

NOTRE GAMME VIS POUR CONSTRUCTIONS EN BOIS

SOMMAIRE

INFORMATIONS DE BASE		AUTRES VIS	
Vis à bois pour projets de construction		Hobotec	166–171
en bois individuels	4–5	EcoTec	172–176
Nos productions	6–7	Vis d'assemblage LBS	177-179
Assurance de la qualité		Vis d'assemblage bois-béton	180–183
La structure d'une vis à bois	12–13	Vis pour équerre	
Matériau et revêtement	14–19	Vis de forage à ailettes	
Distances minimales de vis	20–25	Vis d'écartement/Mini	
		Justitec	
		OSB Fix	
PANELTWISTEC		Vis pour ancre de transport	
Paneltwistec AG	30–41	Vis de connexion de poteaux	
Paneltwistec galvanisée bleu/jaune		,	
Paneltwistec Acier inoxydable trempé			
Paneltwistec Acier inoxydable A4/A2	60-71	ACCESSOIRES	
Paneltwistec 1000	72-77	Limiteur de couple	201-205
TK AG Stronghead		Visseuse	
TK 7 to on ongredamining	, 0 0 1	V135E03E	204–203
Tige filetée BRUTUS	82–83	ÉTAGÈRE DE VENTE	206–207
VIS À FILETAGE COMPLET KONSTRTUX KonstruX ST, galvanisée	88–91		
Exemples d'application			
Tableaux techniques			
Construction à ossature bois avec KonstruX ST			
KonstruX DUO			
KonstruX, 13 mm E12	134–139		
SAWTEC	140–144		
VIS EN BANDE	1.45.1.40		
Paneltwistec, acier galvanisé bleu			
Paneltwistec, acier inoxydable trempé			
HBS, vis à bois universelle			
Paneltwistec, acier galvanisé bleu	150–151		
TOPDUO	152–159		
VIS SYSTÈME BLUE-POWER	160–165		

DIFFÉRENTES VIS À BOIS POUR DES PROJETS DE CONSTRUCTION EN BOIS INDIVIDUELS

La construction en bois professionnelle requiert des solutions de fixation sophistiquées satisfaisant aux exigences les plus rigoureuses, autant au niveau de la qualité qu'à celui de la polyvalence. C'est ici que séduisent les vis à bois pour l'utilisation individuelle que vous trouvez dans notre vaste gamme de vis. Nous proposons à nos clients un grand choix de vis et, par là même, la solution idéale pour toute construction en bois – que ce soit pour la construction de bâtiments complexes à plusieurs étages, de maisons en bois, de clôtures, de halles industrielles, de revêtements de plafonds ou pour les structures de toit.

Une des caractéristiques remarquables des vis à bois d'Eurotec est le grand choix de dimensions et de types de vis qui sont disponibles pour différentes applications dans la construction en bois. Que vous ayez besoin p. ex. de vis pour panneaux d'agglomérés pour des assemblages précis de panneaux de bois, de vis à filet complet pour des fixations robustes et sûres dans des pièces rapportées ou encore de vis spéciales pour la construction de toits – vous trouverez dans ce catalogue la vis qui vous convient pour de tels projets. Nous disposons également de vis à bois en bande. Nos vis se distinguent par différentes spécificités qui définissent leur performance et leur fiabilité. Vous pouvez p. ex. faire votre choix parmi un grand nombre de dimensions, de têtes (formes), de pointes ou de filets. Pour satisfaire aux exigences individuelles des projets de construction en bois, les vis à bois sont disponibles en différentes duretés et avec différents revêtements.

Un autre aspect important est l'Évaluation Technique Européenne qu'a obtenue une grande partie de nos vis. Cette certification confirme la conformité des vis avec les standards européens les plus rigoureux pour des produits de construction et garantit leur excellente performance et sécurité.

Nous misons sur une excellente qualité et des solutions faites sur mesure pour vous et vos projets. Avec les produits que nous avons sélectionnés, nous mettons à votre disposition une vaste gamme pour que vous puissiez réaliser des structures sûres, stables et robustes avec les vis à bois requises.

NOS PRODUCTIONS

Quelles que soient vos exigences, nous sommes en mesure de tout vous livrer nous-mêmes. Dans notre production, nous utilisons différents procédés tels que la technique de découpage et de découpage/cambrage, le formage à froid, le moulage par injection et la technique d'extrusion. Les vis d'une longueur maximale de 3 000 mm sont fabriquées sur des machines entièrement automatiques.

PRODUCTIONS

- Vis de 40–4000 mm, avec un diamètre de 3 à 14 mm
- · Filetage simple, double ou réduit
- · Pointes fraisantes
- · Différents matériaux
- · Différents revêtements
- · Souhaits individuels des clients

TRAITEMENT DE SURFACE

Du zinc au revêtement galvanisé bleu pour une performance à long terme dans les secteurs exposés aux intempéries (C4 – C5).

RESPECT DE L'ENVIRONNEMENT

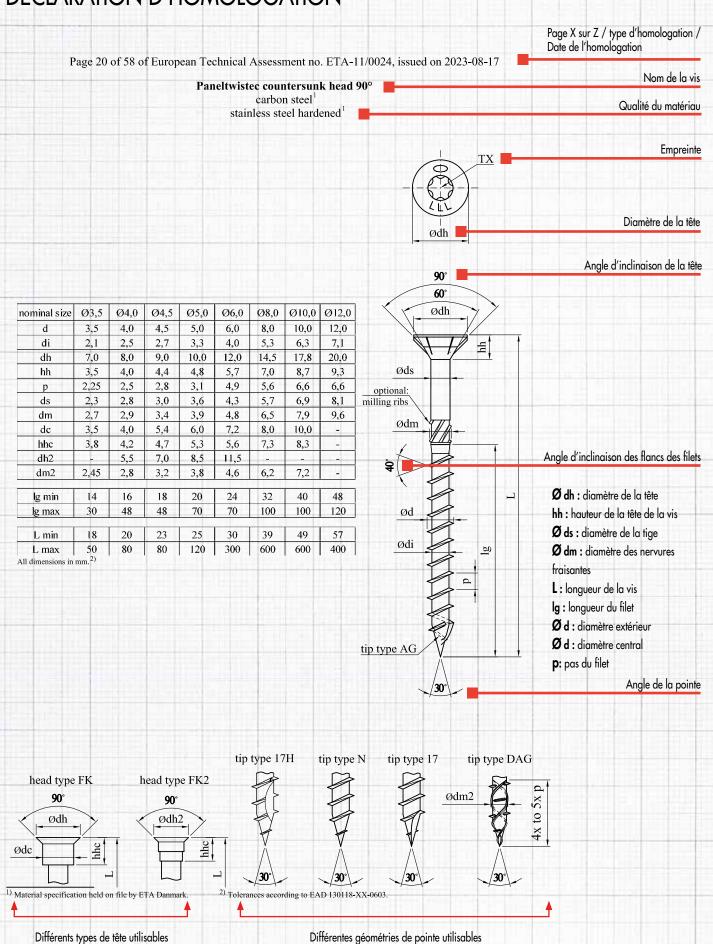
Pas d'huile sur le sol, pas d'émissions de gaz polluants dans l'atmosphère, production d'électricité sur notre propre toit. Nous nous engageons à respecter les dispositions réglementaires et administratives dans un cadre économique et à promouvoir une action respectueuse de l'environnement.

ASSURANCE QUALITÉ

Notre objectif premier est de proposer à nos clients des produits et services sans défaut et de garantir le respect des délais à 100 %. Nous attendons de chacun de nos collaborateurs un engagement sans faille pour la qualité. La formation et le développement d'une réflexion et d'une action axées sur les clients et sur la qualité sont toujours au premier plan.

Nous nous engageons à respecter les exigences réglementaires et administratives dans un cadre économique tout en promouvant une action respectueuse de l'environnement.

Nous sommes fiers de pouvoir proposer une certification ETA pour presque tous nos produits dans le segment bois, façades et béton. Il va de soi que notre service assurance qualité contrôle tous les jours si les lots produits sont conformes aux standards, par exemple aux signes, à la fonctionnalité, à l'aspect visuel et s'ils respectent les exigences spécifiques des clients.


C'est le seul moyen pour nous de nous assurer que nous livrons toujours à nos clients les produits de qualité supérieure auxquels ils sont habitués.

LA QUALITÉ EST LE FONDEMENT DE TOUTES NOS ACTIVITÉS.

DÉCLARATION D'HOMOLOGATION

CERTIFICATIONS

L'Évaluation Technique Européenne ETE (ou ETA - European Technical Assessment - ETA) est la preuve de la performance d'un produit qui débouche sur le marquage CE et permet la commercialisation de produits dans tout l'Espace Économique Européen, en Suisse et en Turquie, souvent même dans le monde entier.

Il est possible de solliciter une ETA pour tout produit de construction qui n'est pas couvert par une norme harmonisée ou ne l'est pas complètement. Contrairement à la norme harmonisée, l'ETA peut être ajustée à chaque produit. Par ailleurs, il est possible de documenter dans l'ETA des caractéristiques de performance qui font défaut dans les normes harmonisées existantes.

La plus grande portée géographique de l'ETA s'avère être plus avantageuse que l'homologation nationale. Dans le cas d'un certificat ETA, il faut cependant toujours mettre en cohérence la performance avérée et les exigences nationales auxquelles doit satisfaire l'ouvrage.

ETA-11/0024 – Vis pour structures en bois porteuses

Vis à filetage partiel et complet pour les applications bois-bois et les fixations acier-bois, fixation de systèmes d'isolation sur chevrons, redoublement de poutres, fixation de poutres maîtresses/poutres auxiliaires, renforts transversaux (traction et pression), etc. dans le bois de résineux (bois de sciage, bois de construction, lamel-lé-collé, lamellé-croisé (CLT), placage stratifié), placage stratifié de hêtre et différents autres matériaux dérivés du bois.

ETA-16/0864 – Vis pour structures d'assemblage bois-béton

Les vis d'assemblage bois-béton TCC-II 7,3 et TCC-II 8 sont des vis spéciales à filetage partiel, utilisées pour l'assemblage souple de structures porteuses de plaques de béton et de structures porteuses de bois composées de poutres ou de panneaux. Les vis d'assemblage sont utilisées dans la rénovation de plafonds à poutres et dans la construction de structures porteuses hybrides bois-béton.

LA STRUCTURE D'UNE VIS À BOIS De l'empreinte à la pointe

Nervures fraisantes

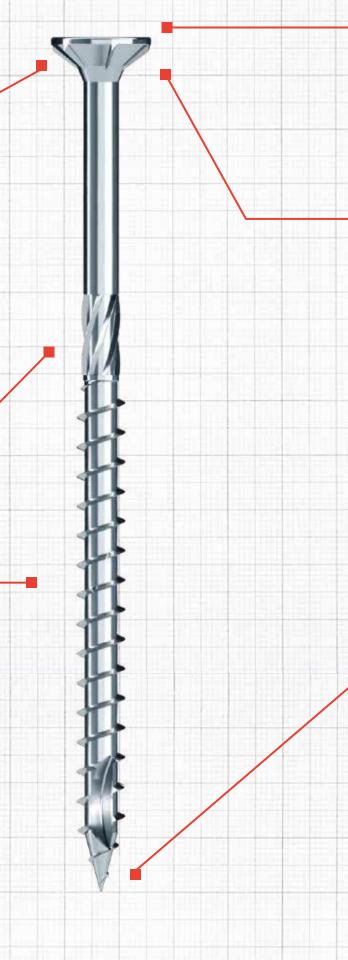
Pour enfoncer facilement la vis dans tous les types de bois

Moletage

Pour fraiser préalablement le bois pour la tige

Types de filet

STRACTOR STREET



Filetage double - maintient la distance entre les éléments en bois

Filetage complet – pour l'absorption de forces de traction et de pression élevées

Filetage partiel – pour un assemblage par friction de plusieurs éléments en bois

12

Empreinte TX

- · Pas de coups sur les vis lors du vissage
- · Transmission de couple élevée

Formes de tête

Tête fraisée

- · Disparaît dans le bois
- · À fleur avec la surface

Embase

Accroît la surface de contact, ainsi les valeurs de pénétration de la tête peuvent être plus élevées

Tête décorative

- · Petite tête discrète
- · Idéale pour vissages visibles

Bonne transmission de force même avec

Tête cylindrique

- Disparaît dans le bois
- Tête discrète pour vis à double filetage et à filetage complet

Tête hexagonale

une force de serrage élevée

Pointes de vis

· Vissage simple et rapide

- · Couple de vissage réduit
- · Effet de fendillement réduit

DAG

- · Couple de vissage réduit
- · Fendillement réduit
- · Meilleur « mordant » de la vis

Pointe de forage

- Couple de vissage réduit
- Aucune nécessité de pré-perçage

MATÉRIAU ET REVÊTEMENT

Aperçu général

Eurotec mise sur des matériaux et des revêtements d'excellente qualité pour garantir une robustesse et une résistance à la corrosion dans le long terme. Ces propriétés revêtent une importance déterminante car elles prolongent la durée de vie de moyens de fixation et améliorent leur performance dans différents domaines d'utilisation – pour des assemblages robustes dans le cadre de projets de construction en bois jusqu'aux applications industrielles.

Acier au carbone trempé + galvanique, galvanisé bleu/jaune

- · Utilisable dans les classes d'utilisation 1 et 2 selon la norme DIN EN 1995 (eurocode 5)
- · Bonne résistance aux sollicitations mécaniques
- · Ne convient pas aux bois contenant des tanins

Acier au carbone trempé + revêtement spécial 1000 ou Acier au carbone trempé, revêtement noir

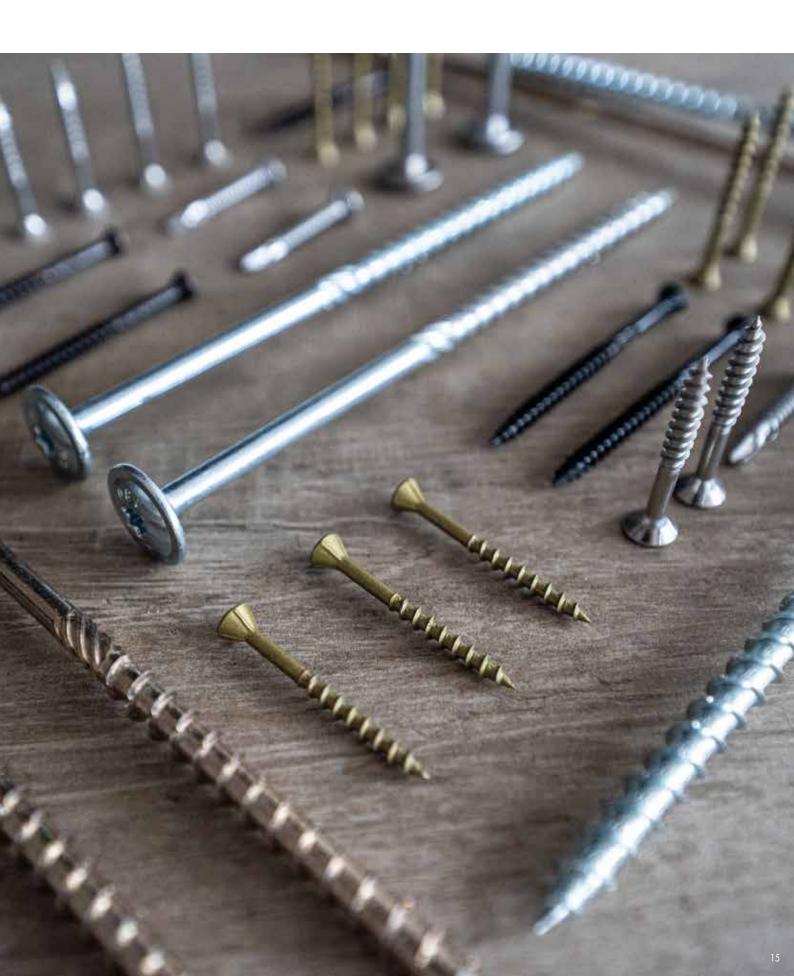
- · Utilisable dans les classes d'utilisation 1 et 2 selon la norme DIN EN 1995 (eurocode 5)
- Résiste à l'essai au brouillard salin pendant 1 000 heures maximum conformément à la norme DIN EN ISO 9227 NSS
- · Catégorie de corrosivité C4 longue / C5-M longue selon la norme DIN EN ISO 12944-6
- · Bonne résistance aux sollicitations mécaniques
- · Ne convient pas aux bois contenant des tanins

Acier inoxydable trempé

- · Acier inoxydable selon la norme DIN 10088 (magnétisable)
- · Résistant aux acides sous certaines réserves
- · 10 ans d'expérience sans problème de corrosion sur des bois appropriés
- · Couple de rupture supérieur de 50 % à celui de A2 et A4
- · Utilisable dans les classes 1, 2 et 3
- Ne convient pas aux bois contenant de nombreux tanins comme le cumaru, le chêne, le merbau, le robinier, etc.
- Ne convient pas aux milieux salins et chlorés

Acier inoxydable A2

- · Convient sous certaines réserves aux milieux salins
- · Résistant aux acides sous certaines réserves
- · Ne convient pas aux milieux chlorés
- Utilisable dans les classes 1, 2 et 3
- · Ne convient pas aux bois contenant de nombreux tanins



Acier inoxydable A4

- · Convient aux bois contenant des tanins
- · Convient aux milieux salins
- · Résistant aux acides
- · Utilisable dans les classes 1, 2 et 3
- Ne convient pas aux milieux chlorés

SYSTÈMES DE REVÊTEMENT ORIENTÉS SUR LA PRATIQUE POUR LES VIS À BOIS

La durée de vie estimée pendant laquelle les vis à bois dans la construction à bois doivent résister en cas d'utilisation dans les règles de l'art est de 50 ans. Pour les structures dont la durée d'utilisation prévue est plus courte ou pour les éléments de construction qui peuvent être remplacés, il est possible de tenir compte de catégories supplémentaires T3 (15) et C4 (15) pour une durée de vie attendue de 15 ans en cas d'utilisation de revêtements alternatifs.

