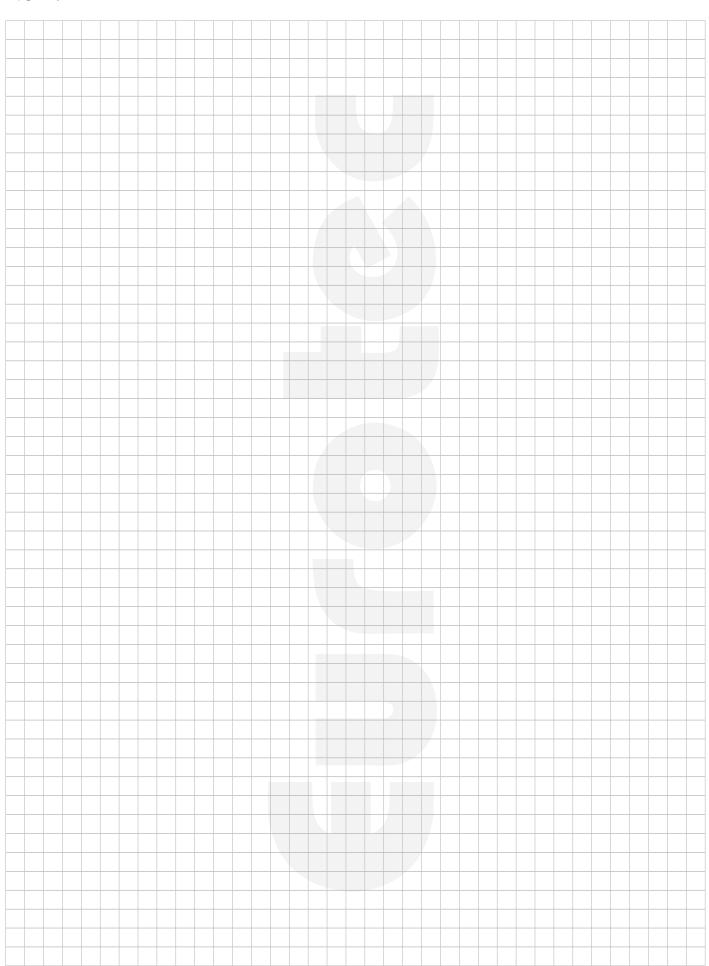
- Paneltwistec AG con rivestimento speciale, testa svasata da Ø 3,5 x 30 mm a Ø 6,0 x 120 mm
- EcoTec A2 vite per pannelli di fissaggio, testa svasata da Ø 4,0 x 40 mm a Ø 6,0 x 120 mm
- Hapatec acciaio inox temprato,
   testa decorativa da Ø 4,0 x 30 mm a Ø 5,0 x 80 mm