Plusieurs facteurs à respecter existent pour définir quelle est la vis adéquate et quand c'est le cas.

Premier facteur : ce sont les classes d'utilisation qui décrivent quelle sera l'humidité du bois (humidité de compensation) d'un élément en bois sur une période prolongée dans un environnement donné (en plein air, pièces sèches à l'intérieur, etc.).

CLASSES D'UTILISATION

NKL

NKL 2

NKL:

NKL 1-2

NKL 1–3

Le deuxième facteur est la catégorie C qui décrit la corrosivité causée par différents environnements atmosphériques (ville, campagne, industrie, proximité de la côte, etc.). Les classes CRC (classes de résistance à la corrosion) s'appliquent aux aciers inoxydables, et non la catégorie C.

CATÉGORIE C

C2

C3

C4

C5

CRC II

CRC III

CRC IV

CRC V

Le troisième facteur est la catégorie T qui décrit la corrosion causée par le bois (type de bois, traitement protecteur, etc.).

CATÉGORIE T

T2

T3

T4

T5

CLASSES – SELON L'EUROCODE 5 EN 1995-1-1:2010-12

Les classes d'utilisation (NKL) indiquent le positionnement de l'élément en bois dans une structure en ce qui concerne son éventuelle humidification ou encore l'humidité de compensation que l'on constatera sur une période prolongée dans l'élément en bois ainsi positionné. L'humidité de compensation attendue est déterminée via l'humidité relative de l'air, la température et la durée d'action.

Selon l'acier dont est composée la vis (acier au carbone revêtu ou acier inoxydable), une vis à bois ne peut être utilisée dans les structures porteuses que dans les classes d'utilisation 1 et 2 ou dans les trois classes. Dans la plupart des cas, nous indiquons NKL 1 – 2, ce qui signifie que les deux premières classes conviennent ou NKL 1 – 3, ce qui signifie que les trois classes sont correctes.

À l'aide du tableau suivant, vous pouvez déterminer la classe d'utilisation correcte sur la base des facteurs cités et choisir la vis qui convient à chaque situation.

Classe d'utilisation	Lieu	Humidité de l'air		Humidité du bois	
		Moyenne annuelle Valeur max.		Moyenne annuelle	Valeur max.
NKL 1	Intérieur	50 %	65 %	10 %	12 %
NKL 2	Extérieur, protégé de manière constructive	75 %	85 %	16 %	20 %
NKL 3	Extérieur, sans protection	85 %	95 %	18 %	24 %

CATÉGORIES C – SELON LA NORME DIN EN 14592:2022

La catégorie C décrit la catégorie de corrosion atmosphérique pour les vis avec revêtement en zinc, revêtement galvanisé à chaud et revêtements alternatifs. En conséquence, elle est déterminante pour la partie de la vis qui n'est pas vissée dans le bois. Donc pour la tête de la vis dans la majorité des cas. L'effet de l'atmosphère sur la corrosion dépend de l'humidité relative de l'air, de la pollution de l'air, de la teneur en chlorures (teneur en sel dans l'air) et de l'exposition ou non-exposition de l'assemblage aux intempéries. À l'aide du tableau suivant, vous pouvez déterminer la catégorie C correcte sur la base des facteurs cités et choisir la vis qui convient à chaque situation.

Caté	gorie Atmosphère	Climat / humidité de l'air	Exposition aux chlorures	Exposition aux polluants		
			Environnement typique	Taux de déposition de chlorures [mg/m² x d]¹	Environnement typique	Niveau de la pollution - teneur en SO2 [µg/m³]
(1	sans importance	sec / faible humidité de l'air	Régions éloignées de la ligne côtière	~ 0	Pièces chauffées	~0
C2	faible	modéré / condensation rare	distance > 10 km de la ligne côtière	≤3	Régions rurales peu polluées, petites villes	<5
C3	moyen	modéré / condensation occasionnelle	distance 10 km — 3 km de la ligne côtière	3 – 60	Ville moyennement polluée et zones industrielles	5 – 30
C 4	fort	modéré / condensation fréquente	distance 3 km $-$ 0,25 km de la ligne côtière (sans brouillard)	60 – 300	Ville fortement polluée et zones industrielles	30 – 90
C5	très fort	modéré, subtropical / durablement : condensation très fréquente	$\label{eq:distance} \mbox{distance} < 0,\!25 \mbox{ km de la ligne côtière, brouillard occasion-nel, condensation fréquente}$	300 – 1 500	Environnement avec très forte pollution industrielle	90 – 250

CATÉGORIES CRC SELON LA NORME DIN EN 1993-1-4: 2015-10

La catégorie CRC décrit la classe de résistance à la corrosion atmosphérique pour l'acier inoxydable. En conséquence, elle est déterminante pour la partie de la vis qui n'est pas vissée dans le bois. Donc pour la tête de la vis dans la majorité des cas. Elle s'oriente sur le facteur de résistance à la corrosion CRF qi décrit le risque d'exposition et, par là même, la distance par rapport à la ligne côtière, ceci sur la base de la teneur en chlorures dans l'atmosphère.

Il a été affecté à nos vis en acier inoxydable, en plus de la catégorie CRC, une catégorie C, pour permettre une comparaison directe entre les vis inoxydables et les vis revêtues Dans ce cas, cette valeur C ne doit être considérée qu'avec prise en compte de la teneur en chlorures. Étant donné que nos aciers inoxydables sont à affecter aux catégories CRC II et CRC III, nous les expliquerons dans le tableau ci-dessous.

Classe de résistance à la corrosion CRC	Classe de résistance à la corrosion CRC	Risque d'exposition	Distance par rapport à la mer
CRCI	1	Pièces intérieures	
CRCII	0 à -7	faible à élevé	> 0,25 km
CRCIII	-7 à -15	élevé à très élevé	≤ 0,25 km
CRC IV	-15 à -20	très élevé	≤ 0,25 km
CRC V	< - 20	très élevé	≤ 0,25 km

ATMOSPHÈRE DE PISCINE

Dans le cas des métaux, le chlore dans l'atmosphère peut entraîner une corrosion sous tension. Pour éviter ce risque, les éléments de construction porteurs doivent uniquement être en acier inoxydable. Vous trouverez dans le tableau ci-dessous la catégorie CRC que vous devez utiliser dans une situation donnée.

Éléments porteurs dans une atmosphère de piscine	Classe CRC requise
Éléments porteurs qui sont nettoyés régulièrement 1)	CRC III, CRC IV
Éléments porteurs qui ne sont pas nettoyés régulièrement	CRC V
Toutes les pièces de fixation, moyens de connexion, pièces filetées	CRC V

¹⁾ Plus le nettoyage est fréquent, plus il est avantageux. L'intervalle entre les nettoyages ne devrait pas dépasser une semaine. Un plan de nettoyage et de contrôle précis doit toujours être vérifié par un expert en fonction de la situation. Une fois fixé, le nettoyage devrait s'appliquer à tous les éléments de l'ouvrage et pas seulement à ceux qui sont d'accès facile et bien visibles.

CATÉGORIES T SELON LA NORME DIN EN 14592:2022

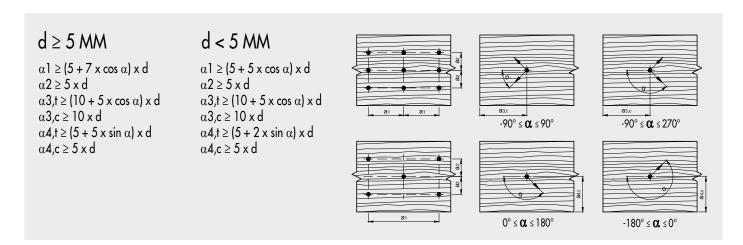
La catégorie T décrit la corrosion causée par le bois. Elle ne concerne donc que la partie de la vis qui est vissée dans le bois. L'effet de la corrosion causée par le bois dépend de l'humidité, du type de bois, du pH et du traitement protecteur. À l'aide de la valeur d'humidité, il est possible d'affecter approximativement les classes T aux classes d'utilisation. Dans la plupart des zones climatiques, le taux d'humidité annuel moyen dans le bois tendre ne dépasse pas les valeurs suivantes :

 ω = 10 % dans les secteurs chauffés \rightarrow T1 est à affecter approximativement à la classe d'utilisation 1

 ω = 16 % dans les secteurs non chauffés, mais protégés par des mesures constructives \rightarrow T2 est à affecter approximativement à la classe d'utilisation 2 ω = 20 % dans les secteurs exposés à la pluie mais sans contact avec le sol \rightarrow T3 et T4 sont à affecter approximativement à la catégorie d'utilisation 3

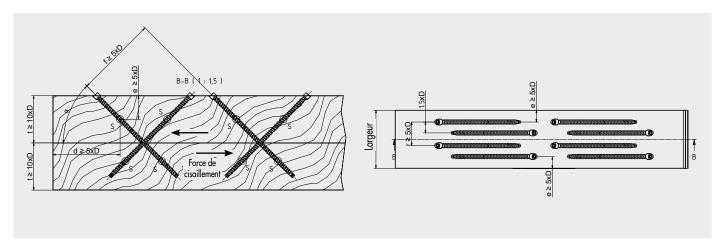
 ω > 20 % T5 s'applique à toutes les autres structures qui sont à affecter à la classe d'utilisation 3

À l'aide du tableau suivant, vous pouvez déterminer la catégorie T correcte sur la base des facteurs cités et choisir la vis qui convient à chaque situation.


Catégorie de bois	Taux d'humidité annuel moyendes	Types de bois selon le pH	Exemples de types de bois	Traitement protecteur
TI	ω<10	Tous	Tous	Non traité et traité
T2	10 ≤ ω ≤16 %	Tous	Tous	Non traité et traité
T3	$16 < \omega \le 20 \%$	pH > 4	Mélèze, pin, bouleau, épicéa, sapin	Non traité
T4	$16 < \omega \le 20 \%$	pH ≤ 4	Chêne, châtaignier, cèdre rouge, sapin de Douglas, hêtre	Non traité et traité
T5	Durablement ω > 20 %	Tous	Tous	Non traité et traité

DISTANCES MINIMALES ENTRE LES VIS

Ces distances minimales entre les vis permettent de répartir régulièrement la charge et évitent que les vis soient trop proches les unes des autres, ce qui pourrait altérer l'intégrité structurelle. Ces règles peuvent être fixées dans différents standards de construction, règles de construction ou directives de conception. En respectant ces règles, il est possible de réduire les risques tels que les ruptures, les défaillances ou des déformations inattendues, ce qui permet de réaliser une structure plus sûre et plus fiable.


RÈGLES DE DISTANCE MINIMALE POUR LES CONTRAINTES DE CISAILLEMENT

Distances minimales et distances au bord des vis pour les contraintes de cisaillement et les charges axiales. Les distances minimales ci-dessous, basées sur la norme EN 1995-1-1, se réfèrent à des vis soumises à une contrainte latérale, sans pré-perçage, d'un diamètre nominal donné pour assemblages boisbois dans lesquels le bois a une densité caractéristique de 420 kg/m³ au plus. Dans les formules ci-dessous, α est l'angle entre la force et le sens des fibres du bois. Dans les assemblages acier-bois, les distances minimales a₁ et a₂ peuvent être réduites d'un facteur de multiplication de 0,7.

RÈGLES DE DISTANCE MINIMALE POUR LES CHARGES AXIALES

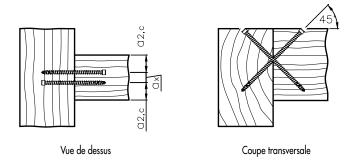
Pour les vis Eurotec dans des trous pré-percés, soumises uniquement à des contraintes axiales, et pour les vis avec pointe de forage (du type KonstruX ST), il convient de respecter conformément à ETA-11/0024 les distances minimales suivantes compte tenu d'une épaisseur minimale du matériau de t = 10 · d et d'une largeur minimale de w = max (8 · d; 60 mm). La distance entre les vis cruciformes doit être d'au moins 1,5 d.

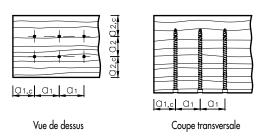
DISTANCES MINIMALES POUR CONTRAINTES DE CISAILLEMENT DANS DES TROUS PRÉ-PERCÉS

					$\alpha = 0$, fixation	n bois-bois					
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
al	15	17,5	20	22,5	25	30	33	40	50	57	65
α2	9	10,5	12	13,5	15	18	20	24	30	34	39
a3,t	36	42	48	54	60	72	78	96	120	136	156
a3,c	21	24,5	28	31,5	35	42	46	56	70	79	91
a4,t	9	10,5	12	13,5	15	18	20	24	30	34	39
a4,c	9	10,5	12	13,5	15	18	20	24	30	34	39
					$\alpha = 90$, fixatio	n bois-bois					
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
al	12	14	16	18	20	24	26	32	40	45	52
α2	12	14	16	18	20	24	26	32	40	45	52
a3,t	21	24,5	28	31,5	35	42	46	56	70	79	91
a3,c	21	24,5	28	31,5	35	42	46	56	70	79	91
a4,t	15	17,5	20	22,5	35	42	46	56	70	79	91
a4,c	9	10,5	12	13,5	15	18	20	24	30	34	39
formation : pour une fixation acier-bois, vous devez simplement multiplier les valeurs par 0,7.											

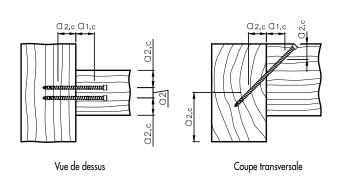
DISTANCES MINIMALES POUR CONTRAINTES DE CISAILLEMENT SANS TROUS PRÉ-PERCÉS

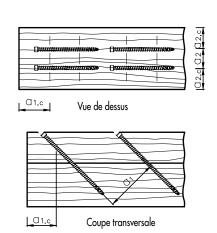
					$\alpha = 0$, fixation	n bois-bois					
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
$\mathfrak{a}_{\mathfrak{l}}$	30	35	40	45	60	72	78	96	120	136	156
\mathfrak{a}_2	15	17,5	20	22,5	25	30	33	40	50	57	65
A3 _{3 t}	45	52,5	60	67,5	75	90	98	120	150	170	195
A33,	30	35	40	45	50	60	65	80	100	113	130
A3 _{4 t}	15	17,5	20	22,5	25	30	33	40	50	57	65
A3 _{4 c}	15	17,5	20	22,5	25	30	33	40	50	57	65
					$\alpha = 90$, fixati	on bois-bois					
Diamètre	3	3,5	4	4,5	5	6	6,5	8	10	11,3	13
a _l	15	17,5	20	22,5	25	30	33	40	50	57	65
\mathfrak{a}_2	15	17,5	20	22,5	25	30	33	40	50	57	65
A3 _{3 t}	30	35	40	45	50	60	65	80	100	113	130
A3 _{3 c}	30	35	40	45	50	60	65	80	100	113	130
a _{4,t}	21	24,5	28	31,5	50	60	65	80	100	113	130
A3 _{4 c}	15	17,5	20	22,5	25	30	33	40	50	57	65

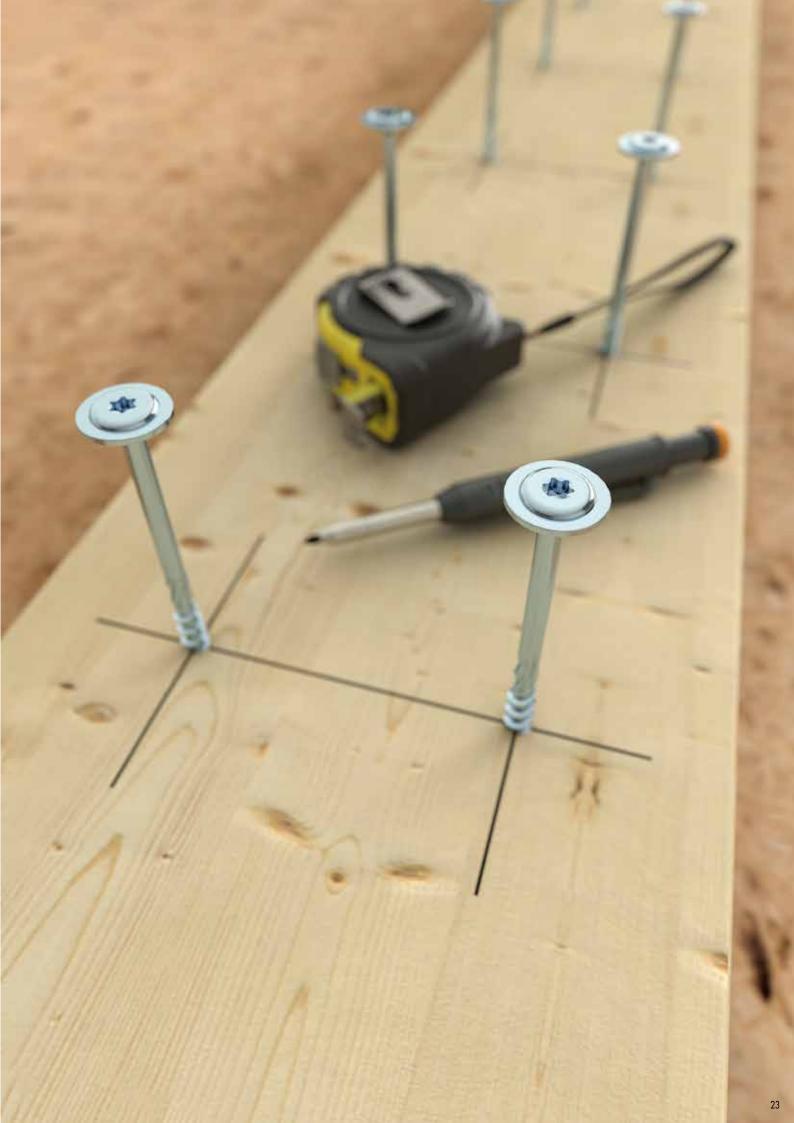

Information: pour une fixation acier-bois, vous devez simplement multiplier les valeurs par 0,7.


DISTANCES MINIMALES POUR CHARGES AXIALES

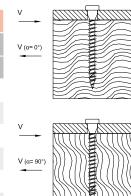
	Pointe de forage					Pointe AG					
	Avec et sans trous pré-percés			Ti	rous pré-percés		Sans trous pré-percés				
Ø [mm]	Règles relatives aux distances	6,5	8	10	Règles relatives aux distances	11,3	13	Règles relatives aux distances	11,3	13	
a _l	5 · d	33	40	50	5 · d	57	65	5 · d	57	65	
\mathfrak{a}_2	5 · d	33	40	50	5 · d	57	65	5 · d	57	65	
\mathbf{a}_{2red}	2,5 · d	16	20	25	2,5 · d	29	33	2,5 · d	29	33	
A3 _{1 c}	5 · d	33	40	50	5 · d	57	65	5 · d	113	130	
A3 _{2 c}	$3\cdot d$	20	24	30	$3\cdot d$	34	39	$3\cdot d$	46	52	
a_{1x}	1,5 · d	10	12	15	1,5 · d	17	20	1,5 · d	17	20	


VIS DISPOSÉES EN CROIX SOUS CONTRAINTE DE TRACTION




VIS PERPENDICULAIRES À LA VEINE DU BOIS

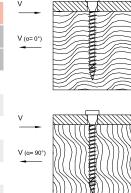
VIS EN BIAIS PAR RAPPORT À LA VEINE DU BOIS SOUS CONTRAINTE DE TRACTION, ANGLE α


CAS SPÉCIAUX

CLOUS D'ANCRAGE

ST	Clou	α = 0 °				
ρ k ≤ 420 kg/m ³	Pré- _l	percé	No	Non pré-percé		
pk ≥ 420 kg/III	x d	4	x d		4	
aı	3,5	3,5 14			28	
\mathfrak{a}_2	2,1 9		3,5		14	
A3 _{3 t}	12	48	15		60	
A3 _{3 c}	7	28	10		40	
a _{4,t}	3	12	5		20	
A3 _{4 c}	3	12	5		20	

ST	Clou	s d'ancrage		α = 90 °	
ρ k ≤ 420 kg/m ³	Pré- _l	oercé	Non pré-percé		
ρκ ≥ 420 kg/III ²	x d	4	х	4	
\mathfrak{a}_1	2,8	11	3,5	14	
\mathfrak{a}_2	2,8	11	3,5	14	
A3 _{3 t}	7	28	10	40	
A33,	7	28	10	40	
$\mathfrak{a}_{4,t}$	5	20	7	28	
A3 _{4 c}	3	12	5	20	

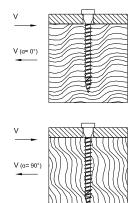


VIS POUR ÉQUERRE



ST	WBS			$\alpha = 0$ °	
ρ k ≤ 420 kg/m ³	Pré- _l	oercé	Non pré-percé		
pk ≥ 420 kg/III°	x d	5	x d	5	
\mathfrak{a}_1	3,5	18	8,4	42	
\mathfrak{a}_2	2,1	11	3,5	18	
A3 _{3 t}	12	60	15	75	
A3 ₃ ,	7	35	10	50	
a _{4,1}	3	15	5	25	
A3 _{4 c}	3	15	5	25	

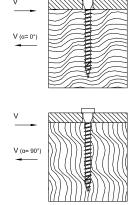
ST		WBS		α = 90°		
ρ k ≤ 420 kg/m ³	Pré- _l	percé	Non pré-percé			
ρk ≥ 420 kg/III°	x d	5	x d	5		
aı	2,8	14	3,5	18		
\mathfrak{a}_2	2,8	14	3,5	18		
A3 _{3†}	7	35	10	50		
A3 _{3 c}	7	35	10	50		
a _{4,†}	7	35	10	50		
A3 _{4 c}	3	15	5	25		

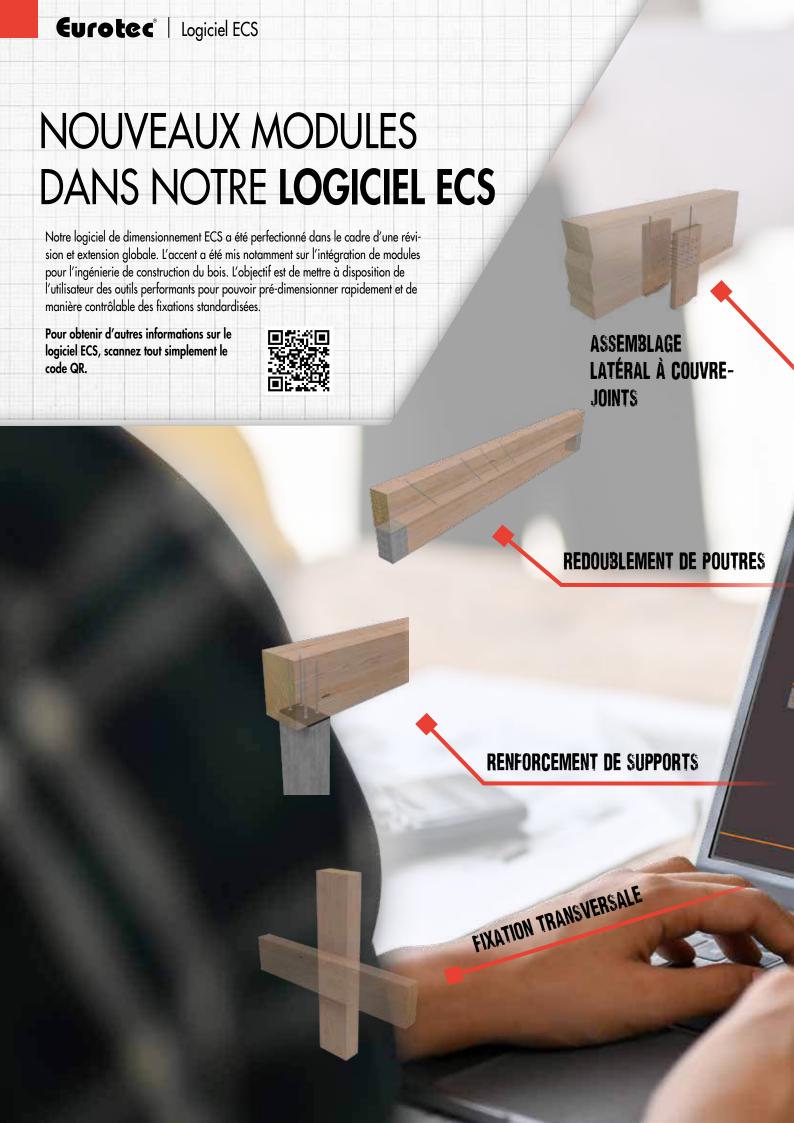


VIS POUR ÉQUERRE STRONG

ST		WBS	α = 0 °			
- le - 2 400 less /ss-3	P	ré-perc	é	Nor	n pré-pe	ercé
ρ k \leq 420 kg/m ³	x d	8	10	x d	8	10
aı	3,5	28	35	8,4	67	84
\mathfrak{a}_2	2,1	17	21	3,5	28	35
A3 _{3 t}	12	96	120	15	120	150
A3 _{3 c}	7	56	70	10	80	100
a _{4,t}	3	24	30	5	40	50
A3 _{4 c}	3	24	30	5	40	50

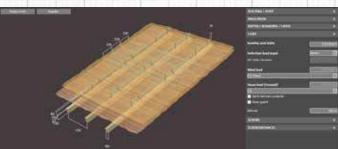
ST		WBS S	α = 90 °					
ρ k ≤ 420 kg/m ³	P	ré-perc	é	Non pré-percé				
ρk ≤ 420 kg/111°	x d	8	10	x d	8	10		
aı	2,8	22	28	3,5	28	35		
\mathfrak{a}_2	2,8	22	28	3,5	28	35		
A3 _{3†}	7	56	70	10	80	100		
A3 _{3 c}	7	56	70	10	80	100		
a _{4,t}	7	56	70	10	80	100		
A3 _{4 c}	3	24	30	5	40	50		

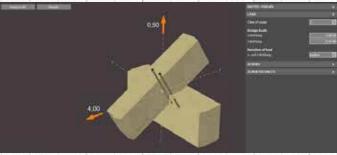



VIS POUR ÉQUERRE ZK HARDWOOD

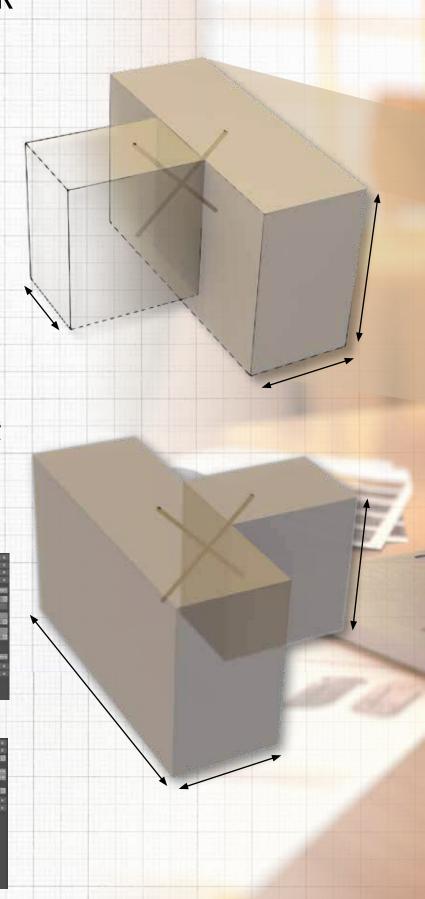
ST		WBS ZK H	α = 0 °				
ρ k	Pré-	percé		é-percé : 420	Non pré-percé ρk ≤ 500		
[kg/m³]	x d	5,6	x d	5,6	x d	5,6	
\mathfrak{a}_{l}	3,5	20	8,4	47	10,5	59	
\mathfrak{a}_2	2,1	12	3,5	20	4,9	27	
A3 _{3 t}	12	67	15	84	20	112	
A33c	7	39	10	56	15	84	
a _{4,t}	3 17		5	28	7	39	
A3 _{4 c}	3	17	5	28	7	39	

ST		WBS ZK I	α = 90 °				
ρ k	Pré-	percé	Non pr	é-percé : 420	Non pré-percé		
[kg/m³]	x d	5,6	x d	5,6	x d	5,6	
\mathfrak{a}_{l}	2,8	16	3,5	20	4,9	27	
\mathfrak{a}_2	2,8	16	3,5	20	4,9	27	
A3 _{3 t}	7	39	10	56	15	84	
A33c	7	39	10	56	15	84	
a _{4,t}	7	39	10	56	12	67	
a _{4 c}	3	17	5	28	7	39	



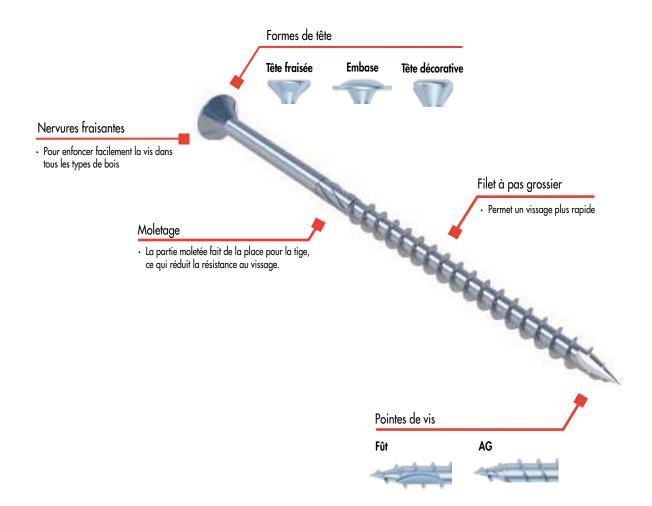

APPRENEZ-EN PLUS SUR NOTRE LOGICIEL ECS

Le logiciel ECS est un logiciel gratuit et convivial permettant de dimensionner au préalable les vis à bois d'Eurotec. Les modules portent sur les assemblages de poutres maîtresses et poutres auxiliaires, les renforts transversaux (traction et pression), les assemblages chevrons-pannes, les fixations de systèmes d'isolation sur toitures et façades ainsi que de nombreuses autres fonctions.


- Le logiciel vous permet d'adapter complètement votre assemblage individuel en modifiant des paramètres tels que la géométrie, le type de matériau (p. ex. lamellé-collé BSH et bois massif dans différentes classes de résistance), les limites de charge (charges variables et permanentes), la classe de sollicitation et plus, en fonction de vos besoins.
- Il permet par ailleurs d'optimiser la solution de fixation en ajustant le diamètre de la vis et la longueur de la vis et en vérifiant le facteur d'utilisation de la résistance affiché en bas à droite de l'écran.
- Une fois que vous avez sélectionné la solution d'assemblage, vous obtiendrez un rapport de calcul conformément à ETA-11/0024 et EN 1995 (eurocode 5), y compris les dessins correspondants au format PDF.

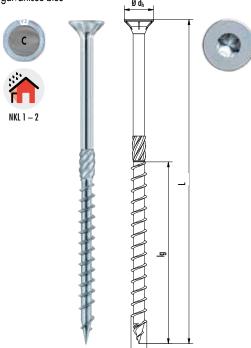
Module de fixation de matériaux d'isolation sur les chevrons avec Topduo

Module d'assemblage chevrons-pannes avec Paneltwistec et KonstruX



PANELTWISTEC

La vis Paneltwistec est une vis à bois avec pointe spéciale et nervures fraisantes au-dessus du filet. La fente de fraisage à la pointe de la vis permet un mordant rapide et un moindre fendillement lors du vissage. En revanche, Paneltwistec AG dispose d'un pas de filet rabattu qui réduit la résistance au vissage. Les vis à bois Paneltwistec sont disponibles avec tête fraisée, tête décorative et embase, en acier à carbone revêtu et dans différents aciers inoxydables.