#### EUROPALLET E CONFEZIONI MAXI Con confezioni maxi Eurotec da 8, 16 o 24

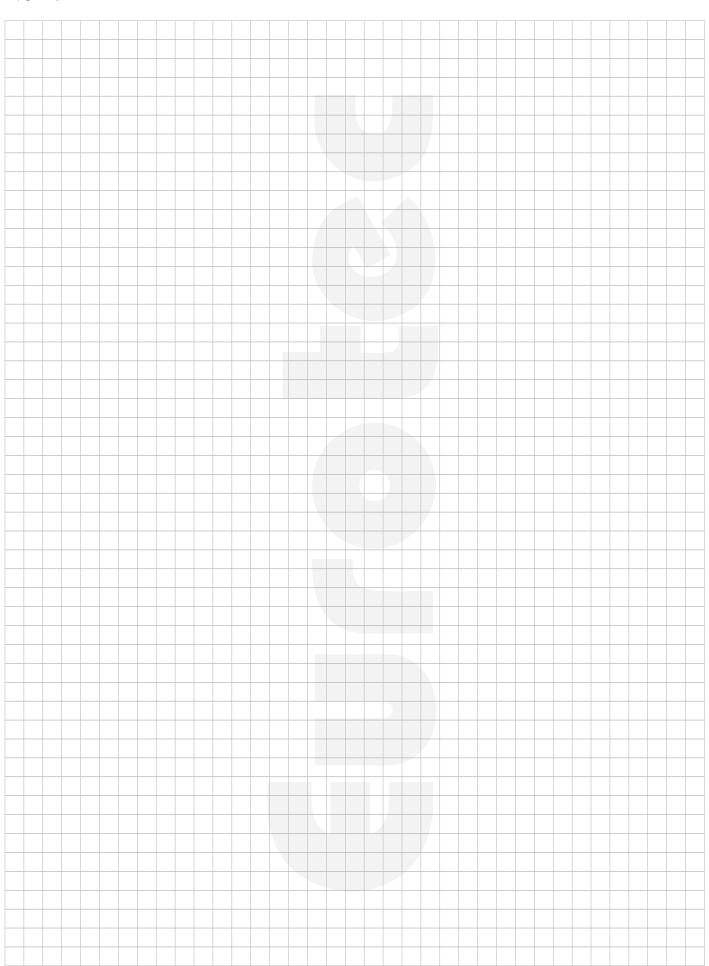


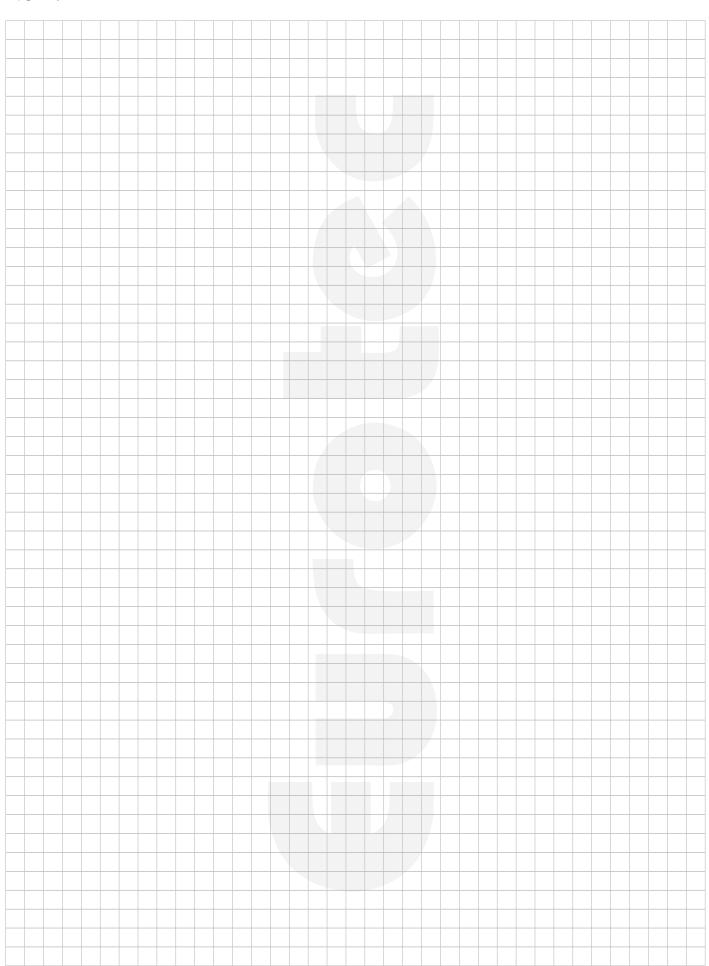




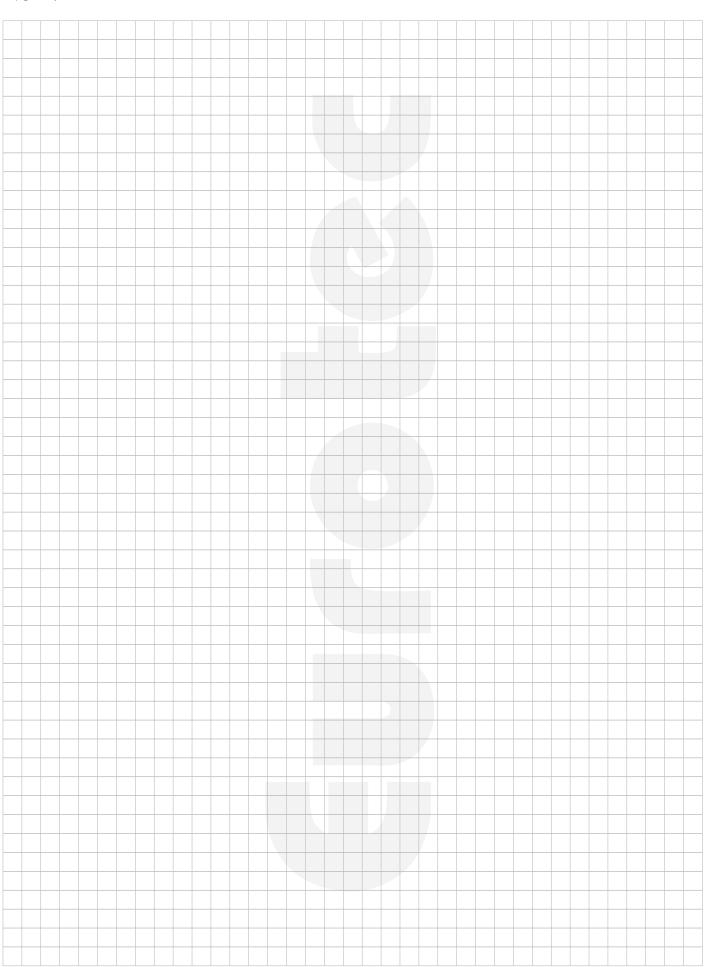


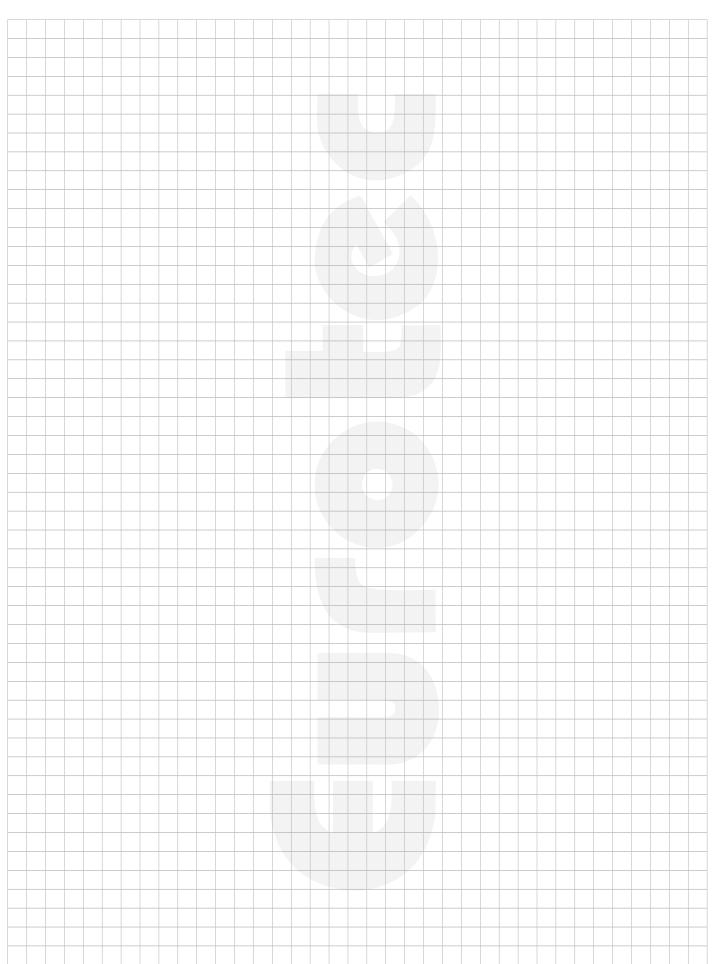




# **Eurotec**° | Viti per legno


### INDICE ANALITICO







# **Eurotec**° | Viti per legno





# **Eurotec**° | Viti per legno







Editor e. E.J. to. Tec GmbH - Versione 09/2025
Solvo errori, ivi compress modifiche e integrazioni teoriche, riguardo il contenuto.
Tutte le dimensioni sono approssimative Solvo errori e differenza di modello e cidore.
Non rispondamo di eventuali errori di stumba La inproduzione (and e solo di estratti) è consentita esclusionmente previ

**E.u.r.o.Tec GmbH**Unter dem Hofe 5 · D-58099 Hagen
Tel. +49 2331 62 45-0
Fax +49 2331 62 45-200
E-mail info@eurotec.team

Seguiteci