PANELTWISTEC AG, TÊTE FRAISÉE

Paneltwistec AG

Tête fraisée, pointe AG, galvanisée bleu

N° de réf.	Ød[mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945436	3,5	30	7,0	18	TX15 ●	1000
945838	3,5	35	7,0	21	TX15 •	1000
945437	3,5	40	7,0	24	TX15 •	1000
945490	3,5	50	7,0	30	TX15 ●	500
945491	4,0	30	8,0	18	TX20 -	1000
945836	4,0	35	8,0	21	TX20 -	1000
945492	4,0	40	8,0	24	TX20 -	1000
945493	4,0	45	8,0	27	TX20 -	500
945494	4,0	50	8,0	30	TX20 -	500
945495	4,0	60	8,0	36	TX20 -	200
945496	4,0	70	8,0	42	TX20 -	200
945497	4,0	80	8,0	48	TX20 •	200
945498	4,5	40	9,0	24	TX25 •	500
945588	4,5	45	9,0	27	TX25 ●	500
945499	4,5	50	9,0	30	TX25 •	500
945567	4,5	60	9,0	36	TX25 •	200
945568	4,5	70	9,0	42	TX25 •	200
945569	4,5	80	9,0	48	TX25 •	200
945574	5,0	40	10,0	24	TX25 •	200
945574-TX40*	5,0	40	9,5	24	TX40 •	200
945837	5,0	45	10,0	27	TX25 •	200
945575	5,0	50	10,0	30	TX25 •	200
945575-TX40*	5,0	50	9,5	30	TX40 •	200
945576	5,0	60	10,0	36	TX25 •	200
945576-TX40*	5,0	60	9,5	36	TX40 •	200
945577	5,0	70	10,0	42	TX25 •	200
945577-TX40*	5,0	70	9,5	42	TX40 •	200
945578	5,0	80	10,0	48	TX25 •	200
945578-TX40*	5,0	80	9,5	48	TX40 •	200
945579	5,0	90	10,0	54	TX25 •	200
945579-TX40*	5,0	90	9,5	54	TX40 •	200
945580	5,0	100	10,0	60	TX25 •	200
945580-TX40*	5,0	100	9,5	60	TX40 •	200
945581	5,0	120	10,0	70	TX25 •	200
945600	5,0	50	10,0	30	TX30 •	200*
945601	5,0	60	10,0	36	TX30 •	200°
945602	5,0	70	10,0	42	TX30 •	200*
945603	5,0	80	10,0	48	TX30 •	200°
945604	5,0	90	10,0	54	TX30 •	200*
945605	5,0	100	10,0	60	TX30 •	200°
945607	5,0	120	10,0	70	TX30 •	200°
945581-TX40*	5,0	120	9,5	70	TX40 •	200
945583	6,0	60	12,0	36	TX30 •	200
945584	6,0	70	12,0	42	TX30 •	200
945632		80	12,0	48	TX30 •	200
945633	6,0	90	12,0	54		100
945634	6,0 6,0	100	12,0	60	TX30 •	100
945635		110		70		
945636	6,0		12,0		TX30 •	100 100
	6,0	120	12,0	70	TX30 •	
945637	6,0	130	12,0	70	TX30 •	100
945638	6,0	140	12,0	70	TX30 •	100
945639	6,0	150	12,0	70	TX30 •	100
945640	6,0	160	12,0	70	TX30 •	100
945641	6,0	180	12,0	70	TX30 •	100
945642	6,0	200	12,0	70	TX30 •	100
945643	6,0	220	12,0	70	TX30 •	100
945644	6,0	240	12,0	70	TX30 •	100
945645	6,0	260	12,0	70	TX30 •	100
945646	6,0	280	12,0	70	TX30 •	100
945647	6,0	300	12,0	70	TX30 •	100

*La tête peut différer de l'image.

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945630-TX40*	6,0	60	12,0	36	TX40 •	200
945631-TX40*	6,0	70	12,0	42	TX40 •	200
945632-TX40*	6,0	80	12,0	48	TX40 •	200
945633-TX40*	6,0	90	12,0	54	TX40 •	200
945634-TX40*	6,0	100	12,0	60	TX40 •	100
945636-TX40*	6,0	120	12,0	70	TX40 •	100
945638-TX40*	6,0	140	12,0	70	TX40 •	100
945640-TX40* 945641-TX40*	6,0 6,0	160 180	12,0 12,0	70 70	TX40 • TX40 •	100 100
945642-TX40*	6,0	200	12,0	70	TX40 •	100
945643-TX40*	6,0	220	12,0	70	TX40 •	100
945644-TX40*	6,0	240	12,0	70	TX40 •	100
945645-TX40*	6,0	260	12,0	70	TX40 •	100
945646-TX40*	6,0	280	12,0	70	TX40 •	100
945647-TX40*	6,0	300	12,0	70	TX40 •	100
945648	6,0	320	12,0	70	TX30 •	100
945649	6,0	340	12,0	70	TX30 •	100
945650	6,0	360	12,0	70	TX30 •	100
945651 945652	6,0	380 400	12,0 12,0	70 70	TX30 • TX30 •	100 100
944715	6,0 8,0	80	14,5	48	TX40 •	50
944716	8,0	100	14,5	60	TX40 •	50
944717	8,0	120	14,5	66	TX40 •	50
944718	8,0	140	14,5	95	TX40 •	50
944719	8,0	160	14,5	95	TX40 •	50
944720	8,0	180	14,5	95	TX40 •	50
944721	8,0	200	14,5	95	TX40 •	50
944722	8,0	220	14,5	95	TX40 •	50
944723	8,0	240	14,5	95	TX40 •	50
944724	8,0	260	14,5	95	TX40 •	50
944725	8,0	280	14,5	95	TX40 •	50
944726 944727	8,0 8,0	300 320	14,5 14,5	95 95	TX40 • TX40 •	50 50
944728	8,0	340	14,5	95	TX40 •	50
944729	8,0	360	14,5	95	TX40 •	50
944730	8,0	380	14,5	95	TX40 •	50
944731	8,0	400	14,5	95	TX40 •	50
944732	8,0	420	14,5	95	TX40 •	50
944733	8,0	440	14,5	95	TX40 •	50
944734	8,0	460	14,5	95	TX40 •	25
944735	8,0	480	14,5	95	TX40 •	25
944736	8,0	500	14,5	95	TX40 •	25
944737 944739	8,0	550 600	14,5	95 95	TX40 •	25 25
945687	8,0 10,0	100	14,5 17,8	60	TX40 ● TX50 ●	50
945688	10,0	120	17,8	70	TX50 ●	50
945689	10,0	140	17,8	80	TX50 ●	50
945690	10,0	160	17,8	90	TX50 ●	50
945691	10,0	180	17,8	100	TX50 ●	50
945692	10,0	200	17,8	100	TX50 ●	50
945693	10,0	220	17,8	100	TX50 ●	50
945694	10,0	240	17,8	100	TX50 ●	50
945695	10,0	260	17,8	100	TX50 ●	50
945696	10,0	280	17,8	100	TX50 ●	50
945697 945698	10,0	300 320	17,8 17,8	100 100	TX50 ●	50 50
945699	10,0 10,0	340	17,0	100	TX50 ● TX50 ●	50
945703	10,0	360	17,8	100	TX50 ●	50
945709	10,0	380	17,8	100	TX50 ●	50
945711	10,0	400	17,8	100	TX50 ●	50
100036	10,0	420	17,8	100	TX50 ●	25
100037	10,0	440	17,8	100	TX50 ●	25
100038	10,0	460	17,8	100	TX50 ●	25
100039	10,0	480	17,8	100	TX50 ●	25
100040	10,0	500	17,8	100	TX50 ●	25
100041	10,0	550	17,8	100	TX50 ●	25
100042	10,0	600	17,8	100	TX50 ●	25

*La tête peut différer de l'image.

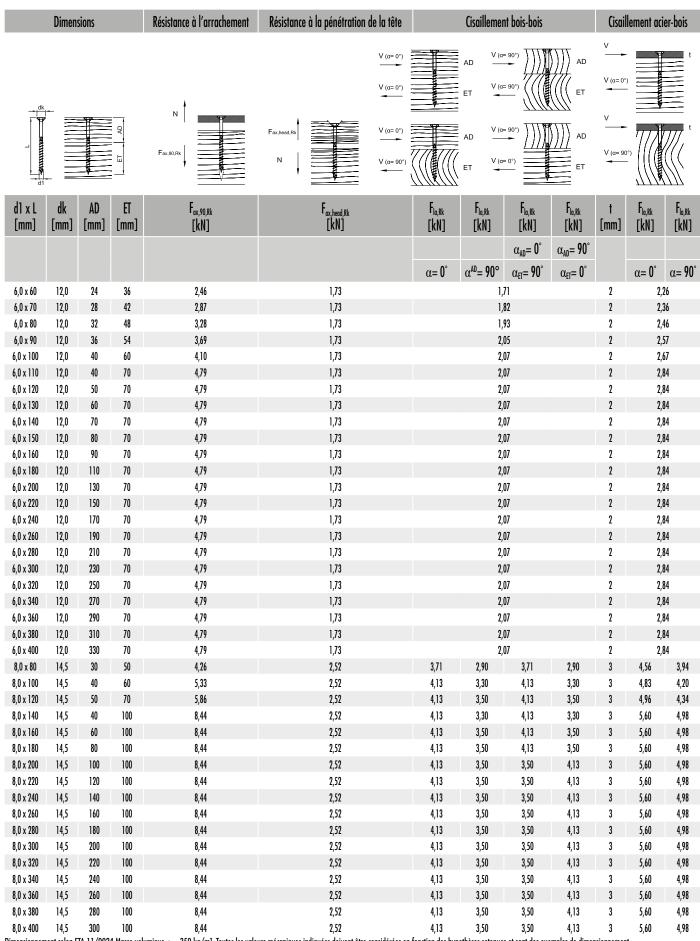
INFORMATIONS TECHNIQUES PANELTWISTEC AG, TÊTE FRAISÉE, GALVANISÉE BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration		Cisaillement bois-bois				Cisaillement acier-bois		
dk military			ET AD	N	Fax.head.Rk	V (α= 0°) V (α= 0°) V (α= 0°) V (α= 90°)	AD ET ET	V (a= 90°) V (a= 90°) V (a= 90°) V (a= 0°)		ET .	/ (a= 0°)		
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	$\begin{array}{ccc} F_{l\alpha,Rk} & F_{l\alpha,Rk} \\ [kN] & [kN] \end{array}$	
[]	j	[]		[111]	[]		[KII]	[MI]	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$	L	[KII]	
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm H} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		$\alpha = 0^{\circ} \alpha = 90^{\circ}$	
3,5 x 30	7,0	12	18	0,84	0,59		3. •	0,62	3[] 10	3.[]	1	0,86	
3,5 x 35	7,0	14	21	0,98	0,59			0,67			1	0,92	
3,5 x 40	7,0	16	24	1,12	0,59			0,70			1	0,95	
3,5 x 45	7,0	18	27	1,26	0,59			0,74			1	0,99	
3,5 x 50	7,0	20	30	1,40	0,59			0,78			1	1,02	
4,0 x 30	8,0	12	18	0,93	0,77			0,71			2	0,91	
4,0 x 35	8,0	14	21	1,08	0,77			0,80			2	1,07	
4,0 x 40	8,0	16	24	1,24	0,77			0,84			2	1,15	
4,0 x 45	8,0	18	27	1,39	0,77			0,88			2	1,19	
4,0 x 50	8,0	20	30	1,55	0,77			0,92			2	1,23	
4,0 x 60	8,0	24	36	1,86	0,77			1,01			2	1,31	
4,0 x 70	8,0	28	42	2,17	0,77			1,03			2	1,38	
4,0 x 80	8,0	32	48	2,48	0,77			1,03			2	1,46	
4,5 x 40	9,0	16	24	1,35	0,97			1,00			2	1,34	
4,5 x 45	9,0	18	27	1,52	0,97			1,03			2	1,40	
4,5 x 50	9,0	20	30	1,69	0,97			1,08			2	1,44	
4,5 x 60	9,0	24	36	2,03	0,97			1,17			2	1,53	
4,5 x 70	9,0	28	42	2,36	0,97			1,26			2	1,61	
4,5 x 80	9,0	32	48	2,70	0,97			1,26			2	1,70	
5,0 x 40	10,0	16	24	1,45	1,20			1,11			2	1,44	
5,0 x 45	10,0	18	27	1,63	1,20			1,20			2	1,62	
5,0 x 50	10,0	20	30	1,82	1,20			1,24			2	1,67	
5,0 x 60	10,0	24	36	2,18	1,20			1,34			2	1,76	
5,0 x 70	10,0	28	42	2,54	1,20			1,44			2	1,85	
5,0 x 80	10,0	32	48	2,90	1,20			1,52			2	1,94	
5,0 x 90	10,0	36	54	3,27	1,20			1,52			2	2,03	
5,0 x 100	10,0	40	60	3,63	1,20			1,52			2	2,12	
5,0 x 120	10,0	50	70	4,24	1,20			1,52			2	2,27	

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_{\rm k}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{dk}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple


Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 \cdot 1,35 + 3,00 \cdot 1,5= 7,20 kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

Dimensionnement selon ETA-11/0024 Masse volumique ho_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · k, and / YNc. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd ≥ Ed).

INFORMATIONS TECHNIQUES PANELTWISTEC AG, TÊTE FRAISÉE, GALVANISÉE BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisaillement bois-bois			Cisaillement acier-bois			
dk			ET AD	N Fax.50,Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 0°)		AD V(a) AD V(a) AD V(a)	= 90°)	AD ET	V (α= 0.	777	t	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
<u>.</u>	3			[]		[]	[]	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$	L	[]	[]	
						α= 0 °	α^{AD} = 90°	$\alpha_{\rm EI}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °	
8,0 x 420	14,5	300	100	8,44	2,52	4,13	3,50	3,50	4,13	3	5,60	4,98	
8,0 x 440	14,5	300	100	8,44	2,52	4,13	3,50	3,50	4,13	3	5,60	4,98	
8,0 x 460	14,5	300	100	8,44	2,52	4,13	3,50	3,50	4,13	3	5,60	4,98	
8,0 x 480	14,5	300	100	8,44	2,52	4,13	3,50	3,50	4,13	3	5,60	4,98	
8,0 x 500	14,5	300	100	8,44	2,52	4,13	3,50	3,50	4,13	3	5,60	4,98	
8,0 x 550	14,5	300	100	8,44	2,52	4,13	3,50	3,50	4,13	3	5,60	4,98	
8,0 x 600 10,0 x 100	14,5 17,8	300 40	100 60	8,44 6,48	2,52 3,63	4,13 5,73	3,50 4,37	3,50 5,73	4,13 4,37	3	5,60 6,78	4,98 5,81	
10,0 x 100	17,8	50	70	7,13	3,63	6,07	4,87	6,07	4,87	3	6,94	5,97	
10,0 x 140	17,8	40	100	10,26	3,63	5,73	4,37	5,73	4,37	3	7,72	6,76	
10,0 x 160	17,8	60	100	10,26	3,63	6,07	5,10	6,07	5,10	3	7,72	6,76	
10,0 x 180	17,8	80	100	10,26	3,63	6,07	5,10	6,07	5,10	3	7,72	6,76	
10,0 x 200	17,8	100	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 220	17,8	120	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 240	17,8	140	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 260	17,8	160	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 280	17,8	180	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 300	17,8	200 220	100 100	10,26	3,63 3,63	6,07 4.07	5,10 5,10	5,10 5,10	6,07	3	7,72 7,72	6,76 6,76	
10,0 x 320 10,0 x 340	17,8 17,8	240	100	10,26 10,26	3,63	6,07 6,07	5,10	5,10	6,07 6,07	3	7,72	6,76	
10,0 x 340	17,8	260	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 380	17,8	280	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 400	17,8	300	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 420	17,8	320	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 440	17,8	340	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 460	17,8	360	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 480	17,8	380	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 500	17,8	400	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 550	17,8	420	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	
10,0 x 600	17,8	440	100	10,26	3,63	6,07	5,10	5,10	6,07	3	7,72	6,76	

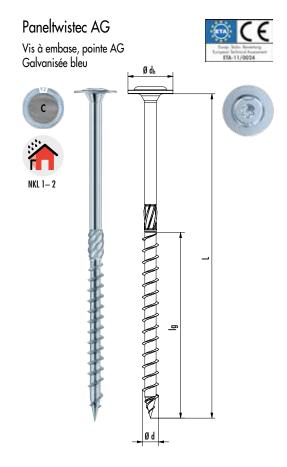
Dimensionnement selon ETA-11/0024 Masse volumique $\rho_{\rm k}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{med} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{med} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{med} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement R_d sont à comparer aux valeurs de dimensionnement R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement R_d sont R_d s

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

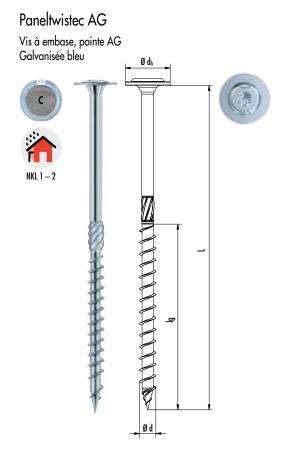
 \rightarrow Valeur de dimensionnement de l'effet E = 2,00 \cdot 1,35 + 3,00 \cdot 1,5= 7,20 kN.


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10.40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

PANELTWISTEC AG, VIS À EMBASE


Galvanisée bleu

N° de réf.	Ød[mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
946158	4,0	40	10,0	24	TX20 -	500
946159	4,0	50	10,0	30	TX20 -	500
946160	4,0	60	10,0	36	TX20 -	500
946161	4,5	50	11,0	30	TX20 -	200
946162	4,5	60	11,0	36	TX20 -	200
946163	4,5	70	11,0	42	TX20 -	200
946037	5,0	50	12,0	30	TX25 •	200
946038	5,0	60	12,0	36	TX25 •	200
946039	5,0	70	12,0	42	TX25 •	200
946040	5,0	80	12,0	48	TX25 •	200
946042	5,0	100	12,0	60	TX25 •	200
945947	6,0	30	14,0	30	TX30 •	100
945948	6,0	40	14,0	40	TX30 •	100
945712	6,0	50	14,0	30	TX30 •	100
945713	6,0	60	14,0	36	TX30 •	100
945713-TX40	6,0	60	15,0	36	TX40 •	100
945716	6,0	70	14,0	42	TX30 •	100
945717	6,0	80	14,0	48	TX30 •	100
945717-TX40	6,0	80	15,0	48	TX40 •	100
945718	6,0	90	14,0	54	TX30 •	100
945719	6,0	100	14,0	60	TX30 •	100
945719-TX40	6,0	100	15,0	60	TX40 •	100
945720	6,0	110	14,0	70	TX30 •	100
945721	6,0	120	14,0	70	TX30 •	100
945721-TX40	6,0	120	15,0	70	TX40 •	100
945722	6,0	130	14,0	70	TX30 •	100
945723	6,0	140	14,0	70	TX30 •	100
945723-TX40	6,0	140	15,0	70	TX40 •	100
945724	6,0	150	14,0	70	TX30 •	100
945725	6,0	160	14,0	70	TX30 •	100
945725-TX40	6,0	160	15,0	70	TX40 •	100
945726	6,0	180	14,0	70	TX30 •	100
945726-TX40	6,0	180	15,0	70	TX40 •	100
945727	6,0	200	14,0	70	TX30 •	100
945727-TX40	6,0	200	15,0	70	TX40 •	100
945728	6,0	220	14,0	70	TX30 •	100
945728-TX40	6,0	220	15,0	70	TX40 •	100
945729	6,0	240	14,0	70	TX30 •	100
945729-TX40	6,0	240	15,0	70	TX40 •	100
945730	6,0	260	14,0	70	TX30 •	100
945731	6,0	280	14,0	70	TX30 •	100
945732	6,0	300	14,0	70	TX30 •	100
945733	6,0	320	12,0	70	TX30 •	100
945734	6,0	340	12,0	70	TX30 •	100
945735	6,0	360	12,0	70	TX30 •	100
945736	6,0	380	12,0	70	TX30 •	100
945737	6,0	400	12,0	70	TX30 •	100
945806	8,0	60	22,0	48	TX40 •	50
944588	8,0	80	22,0	48	TX40 •	50
944589	8,0	100	22,0	60	TX40 •	50
944590	8,0	120	22,0	66	TX40 •	50
944591	8,0	140	22,0	95	TX40 •	50
944592	8,0	160	22,0	95	TX40 •	50
944593	8,0	180	22,0	95	TX40 •	50

PANELTWISTEC AG, VIS À EMBASE

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
944594	8,0	200	22,0	95	TX40 •	50
944595	8,0	220	22,0	95	TX40 •	50
944596	8,0	240	22,0	95	TX40 •	50
944597	8,0	260	22,0	95	TX40 •	50
944598	8,0	280	22,0	95	TX40 •	50
944599	8,0	300	22,0	95	TX40 •	50
944600	8,0	320	22,0	95	TX40 •	50
944601	8,0	340	22,0	95	TX40 •	50
944602	8,0	360	22,0	95	TX40 •	50
944603	8,0	380	22,0	95	TX40 •	50
944603	8,0	380	22,0	95	TX40 •	50
944604	8,0	400	22,0	95	TX40 •	50
944605	8,0	420	22,0	95	TX40 •	25
944606	8,0	440	22,0	95	TX40 •	25
944607	8,0	460	22,0	95	TX40 •	25
944608	8,0	480	22,0	95	TX40 •	25
944609	8,0	500	22,0	95	TX40 •	25
944610	8,0	550	22,0	95	TX40 •	25
944611	8,0	600	22,0	95	TX40 •	25
945750	10,0	80	25,0	50	TX50 ●	50
945751	10,0	100	25,0	60	ТХ50 ●	50
945752	10,0	120	25,0	70	TX50 ●	50
945753	10,0	140	25,0	80	TX50 ●	50
945754	10,0	160	25,0	90	TX50 ●	50
945755	10,0	180	25,0	100	TX50 ●	50
945756	10,0	200	25,0	100	TX50 ●	50
945757	10,0	220	25,0	100	TX50 ●	50
945758	10,0	240	25,0	100	TX50 ●	50
945759	10,0	260	25,0	100	TX50 ●	50
945760	10,0	280	25,0	100	TX50 ●	50
945761	10,0	300	25,0	100	TX50 ●	50
945762	10,0	320	25,0	100	TX50 ●	50
945763	10,0	340	25,0	100	TX50 ●	50
945764	10,0	360	25,0	100	TX50 ●	25
945765	10,0	380	25,0	100	TX50 ●	25
945766	10,0	400	25,0	100	TX50 ●	25
100019	10,0	420	17,8	100	TX50 ●	25
100020	10,0	440	17,8	100	TX50 ●	25
100021	10,0	460	17,8	100	TX50 ●	25
100022	10,0	480	17,8	100	TX50 ◆	25
100023	10,0	500	17,8	100	TX50 ●	25
100024	10,0	550	17,8	100	TX50 •	25
100025	10,0	600	17,8	100	TX50 •	25
	-1-					

INFORMATIONS TECHNIQUES PANELTWISTEC AG, VIS À EMBASE, GALVANISÉE BLEU

	Dimen	sions		Résistance à l'arrachement Résistance à la pénétration de la tête Cisaillement bois-bois						Cisail	lement ac	ier-bois	
dk annunuw	-		ET AD	N Fax,90,Rk	Fax,head,Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 90°)		ET V(c	= 90°) = 90°) = 90°)	AD ET	V (a= 0) V (a= 9)		t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
4,0 x 40	10,0	16	24	1,24	1,20		.	0,9		51[]	2		,15
4,0 x 50	10,0	20	30	1,55	1,20			1,0	3		2	1	,23
4,0 x 60	10,0	24	36	1,86	1,20			1,1	2		2	1	,31
4,5 x 50	11,0	20	30	1,69	1,45			1,2	.0		2	1	,44
4,5 x 60	11,0	24	36	2,03	1,45			1,2	9		2	1,	,53
4,5 x 70	11,0	28	42	2,36	1,45			1,3			2		,61
5,0 x 50	12,0	20	30	1,82	1,73			1,3	7		2	1	,67
5,0 x 60	12,0	24	36	2,18	1,73			1,4			2	I,	,76
5,0 x 70 5,0 x 80	12,0 12,0	28 32	42 48	2,54 2,90	1,73 1,73			1,! 1,6	/ .5		2	I,	,85 ,94
5,0 x 100	12,0	40	60	3,63	1,73			1,6	5		2	2	,12
6,0 x 30	14,0	6	24	1,64	2,35			0,6			2		,20
6,0 x 40	14,0	16	24	1,64	2,35			1,3	3		2	ì	,63
6,0 x 50	14,0	20	30	2,05	2,35			1,6	6		2	2	,06
6,0 x 60	14,0	24	36	2,46	2,35			1,8	7		2	2	,26
6,0 x 70	14,0	28	42	2,87	2,35			1,9	7		2	2	,36
6,0 x 80	14,0	32	48	3,28	2,35			2,0	9		2	2	,46
6,0 x 90 6,0 x 100	14,0 14,0	36	54	3,69	2,35			2,2 2,2	2		2	2	,57
6,0 x 100	14,0	40 44	60 66	4,10 4,79	2,35 2,35			2,2	3		2	2	,67 ,77
6,0 x 110	14,0	50	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 130	14,0	60	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 140	14,0	70	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 150	14,0	80	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 160	14,0	90	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 180	14,0	110	70	4,79	2,35 2,35			2,7 2,7	3		2	2	,84 ,84
6,0 x 200	14,0	130	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 220	14,0	150	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 240	14,0	170	70	4,79	2,35			2,7	J		2 2	2	,84
6,0 x 260 6,0 x 280	14,0 14,0	190 210	70 70	4,79 4,79	2,35 2,35 2,35			2,7 2,7	ว			2	,84 ,84
6,0 x 200	14,0	230	70	4,79 4,79	2,35 2,35			2,7	3		2 2	2	,04 ,84
6,0 x 320	12,0	250	70	4,79	2,33			2,1	3			2	,84
6,0 x 340	12,0	270	70	4,79	2,35 2,35			2,2 2,2	3		2	2	,84
6,0 x 360	12,0	290	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 380	12,0	310	70	4,79	2,35			2,2	3		2	2	,84
6,0 x 400	12,0	330	70	4,79	2,35			2,2	3		2	2	,84

6,0 x 400 12,0 330 70 4,79 2,35 2,23 2
Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{nl}=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=\underline{7,20\ kN}.$

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq \overline{E_{\text{d.}}} \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

INFORMATIONS TECHNIQUES PANELTWISTEC AG, VIS À EMBASE, GALVANISÉE BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration d	e la tête	te Cisaillement bois-bois				Cisail	lement ac	ier-bois
dk			ET AD	N Fax,90,Rk	Fax,head,Rk	V (α= 0°) V (α= 0°) V (α= 0°)		ET V	(a= 90°) (a= 90°) (a= 0°)	AD ET	V (α= 0'		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm EI}$ = 90°	$\alpha_{\text{EI}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 60	22,0	24	36	3,20	5,81		3,53	2,80	3,53	2,80	3	4,29	3,54
8,0 x 80	22,0	30	50	4,26	5,81		4,14	3,34	4,14	3,34	3	4,56	3,94
8,0 x 100	22,0	40	60	5,33	5,81		4,83	4,01	4,83	4,01	3	4,83	4,20
8,0 x 120	22,0	50	70	5,86	5,81		4,95	4,32	4,95	4,32	3	4,96	4,34
8,0 x 140	22,0	40	100	8,44	5,81		4,95	4,13	4,95	4,13	3	5,60	4,98
8,0 x 160	22,0	60	100	8,44	5,81		4,95	4,32	4,95	4,32	3	5,60	4,98
8,0 x 180	22,0	80	100	8,44	5,81		4,95	4,32	4,95	4,32	3	5,60	4,98
8,0 x 200	22,0	100	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 220	22,0	120	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 240	22,0	140	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 260	22,0	160	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 280	22,0	180	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 300	22,0	200	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 320	22,0	220	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 340	22,0	240	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 360	22,0	260	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 380	22,0	280	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 400	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 420	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 440	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 460	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 480	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 500	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 550	22,0	300	100	8,44	5,81		4,95	4,32	4,32	4,95	3	5,60	4,98
8,0 x 600	22,0	300	100	8,44	5,81	.14.4	4,95	4,32	4,32	4,95	. 3	5,60	4,98

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_{\rm K}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : R_d = R_k · k_{med} / γ_{kl}. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d (R_d ≥ E_d).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_M=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC AG, VIS À EMBASE, GALVANISÉE BLEU

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête Cisaillement bois-bois				Cisail	lement ac	ier-bois	
dk	d1 x L dk AD ET			V (a=0°) V (a=0°) V (a=0°) V (a=0°) V (a=0°)			ET V(C	2= 90°) 2= 90°) 2= 90°)	AD ET ET	V (a= 0°) V (a= 90°)		
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	$\alpha_{\rm H} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
10,0 x 80	25,0	30	50	5,40	7,50	5,44	4,40	5,44	4,40	3	6,51	5,54
10,0 x 100	25,0	40	60	6,48	7,50	6,44	5,08	6,44	5,08	3	6,78	5,81
10,0 x 120	25,0	50	70	7,13	7,50	6,94	5,74	6,94	5,74	3	6,94	5,97
10,0 x 140	25,0	40	100	10,26	7,50	6,70	5,34	6,70	5,34	3	7,72	6,76
10,0 x 160	25,0	60	100	10,26	7,50	7,03	6,07	7,03	6,07	3	7,72	6,76
10,0 x 180	25,0	80	100	10,26	7,50	7,03	6,07	7,03	6,07	3	7,72	6,76
10,0 x 200	25,0	100	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 220	25,0	120	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 240	25,0	140	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 260	25,0	160	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 280	25,0	180	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 300	25,0	200	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 320	25,0	220	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 340	25,0	240	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 360	25,0	260	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 380	25,0	280	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 400	25,0	300	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 420	17,8	320	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 440	17,8	340	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 460	17,8	360	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 480	17,8	380	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 500	17,8	400	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 550	17,8	450	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76
10,0 x 600	17,8	500	100	10,26	7,50	7,03	6,07	6,07	7,03	3	7,72	6,76

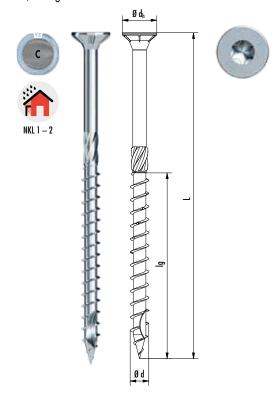
Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

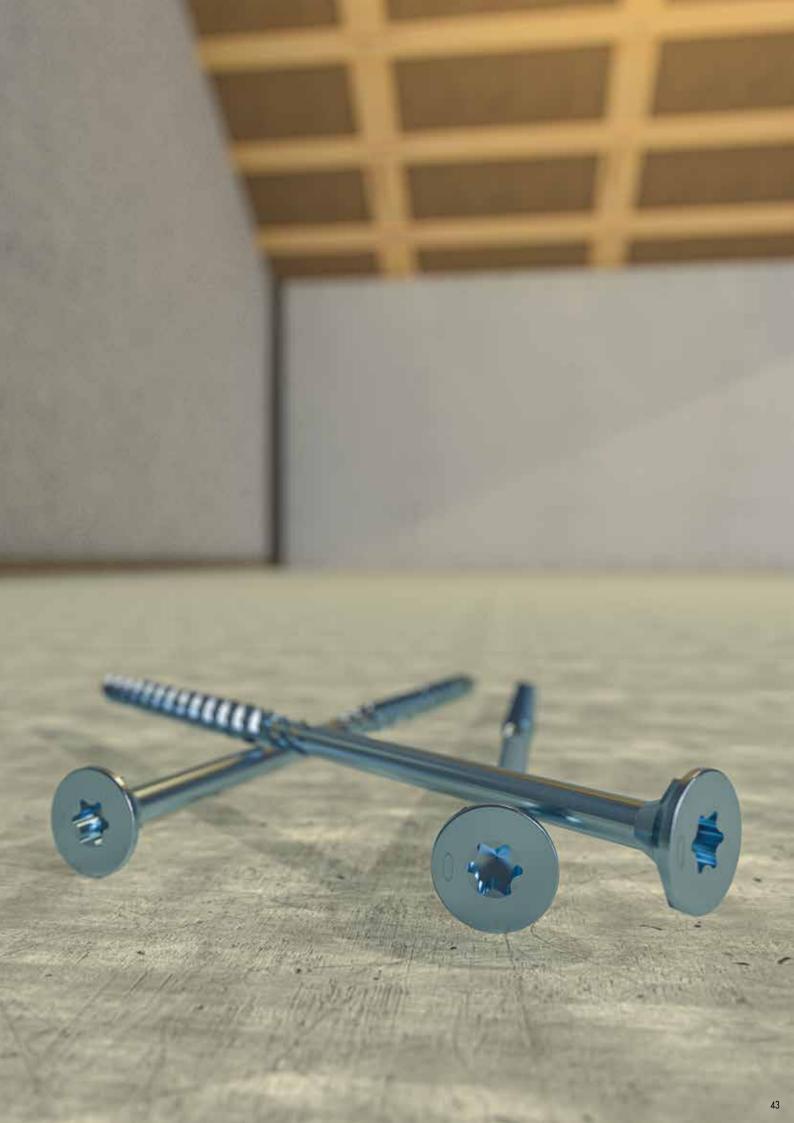
 \rightarrow Valeur de dimensionnement de l'effet $E_{d}=2,00\cdot 1,35+3,00\cdot 1,5=$ 7,20 kN.

 $\text{La capacité de charge de l'assemblage est réputée prouvée lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

PANELTWISTEC

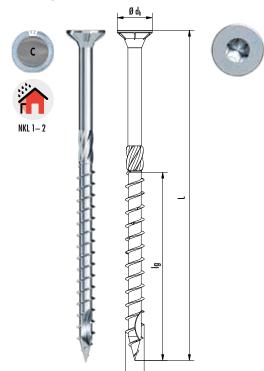
Acier galvanisé bleu


Paneltwistec

Tête fraisée, pointe de vis avec fût, acier galvanisé bleu

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
B903045	3,5	30	7,0	18	TX15 ●	1000
B903044	3,5	35	7,0	21	TX15 ●	1000
B903001	3,5	40	7,0	24	TX15 ●	1000
B903002	3,5	50	7,0	30	TX15 ●	500
B903003	4,0	30	8,0	18	TX20 -	1000
B903603	4,0	35	8,0	21	TX20 -	1000
B903004	4,0	40	8,0	24	TX20 -	1000
B902089	4,0	45	8,0	27	TX20 -	500
B903005	4,0	50	8,0	30	TX20 -	500
B903006	4,0	60	8,0	36	TX20 -	200
B903007	4,0	70	8,0	42	TX20 -	200
B903008	4,0	80	8,0	48	TX20 -	200
B903009	4,5	40	9,0	24	TX25 ●	500
B903087	4,5	45	9,0	27	TX25 •	500
B903010	4,5	50	9,0	30	TX25 ●	500
B903088	4,5	55	9,0	36	TX25 •	500
B903011	4,5	60	9,0	36	TX25 ●	200
B903012	4,5	70	9,0	42	TX25 •	200
B903013	4,5	80	9,0	48	TX25 •	200
B903014	5,0	40	10,0	24	TX25 •	200
B903015	5,0	50	10,0	30	TX25 ●	200
B903016	5,0	60	10,0	36	TX25 •	200
B903017	5,0	70	10,0	42	TX25 ●	200
B903018	5,0	80	10,0	48	TX25 •	200
B903578	5,0	90	10,0	54	TX25 •	200
B903019	5,0	100	10,0	60	TX25 •	200
B903020	5,0	120	10,0	70	TX25 •	200
B903021	6,0	60	12,0	36	TX30 •	200
B903022	6,0	70	12,0	42	TX30 •	200
B903023	6,0	80	12,0	48	TX30 •	200
B903163	6,0	90	12,0	54	TX30 •	100
B903024	6,0	100	12,0	60	TX30 •	100
B903025	6,0	120	12,0	70	TX30 •	100
B903026	6,0	130	12,0	70	TX30 •	100
B903027	6,0	140	12,0	70	TX30 •	100
B903030	6,0	150	12,0	70	TX30 •	100
B903029	6,0	160	12,0	70	TX30 •	100
B903031	6,0	180	12,0	70	TX30 •	100
B903032	6,0	200	12,0	70	TX30 •	100
B903033	6,0	220	12,0	70	TX30 •	100
B903034	6,0	240	12,0	70	TX30 •	100
B903035	6,0	260	12,0	70	TX30 •	100
B903036	6,0	280	12,0	70	TX30 •	100
B903037	6,0	300	12,0	70	TX30 •	100
5,00001	0,0	300	12,0		IAUU -	100

Autres tailles à la page suivante



Eurotec | Paneltwistec

Paneltwistec

Tête fraisée, pointe de vis avec fût, acier galvanisé bleu

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903443	8,0	80	14,5	48	TX40 ●	1000
903435	8,0	100	14,5	60	TX40 •	1000
903419	8,0	120	14,5	66	TX40 •	1000
903420	8,0	140	14,5	95	TX40 •	500
903421	8,0	160	14,5	95	TX40 •	1000
903422	8,0	180	14,5	95	TX40 •	1000
903423	8,0	200	14,5	95	TX40 •	1000
903424	8,0	220	14,5	95	TX40 •	500
903425	8,0	240	14,5	95	TX40 •	1000
903426	8,0	260	14,5	95	TX40 •	200
903427	8,0	280	14,5	95	TX40 •	200
903428	8,0	300	14,5	95	TX40 •	200
903429	8,0	320	14,5	95	TX40 •	500
903430	8,0	340	14,5	95	TX40 •	500
903431	8,0	360	14,5	95	TX40 •	500
903432	8,0	380	14,5	95	TX40 •	500
903433	8,0	400	14,5	95	TX40 •	200
975780	12,0	120	20,0	80	TX50 ●	25
975781	12,0	140	20,0	80	TX50 ●	25
975782	12,0	160	20,0	80	TX50 ●	25
975783	12,0	180	20,0	80	TX50 ●	25
975784	12,0	200	20,0	80	TX50 ●	25
975785	12,0	220	20,0	100	TX50 ●	25
975786	12,0	240	20,0	100	TX50 ●	25
975787	12,0	260	20,0	100	TX50 ●	25
975788	12,0	280	20,0	100	TX50 ●	25
975789	12,0	300	20,0	100	TX50 ●	25
975790	12,0	320	20,0	100	TX50 ●	25
975791	12,0	340	20,0	120	TX50 ●	25
975792	12,0	360	20,0	120	TX50 ●	25
975793	12,0	380	20,0	120	TX50 ●	25
975794	12,0	400	20,0	120	TX50 ●	25
975795	12,0	500	20,0	120	TX50 ●	25
975796	12,0	600	20,0	120	TX50 ●	25

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER GALVANISÉ BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la tê	e Cisaillement bois-bois					Cisaill	ement ac	ier-bois
dk dt dt dt			ET AD	N Fax,90,Rk	V (a=	0°)		ET V	(a= 90°) (a= 90°) (a= 0°)	AD ET	V (α=0°		t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,heod,Rk} [kN]	F [1	F _{la,Rk} [kn]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{\text{AD}} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α	:= 0°	α^{AD} = 90°	α_{EI} = 90°	$\alpha_{\rm H} = 0^{\circ}$		α= 0 °	α= 90 °
3,5 x 30	7,0	12	18	0,84	0,59				0,62	Li	1		,86
3,5 x 35	7,0	14	21	0,98	0,59				0,67		1		,92
3,5 x 40	7,0	16	24	1,12	0,59				0,70		1		,95
3,5 x 45	7,0	18	27	1,26	0,59				0,74		1		,99
3,5 x 50	7,0	20	30	1,40	0,59				0,78		1		,02
4,0 x 30	8,0	12	18	0,93	0,77				0,71		2	0,	,91
4,0 x 35	8,0	14	21	1,08	0,77				0,80		2	1,	,07
4,0 x 40	8,0	16	24	1,24	0,77				0,84		2	1,	,15
4,0 x 45	8,0	18	27	1,39	0,77				0,88		2	1,	,19
4,0 x 50	8,0	20	30	1,55	0,77				0,92		2	1,	,23
4,0 x 60	8,0	24	36	1,86	0,77				1,01		2	1,	,31
4,0 x 70	8,0	28	42	2,17	0,77				1,03		2	1,	,38
4,0 x 80	8,0	32	48	2,48	0,77				1,03		2		,46
4,5 x 40	9,0	16	24	1,35	0,97				1,00		2		,34
4,5 x 45	9,0	18	27	1,52	0,97				1,03		2		,40
4,5 x 50	9,0	20	30	1,69	0,97				1,08		2		,44
4,5 x 55	9,0	19	36	2,03	0,97				1,05		2		,53
4,5 x 60	9,0	24	36	2,03	0,97				1,17		2		,53
4,5 x 70	9,0	28	42	2,36	0,97				1,26		2		,61
4,5 x 80	9,0	32	48	2,70	0,97				1,26		2		,70
5,0 x 40	10,0	16	24	1,45	1,20				1,11		2		,44
5,0 x 50	10,0	20	30	1,82	1,20				1,24		2		,67
5,0 x 60	10,0	24	36	2,18	1,20				1,34		2		,76
5,0 x 70	10,0	28	42	2,54	1,20				1,44		2		,85
5,0 x 80	10,0	32	48	2,90	1,20				1,52		2		,94
5,0 x 90	10,0	36	54	3,27	1,20				1,52		2		,03
5,0 x 100	10,0	40	60	3,63	1,20				1,52		2		,12
5,0 x 120	10,0	50	70	4,24	1,20				1,52		2	2,	,27

Dimensionnement selon ETA-11/0024 Masse volumique ρ_i = 350 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{mod} / \gamma_{Mc}$.

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN</u>.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

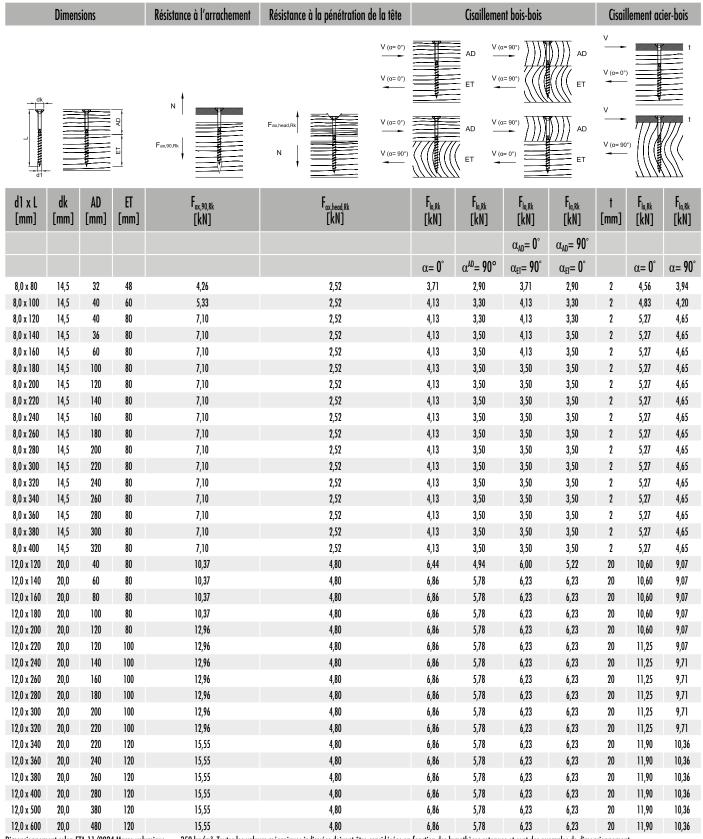
C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ra= Rd · γ_M / k_{mod} \rightarrow Ra= 7,20 kN · 1,3/0,9= $\frac{10,40 \text{ kN}}{1,3/0,9}$ \rightarrow Mise en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER GALVANISÉ BLEU

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration	on de la tête	de la tête Cisaillement bois-bois					Cisaillement acier-	
dk minimus							V (α= 0°) V (α= 90°)		t				
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,heod,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	[kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
							Λ°	AD AAO	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		٥٥	00°
	10.0		0,	• "	170		α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
6,0 x 60	12,0	24 28	36	2,46 2,87	1,73				,71 		2		,26 ,36
6,0 x 70 6,0 x 80	12,0 12,0	32	42 48	3,28	1,73 1,73				,82 ,93				,30 ,46
6,0 x 90	12,0	36	54	3,69	1,73				,05				, 1 0 ,57
6,0 x 100	12,0	40	60	4,10	1,73				,07		2		,67
6,0 x 110	12,0	40	70	4,79	1,73				,07		2		,84
6,0 x 120	12,0	50	70	4,79	1,73				,07		2		,84
6,0 x 130	12,0	60	70	4,79	1,73				,07		2		,84
6,0 x 140	12,0	70	70	4,79	1,73				,07		2		,84
6,0 x 150	12,0	80	70	4,79	1,73				,07		2	2	,84
6,0 x 160	12,0	90	70	4,79	1,73			2	,07		2	2	,84
6,0 x 180	12,0	110	70	4,79	1,73			2	,07		2	2	,84
6,0 x 200	12,0	130	70	4,79	1,73			2	,07		2	2	,84
6,0 x 220	12,0	150	70	4,79	1,73		2,07				2	2	,84
6,0 x 240	12,0	170	70	4,79	1,73		2,07				2	2	,84
6,0 x 260	12,0	190	70	4,79	1,73		2,07				2	2	,84
6,0 x 280	12,0	210	70	4,79	1,73		2,07				2	2	,84
6,0 x 300	12,0	230	70	4,79	1,73		2,07				2	2	,84

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{NL}$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_k ($R_k \ge E_k$).


Exemple

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition

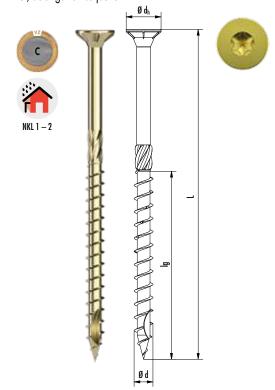
Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{ik}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_k \cdot k_{mod} / \gamma_{ik}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{mod} / \gamma_{ik}$.

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_u = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; / \; k_{mo$

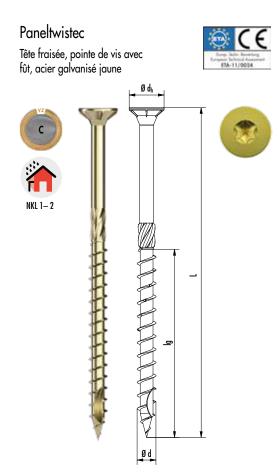

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

PANELTWISTEC

Acier galvanisé jaune

Paneltwistec

Tête fraisée, pointe de vis avec fût, acier galvanisé jaune



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903000	3,5	30	7,0	18	TX20 •	1000
903044	3,5	35	7,0	21	TX20 -	1000
903001	3,5	40	7,0	24	TX20 -	1000
903002	3,5	50	7,0	30	TX20 -	500
903003	4,0	30	8,0	18	TX20 -	1000
903603	4,0	35	8,0	21	TX20 -	1000
903004	4,0	40	8,0	24	TX20 •	1000
902089	4,0	45	8,0	27	TX20 •	500
903005	4,0	50	8,0	30	TX20 •	500
903006	4,0	60	8,0	36	TX20 •	200
903007	4,0	70	8,0	42	TX20 •	200
903008	4,0	80	8,0	48	TX20 •	200
903046	4,5	35	9,0	24	TX20 •	500
903009	4,5	40	9,0	27	TX20 •	500
903087	4,5	45	9,0	30	TX20 -	500
903010	4,5	50	9,0	36	TX20 -	500
903011	4,5	60	9,0	42	TX20 •	200
903012	4,5	70	9,0	48	TX20 -	200
903013	4,5	80	9,0	24	TX20 •	200
903014	5,0	40	10,0	27	TX20 -	200
903015	5,0	50	10,0	30	TX20 •	200
903016	5,0	60	10,0	36		200
903017					TX20 •	200
	5,0	70	10,0	42	TX20 •	
903018	5,0	80	10,0	48	TX20 •	200
903578	5,0	90	10,0	54	TX20 •	200
903019	5,0	100	10,0	60	TX20 •	200
903020	5,0	120	10,0	70	TX20 •	200
903071	5,0	40	10,0	24	TX25 •	200
903072	5,0	50	10,0	30	TX25 •	200
903073	5,0	60	10,0	36	TX25 •	200
903074	5,0	70	10,0	42	TX25 •	200
903075	5,0	80	10,0	48	TX25 •	200
903582	5,0	90	10,0	54	TX25 •	200
903076	5,0	100	10,0	60	TX25 •	200
903077	5,0	120	10,0	70	TX25 •	200
903021	6,0	60	12,0	36	TX30 •	200
903022	6,0	70	12,0	42	TX30 •	200
903023	6,0	80	12,0	48	TX30 •	200
903163	6,0	90	12,0	54	TX30 •	100
903024	6,0	100	12,0	60	TX30 •	100
903039	6,0	110	12,0	70	TX30 •	100
903025	6,0	120	12,0	70	TX30 •	100
903026	6,0	130	12,0	70	TX30 •	100
903027	6,0	140	12,0	70	TX30 •	100
903028	6,0	150	12,0	70	TX30 •	100
903029	6,0	160	12,0	70	TX30 •	100
903031	6,0	180	12,0	70	TX30 •	100
903032	6,0	200	12,0	70	TX30 •	100
903033	6,0	220	12,0	70	TX30 •	100
903034	6,0	240	12,0	70	TX30 •	100
903035	6,0	260	12,0	70	TX30 •	100
903036	6,0	280	12,0	70	TX30 •	100
903037	6,0	300	12,0	70	TX30 •	100
903550	8,0	80	14,5	48	TX40 •	50
903551	8,0	100	14,5	60	TX40 •	50
902920	8,0	120	14,5	80	TX40 •	50
902919	8,0	140	14,5	80	TX40 •	50
902921	8,0	160	14,5	80	TX40 •	50
IVLILI	0,0	100	ן,דו	UU	1140	30

Autres tailles à la page suivante

Eurotec® | Paneltwistec

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
902922	8,0	180	14,5	80	TX40 •	50
902923	8,0	200	14,5	80	TX40 •	50
902924	8,0	220	14,5	80	TX40 •	50
902925	8,0	240	14,5	80	TX40 •	50
902926	8,0	260	14,5	80	TX40 •	50
902928	8,0	300	14,5	80	TX40 •	50
902929	8,0	320	14,5	80	TX40 •	50
902930	8,0	340	14,5	80	TX40 •	50
902931	8,0	360	14,5	80	TX40 •	50
902932	8,0	380	14,5	80	TX40 •	50
903030	8,0	400	14,5	80	TX40 •	50
903513	10,0	100	17,4	60	TX50 ●	50
903491	10,0	120	17,4	90	TX50 ●	50
903492	10,0	140	17,4	90	TX50 ●	50
903493	10,0	160	17,4	90	TX50 ●	50
903494	10,0	180	17,4	90	TX50 ●	50
903495	10,0	200	17,4	90	TX50 ●	50
903496	10,0	220	17,4	90	TX50 ●	50
903497	10,0	240	17,4	90	TX50 ●	50
903498	10,0	260	17,4	90	TX50 ●	50
903499	10,0	280	17,4	90	TX50 ●	50
903500	10,0	300	17,4	90	TX50 ●	50
903501	10,0	320	17,4	90	TX50 ●	50
903502	10,0	340	17,4	90	TX50 ●	50
903503	10,0	360	17,4	90	TX50 ●	50
903504	10,0	380	17,4	90	TX50 ●	50
903505	10.0	400	17.4	90	TX50 ●	50

Vissage simple d'une structure à traverse avec notre Paneltwistec, tête fraisée

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER GALVANISÉ JAUNE

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisailleme	nt bois-bois		Cisaill	ement a	ier-bois
dk			ET AD	N Fax.90,Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 0°)		AD V (α= ET V (α= AD V (α= V (α=	90°)	AD ET ET	V (a= 0°) V (a= 90°)		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						Λ°	α^{AD} = 90°				٥°	nn°
0.5.00	7.0	10	10	0.04	0.50	α= 0 °		$\alpha_{\rm EI} = 90^{\circ}$	$\alpha_{\rm ET} = 0^{\circ}$	ļ.,	α= 0 °	$\alpha = 90^{\circ}$
3,5 x 30	7,0	12	18	0,84	0,59		0,			1 1		,86
3,5 x 35	7,0	14	21	0,98	0,59		0,			•		,92
3,5 x 40	7,0	16	24	1,12	0,59		0,			1		,95 .00
3,5 x 45 3,5 x 50	7,0 7,0	18 20	27 30	1,26 1,40	0,59 0,59		0, 0,			1		,99 ,02
4,0 x 30	8,0	12	18	0,93	0,77		0,			2		,02 ,91
4,0 x 30 4,0 x 35	8,0	14	21	1,08	0,77		0,			2		,07
4,0 x 40	8,0	16	24	1,24	0,77		0,			2		,15
4,0 x 40	8,0	18	27	1,39	0,77		0,			2		,19
4,0 x 50	8,0	20	30	1,55	0,77		0,			2		,23
4,0 x 60	8,0	24	36	1,86	0,77		1,			2		,31
4,0 x 70	8,0	28	42	2,17	0,77			03		2		,38
4,0 x 80	8,0	32	48	2,48	0,77			03		2		,46
4,5 x 35	9,0	14	21	1,18	0,97		0,			2		,32
4,5 x 40	9,0	16	24	1,35	0,97			00		2		,34
4,5 x 45	9,0	18	27	1,52	0,97			03		2		,40
4,5 x 50	9,0	20	30	1,69	0,97		1,			2		,44
4,5 x 60	9,0	24	36	2,03	0,97		1,			2		,53
4,5 x 70	9,0	28	42	2,36	0,97			26		2		,61
4,5 x 80	9,0	32	48	2,70	0,97			26		2		,70
5,0 x 40*	10,0	16	24	1,45	1,20		1,			2		,44
5,0 x 50*	10,0	20	30	1,82	1,20			24		2		,67
5,0 x 60*	10,0	24	36	2,18	1,20			34		2		,76
5,0 x 70*	10,0	28	42	2,54	1,20			44		2		,85
5,0 x 80*	10,0	32	48	2,90	1,20			52		2		,94
5,0 x 90*	10,0	36	54	3,27	1,20			52		2		,03
5,0 x 100*	10,0	40	60	3,63	1,20		1,	52		2	2	,12
5,0 x 120*	10,0	50	70	4,24	1,20		1,	52		2	2	,27

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs mécaniques indiquées, sous réserve d'erreurs d'impression et de composition. Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{M}=1,3.$

→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN</u>.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ri= Rd · γ_M / k_{mod} \rightarrow Ri= 7,20 kN · 1,3/0,9= $\frac{10,40 \text{ kN}}{1,3/0,9}$ \rightarrow Mise en cohérence avec les valeurs du tableau.

Eurotec Paneltwistec

	Dimensions			Résistance à l'arrachement	Résistance à la pénétration d	le la tête		Cisailleme	nt bois-bois		Cisaillement acier-bois		
dk January da			ET AD	N Fax, 50, Rk	Fax.head.Rk	V (α= 0°) V (α= 0°) V (α= 0°)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 90°)	AD ET ET	V (α= 0°) V (α= 90°)		t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,90,Rk} [kN]	F _{ox.head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	$F_{l_{a},Rk}$ [kN] $\alpha_{AD} = 0^{\circ}$	$F_{la,Rk}$ [kN] $\alpha_{AD} = 90^{\circ}$	t [mm]	F _{la,Rk} [kN]	F _{la,Rk}
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm H}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
/ 0 / 0	10.0	04	1/	0.47	1.70		α= υ			$\alpha_{\rm H} = 0$	0		
6,0 x 60 6,0 x 70	12,0 12,0	24 28	36 42	2,46 2,87	1,73 1,73				71 82		2		,26 ,36
6,0 x 80	12,0	32	48	3,28	1,73			1,			2		,46
6,0 x 90	12,0	36	54	3,69	1,73				05		2		,57
6,0 x 100	12,0	40	60	4,10	1,73				07		2		,67
6,0 x 110	12,0	40	70	4,79	1,73			2,			2		,84
6,0 x 120	12,0	50	70	4,79	1,73		2,07				2		,84
6,0 x 130	12,0	60	70	4,79	1,73		2,07			2		,84	
6,0 x 140	12,0	70	70	4,79	1,73 2,07			2		,84			
6,0 x 150	12,0	80	70	4,79	1,73 2,07			2	2	,84			
6,0 x 160	12,0	90	70	4,79	1,73			2,	07		2	2	,84
6,0 x 180	12,0	110	70	4,79	1,73			2,	07		2	2	,84
6,0 x 200	12,0	130	70	4,79	1,73			2,	07		2	2	,84
6,0 x 220	12,0	150	70	4,79	1,73			2,	07		2	2	,84
6,0 x 240	12,0	170	70	4,79	1,73			2,	07		2	2	,84
6,0 x 260	12,0	190	70	4,79	1,73			2,			2		,84
6,0 x 280	12,0	210	70	4,79	1,73			2,			2		,84
6,0 x 300	12,0	230	70	4,79	1,73			2,			2		,84
8,0 x 80	14,5	30	48	4,26	2,52		3,71	2,90	3,71	2,90	3	4,56	3,94
8,0 x 100	14,5	40	60	5,33	2,52		4,13	3,30	4,13	3,30	3	4,83	4,20
8,0 x 120	14,5	40	90	7,10	2,52		4,13	3,30	4,13	3,30	3	5,27	4,65
8,0 x 140	14,5	60	90	7,10	2,52		4,13	3,50	4,13	3,50	3	5,27	4,65
8,0 x 160	14,5	80	90	7,10	2,52		4,13	3,50	4,13	3,50	3	5,27	4,65
8,0 x 180	14,5	100	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 200	14,5	120	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 220	14,5	140	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 240	14,5	160	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 260 8,0 x 280	14,5 14,5	180 200	90 90	7,10 7,10	2,52 2,52		4,13 4,13	3,50 3,50	3,50 3,50	4,13 4,13	3	5,27 5,27	4,65 4,65
8,0 x 300	14,5	220	90	7,10 7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 320	14,5	240	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 340	14,5	260	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 360	14,5	280	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 380	14,5	300	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
8,0 x 400	14,5	320	90	7,10	2,52		4,13	3,50	3,50	4,13	3	5,27	4,65
					urs mécaniques indiquées doivent être o	ancidáráac ar							.,,55

Dimensionnement selon ETA-11/0024 Masse volumique ho_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; / \; k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

 $[\]rightarrow$ Valeur de dimensionnement de l'effet $E_{d}=2,00\cdot 1,35+3,00\cdot 1,5=$ 7,20 kN.

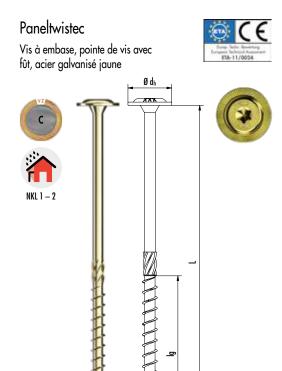
INFORMATIONS TECHNIQUES PANELTWISTEC , TÊTE FRAISÉE, ACIER GALVANISÉ JAUNE

Dimension	ns		Résistance à l'arrachement	Résistance à la pénétration de la tête	Cisaillement bois-bois				Cisaillement acier-bois		
		ET AD	N Fax,90,8k	V (a= 0'		ET V(i	x= 90°)	AD ET ET	V		t
	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
							$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
					α= 0 °	$\alpha^{AD} = 90^{\circ}$				α= 0°	α= 90 °
17.4	40	60	6.48	3.63					3		5,81
	20								3		6,62
	40		·	·					3		6,62
17,4	60								3		6,62
17,4	80	90							3		6,62
17,4	100	90				5,10	5,10	6,07	3		6,62
17,4	120	90				5,10	5,10	6,07	3		6,62
17,4	140	90			6,07			6,07	3		6,62
17,4	160	90	9,72	3,63	6,07	5,10	5,10	6,07	3		6,62
17,4	180	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
17,4	200	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
	220	90		3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
17,4	240	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
17,4	260	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
17,4	280	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
	300	90	9,72	3,63	6,07	5,10	5,10	6,07	3	7,59	6,62
	dk [mm] [17,4 17,4 17,4 17,4 17,4 17,4 17,4 17,4	[mm] [mm] 17,4 40 17,4 20 17,4 60 17,4 100 17,4 120 17,4 140 17,4 160 17,4 160 17,4 200 17,4 220 17,4 240 17,4 260 17,4 280	dk AD ET [mm] [mm] 17,4 40 60 17,4 20 90 17,4 40 90 17,4 80 90 17,4 100 90 17,4 120 90 17,4 140 90 17,4 160 90 17,4 180 90 17,4 180 90 17,4 220 90 17,4 220 90 17,4 220 90 17,4 220 90 17,4 220 90 17,4 280 90	True True	V (a= 0" V (a= 0"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Control Contro	N Fm.50m, N N V(c=00^{-}) AD V(c=00^{-}) V(c	Factorial Fact	N Final N V(p=00') AD V(p=00') A	N Financial N Financial N Financial N V(on-07) V

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des $R_d = R_d \cdot k_{mod} / \gamma_{Mc}$.

Exemple:


Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{N} = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

Eurotec | Paneltwistec

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
G903204	8,0	80	22,0	48	TX40 •	50
G903205	8,0	100	22,0	60	TX40 •	50
G903466	8,0	120	22,0	80	TX40 •	50
G903467	8,0	140	22,0	80	TX40 •	50
G903468	8,0	160	22,0	80	TX40 •	50
G903469	8,0	180	22,0	80	TX40 •	50
G903470	8,0	200	22,0	80	TX40 •	50
G903471	8,0	220	22,0	80	TX40 •	50
G903472	8,0	240	22,0	80	TX40 •	50
G903473	8,0	260	22,0	80	TX40 •	50
G903474	8,0	280	22,0	80	TX40 •	50
G903475	8,0	300	22,0	80	TX40 •	50
G903476	8,0	320	22,0	80	TX40 •	50
G903477	8,0	340	22,0	80	TX40 •	50
G903478	8,0	360	22,0	80	TX40 •	50
G904625	8,0	380	22,0	80	TX40 •	50
G904626	8,0	400	22,0	80	TX40 •	50

Vissage simple d'une structure à traverse avec notre Paneltwistec, vis à embase

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER GALVANISÉ JAUNE

	Dimensions			Résistance à l'arrachement	Résistance à la pénétration de la tête	Résistance à la pénétration de la tête Cisaillement bois-bois			Cisaillement acier-bois			
				N Fox.50,Rk	$\begin{array}{c c} V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=0^\circ) \\ \hline \\ V \ (\alpha=90^\circ) \\ \hline \\ V \ (\alpha=90^\circ) \\ \hline \end{array}$		AD V(a: AD V(a	= 90°)	AD ET ET	V (\alpha = 0°) V (\alpha = 90°)		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
8,0 x 80	22,0	30	50	4,26	5,81	4,27	3,41	4,27	3,41	3	4,56	3,94
8,0 x 100	22,0	40	60	5,33	5,81	4,83	4,01	4,83	4,01	3	4,83	4,20
8,0 x 120	22,0	40	80	7,10	5,81	4,95	4,13	4,95	4,13	3	5,27	4,65
8,0 x 140	22,0	60	80	7,10	5,81	4,95	4,32	4,95	4,32	3	5,27	4,65
8,0 x 160	22,0	80	80	7,10	5,81	4,95	4,32	4,95	4,32	3	5,27	4,65
8,0 x 180	22,0	100	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 200	22,0	120	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 220	22,0	140	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 240	22,0	160	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 260	22,0	180	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 280	22,0	200	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 300	22,0	220	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 320	22,0	240	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 340	22,0	260	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 360	22,0	280	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 380	22,0	300	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65
8,0 x 400	22,0	320	80	7,10	5,81	4,95	4,32	4,32	4,95	3	5,27	4,65

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

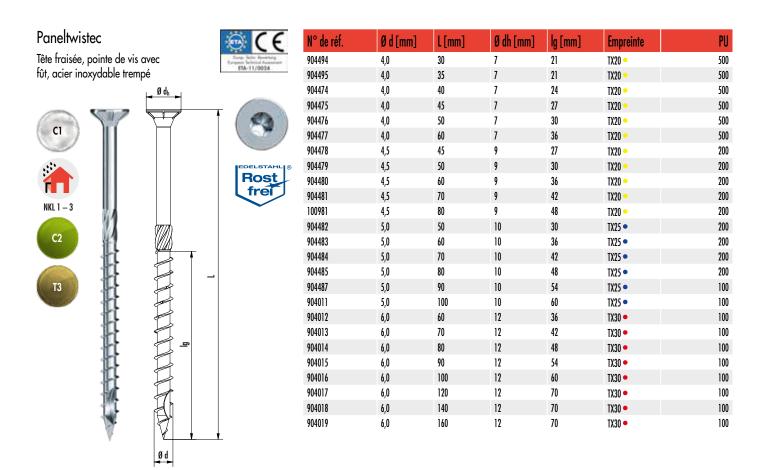
Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

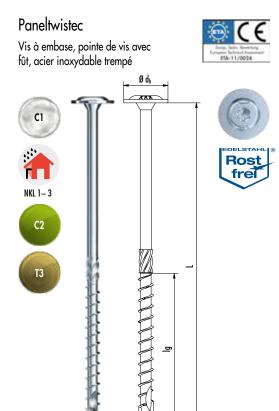
Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{N_k}$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_k ($R_k \ge E_k$).

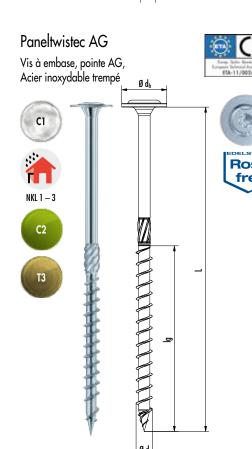
Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.

 \longrightarrow Valeur de dimensionnement de l'effet $E_{d}{=}$ 2,00 \cdot 1,35 + 3,00 \cdot 1,5= $\underline{7,20~kN}.$


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$


PANELTWISTEC, PANELTWISTEC AG

Acier inoxydable trempé

						1
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945278	8,0	80	16	48	TX40 •	50
945270	8,0	100	16	60	TX40 •	50
945271	8,0	120	16	80	TX40 •	50
945272	8,0	140	16	80	TX40 •	50
945364	8,0	160	16	80	TX40 •	50
945365	8,0	180	16	80	TX40 •	50
945366	8,0	200	16	80	TX40 •	50
945367	8,0	220	16	80	TX40 •	50
945368	8,0	240	16	80	TX40 •	50
945369	8,0	260	16	80	TX40 •	50
945370	8,0	280	16	80	TX40 •	50
945371	8,0	300	16	80	TX40 •	50
945372	8,0	320	16	80	TX40 •	50
945373	8,0	340	16	80	TX40 •	50
945374	8,0	360	16	80	TX40 •	50
945375	8,0	380	16	80	TX40 •	50
945376	8,0	400	16	80	TX40 •	50

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
975771	6,0	40	14,0	24	TX30 •	100
975772	6,0	60	14,0	36	TX30 •	100
975773	6,0	80	14,0	48	TX30 •	100
975774	6,0	100	14,0	60	TX30 •	100
975775	6,0	120	14,0	70	TX30 •	100
975776	6,0	140	14,0	70	TX30 •	100
975777	6,0	160	14,0	70	TX30 •	100

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER INOXYDABLE TREMPÉ

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la	Résistance à la pénétration de la tête Cisaillement bois-bois				Cisaillement acier-bois			
dk munumus di			ET AD	Fax.90,Rk	Fax,head,Rk	/ (\alpha = 0°) / (\alpha = 0°) / (\alpha = 0°) / (\alpha = 0°)		ET V	(a= 90°) (a= 90°) (a= 0°)	AD ET	V (α= 0°) V (α= 90		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	† [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
[]	LIIIIII	Liiiii	[]	[vii]	[KII]		[KII]	[KII]	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$	[]	[KN]	[KII]
							α= 0 °	α^{AD} = 90°	$\alpha_{AD} = 0$ $\alpha_{ET} = 90^{\circ}$			α= 0 °	α= 90 °
4,0 x 30	0.0	12	18	0,93	0,77		α= υ			$\alpha_{\text{ET}} = 0^{\circ}$	2		
4,0 x 30 4,0 x 35	8,0 8,0	14	21	1,08	0,77				1,71 1,80		2		,91 ,07
4,0 x 33	8,0	16	24	1,24	0,77				,84		2		,15
4,0 x 45	8,0	18	27	1,39	0,77				,88		2		,19
4,0 x 50	8,0	20	30	1,55	0,77				,92		2		,23
4,0 x 60	8,0	24	36	1,86	0,77				,01		2		,31
4,5 x 45	9,0	18	27	1,52	0,97				,00		2		,37
4,5 x 50	9,0	20	30	1,69	0,97				,08		2		,44
4,5 x 60	9,0	24	36	2,03	0,97				,17		2		,53
4,5 x 70	9,0	28	42	2,36	0,97				,23		2		,61
4,5 x 80	9,0	32	48	2,70	0,97			1	,23		2		,75
5,0 x 50	10,0	20	30	1,82	1,20				,24		2		,67
5,0 x 60	10,0	24	36	2,18	1,20			1	,34		2	1	,76
5,0 x 70	10,0	28	42	2,54	1,20			1	,44		2	1,	,85
5,0 x 80	10,0	32	48	2,90	1,20				,52		2		,94
5,0 x 90	10,0	36	54	3,27	1,20				,52		2		,03
5,0 x 100	10,0	40	60	3,63	1,20				,52		2		,12
6,0 x 60	12,0	24	36	2,46	1,73				,65		2		,21
6,0 x 70	12,0	28	42	2,87	1,73				,75		2		,31
6,0 x 80	12,0	32	48	3,28	1,73				,85		2		,41
6,0 x 90	12,0	36	54	3,69	1,73				,96		2		,51
6,0 x 100	12,0	40	60	4,10	1,73				,02		2		,62
6,0 x 120	12,0	50	70	4,79	1,73				,60		2		,35
6,0 x 140	12,0	70	70	4,79	1,73				2,02		2		,80
6,0 x 160	12,0	90	70	4,79	1,73			2	2,02		2	2	,80

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement des R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement de la capacité de charge R_d

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER INOXYDABLE TREMPÉ

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisailleme	nt bois-bois		Cisaillement acier-bois		
dk OV				Fax.90,Rk	V (a= 0 V (a= 0 V (a= 0 V (a= 0 V (a= 0		ET AD	/ (\alpha = 90°) / (\alpha = 90°) / (\alpha = 90°) / (\alpha = 0°)	AD ET ET	V (α=	- - - 77/	
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
LIIIIII	LIIIIII	[IIIIII]	LIIIIII	[KIN]	[KII]	[KN]	[KN]			[IIIIII]	[KN]	LKINJ
						•	ID 000	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		•	000
						α= 0 °	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
6,0 x 40	14,0	16	24	1,64	2,35			,33		2		,63
6,0 x 60	14,0	24	36	2,46	2,35	1,81				2		,21
6,0 x 80	14,0	32	48	3,28	2,35	2,01				2		,41
6,0 x 100	14,0	40	60	4,10	2,35		1,74					,18
6,0 x 100	14,0	40	60	4,10	2,35			,18		2		,62
6,0 x 120	14,0	50	70	4,80	2,35			,18		2		,80
6,0 x 160	14,0	90	70	4,80	2,35			,18		2		,80
8,0 x 80	22,0	30	50	4,26	5,81	3,94	3,21	3,72	3,36	3	4,41	3,83
8,0 x 100	22,0	40	60	4,80	5,81	4,55	3,71	4,21	3,87	3	4,55	3,96
8,0 x 120	22,0	60	60	5,33	5,81	4,68	4,10	4,34	4,34	3	4,68	4,10
8,0 x 140	22,0	60	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 160	22,0	80	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 180	22,0	100	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 200	22,0	120	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 220	22,0	140 160	80	7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 240	22,0	180	80	7,10	5,81	4,80	4,21	4,46	4,46		5,12	4,54
8,0 x 260 8,0 x 280	22,0	200	80	7,10 7,10	5,81 5,81	4,80	4,21	4,46	4,46	3	5,12 5,12	4,54
8,0 x 280 8,0 x 300	22,0	200	80	7,10 7,10	5,81	4,80	4,21	4,46 4,46	4,46 4,46	3	5,12 5,12	4,54
8,0 x 320	22,0 22,0	240	80 80	7,10 7,10	5,81	4,80 4,80	4,21 4,21	4,46	4,46	3	5,12	4,54 4,54
8,0 x 340	22,0	260	80	7,10 7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 360	22,0	280	80	7,10 7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 380	22,0	300	80	7,10 7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
8,0 x 400	22,0	320	80	7,10 7,10	5,81	4,80	4,21	4,46	4,46	3	5,12	4,54
U,U A 700	22,0	JZU	UU	1,10	J,U1	7,00	7,41	טד,ד	טד,ד	J	J,12	דע,ד

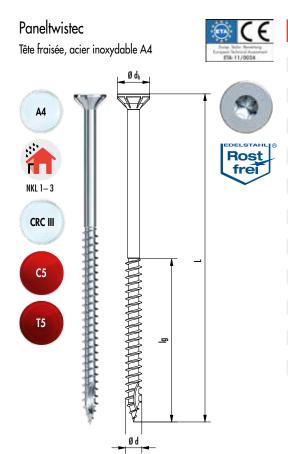
Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

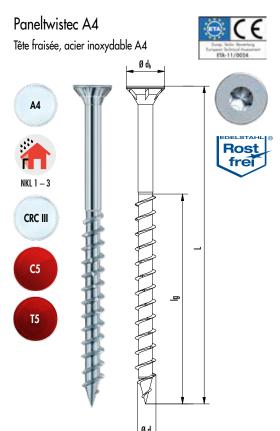
Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Ret Rk · kmed / yu. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd ≥ Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

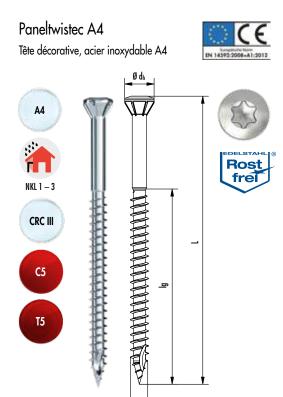

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

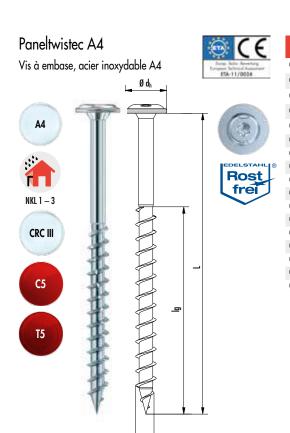

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Rt= Rt · 7/11 / Ntmot -> Rt= 7,20 kN · 1,3/0,9= 10,40 kN -> Mise en cohérence avec les valeurs du tableau.

PANELTWISTEC A4

Acier inoxydable A4

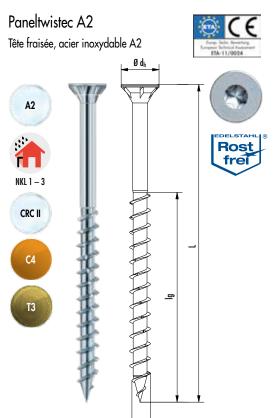


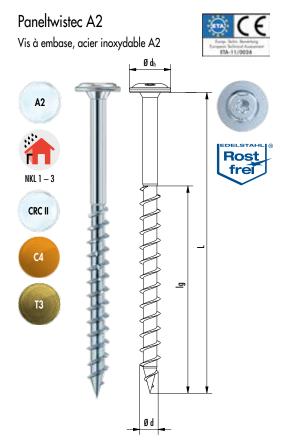
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
901476	4,0	25	7,75	15	TX20 •	500
111442	4,0	35	7,75	21	TX20 -	500
903202	4,0	40	7,75	24	TX20 •	500
111443	4,0	45	7,75	27	TX20 -	500
901109	4,0	55	7,75	33	TX20 •	500
111444	4,0	60	7,75	36	TX20 -	500
111445	4,0	70	7,75	42	TX20 🗢	200
111446	4,0	80	7,75	48	TX20 -	200
111447	4,5	45	8,75	27	TX25 •	200
111448	4,5	60	8,75	36	TX25 •	200
111449	4,5	70	8,75	42	TX25 •	200
111450	4,5	80	8,75	48	TX25 •	200
903990	5,0	40	9,75	24	TX25 •	200
111451	5,0	50	9,75	30	TX25 •	200
111452	5,0	60	9,75	36	TX25 •	200
111453	5,0	70	9,75	42	TX25 •	200
111454	5,0	80	9,75	48	TX25 •	200
903580	5,0	100	9,75	60	TX25 •	200
111459	6,0	60	11,75	36	TX30 •	100
944885	6,0	70	11,75	42	TX30 •	100
111460	6,0	80	11,75	48	TX30 •	100
111458	6,0	100	11,75	60	TX30 •	100
901478	6,0	120	11,75	60	TX30 •	100



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903280	8,0	80	14,50	48	TX40 •	50
903281	8,0	100	14,50	60	TX40 •	50
903282	8,0	120	14,50	80	TX40 •	50
903283	8,0	140	14,50	80	TX40 •	50
903284	8,0	160	14,50	80	TX40 •	50
903285	8,0	180	14,50	80	TX40 •	50
903286	8,0	200	14,50	80	TX40 •	50
903287	8,0	220	14,50	80	TX40 •	50
903288	8,0	240	14,50	80	TX40 •	50
903289	8,0	260	14,50	80	TX40 •	50
903290	8,0	280	14,50	80	TX40 •	50
903291	8,0	300	14,50	80	TX40 •	50
903292	8,0	320	14,50	80	TX40 •	50
903293	8,0	340	14,50	80	TX40 •	50
903294	8,0	360	14,50	80	TX40 •	50
903295	8,0	380	14,50	80	TX40 •	50
903296	8,0	400	14,50	80	TX40 •	50

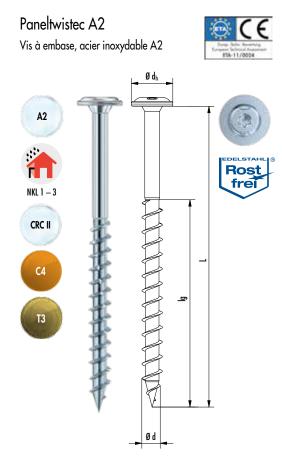
Eurotec® | Paneltwistec


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
901479	3,2	25	5,10	17,5	TX10 O	1000
903038	3,2	30	5,10	21	TX10 O	1000
901480	3,2	35	5,10	19	TX10 \circ	1000
901481	3,2	40	5,10	24	TX10 O	1000
903104	3,2	50	5,10	34	TX10 O	1000


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903260	8,0	80	16	48	TX40 •	50
903261	8,0	100	16	60	TX40 •	50
903262	8,0	120	16	80	TX40 •	50
903263	8,0	140	16	80	TX40 •	50
903264	8,0	160	16	80	TX40 •	50
903265	8,0	180	16	80	TX40 •	50
903266	8,0	200	16	80	TX40 •	50
903267	8,0	220	16	80	TX40 •	50
903268	8,0	240	16	80	TX40 •	50
903269	8,0	260	16	80	TX40 •	50
903270	8,0	280	16	80	TX40 •	50
903271	8,0	300	16	80	TX40 •	50
903272	8,0	320	16	80	TX40 •	50
903273	8,0	340	16	80	TX40 •	50
903274	8,0	360	16	80	TX40 •	50
903275	8,0	380	16	80	TX40 •	50
903276	8,0	400	16	80	TX40 •	50

PANELTWISTEC A2

Acier inoxydable A2



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903230	8,0	80	14,5	48	TX40 ●	50
903231	8,0	100	14,5	60	TX40 •	50
903232	8,0	120	14,5	80	TX40 •	50
903233	8,0	140	14,5	80	TX40 •	50
903234	8,0	160	14,5	80	TX40 •	50
903235	8,0	180	14,5	80	TX40 •	50
903236	8,0	200	14,5	80	TX40 •	50
903237	8,0	220	14,5	80	TX40 •	50
903238	8,0	240	14,5	80	TX40 •	50
903239	8,0	260	14,5	80	TX40 •	50
903240	8,0	280	14,5	80	TX40 •	50
903241	8,0	300	14,5	80	TX40 •	50
903242	8,0	320	14,5	80	TX40 •	50
903243	8,0	340	14,5	80	TX40 •	50
903244	8,0	360	14,5	80	TX40 •	50
903245	8,0	380	14,5	80	TX40 •	50
903246	8,0	400	14,5	80	TX40 •	50

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
946266ª)	3,0	25	9	18	TX100	1000
946267°)	3,0	30	9	18	TX10 o	1000
946268°)	3,0	35	9	24	TX10 o	1000
946269 ^{a)}	3,0	40	9	24	TX10 o	1000
946270°)	3,0	45	9	30	TX10 o	1000
946271°)	3,0	50	9	30	TX10 o	1000
946272	4,0	30	12	18	TX20 -	1000
946273	4,0	40	12	24	TX20 -	1000
946274	4,0	50	12	30	TX20 •	500
946275	4,0	60	12	36	TX20 -	500
946276	4,0	70	12	42	TX20 -	200
946277	4,5	40	13	24	TX20 -	500
946278	4,5	50	13	30	TX20 •	500
946279	4,5	60	13	36	TX20 -	200
946280	4,5	70	13	42	TX20 -	200
946281	4,5	80	13	48	TX20 -	200
946282	5,0	40	14	24	TX25 •	200
946283	5,0	50	14	30	TX25 •	200
946284	5,0	60	14	36	TX25 •	200
946285	5,0	70	14	42	TX25 •	200
946286	5,0	80	14	48	TX25 •	200
946287	5,0	100	14	60	TX25 •	200
946288	5,0	120	14	70	TX25 •	200
946289	6,0	60	15	36	TX30 •	200
946290	6,0	80	15	48	TX30 •	200

Eurotec | Paneltwistec

903227

	1	ı	ı			
N° de réf.	Ød[mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
946291	6,0	100	15	70	TX30 •	100
946292	6,0	120	15	70	TX30 •	100
946293	6,0	140	15	70	TX30 •	100
946294	6,0	160	15	70	TX30 •	100
946295	6,0	180	15	70	TX30 •	100
946296	6,0	200	15	70	TX30 •	100
946291	6,0	100	15	70	TX30 •	100
946292	6,0	120	15	70	TX30 •	100
946293	6,0	140	15	70	TX30 •	100
946294	6,0	160	15	70	TX30 •	100
946295	6,0	180	15	70	TX30 •	100
946296	6,0	200	15	70	TX30 •	100
903211	8,0	80	16	48	TX40 •	50
903212	8,0	100	16	60	TX40 •	50
903213	8,0	120	16	80	TX40 •	50
903214	8,0	140	16	80	TX40 •	50
903215	8,0	160	16	80	TX40 •	50
903216	8,0	180	16	80	TX40 •	50
903217	8,0	200	16	80	TX40 •	50
903218	8,0	220	16	80	TX40 •	50
903219	8,0	240	16	80	TX40 •	50
903220	8,0	260	16	80	TX40 •	50
903221	8,0	280	16	80	TX40 •	50
903222	8,0	300	16	80	TX40 •	50
903223	8,0	320	16	80	TX40 •	50
903224	8,0	340	16	80	TX40 •	50
903225	8,0	360	16	80	TX40 •	50
903226	8,0	380	16	80	TX40 •	50

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER INOXYDABLE A4

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la t	ête	Cisaillement bois-bois				Cisaillement acier-bois				
dk			ET AD	N Fax,90,Rk	Fax.head,Fix	/ (\alpha = 0° / (\alpha = 0° / (\alpha = 0° / (\alpha = 0°		AD ET AD	V (a= 90°) V (a= 90°) V (a= 0°)	AD ET	V (α= 0°) V (α= 90°)		t		
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]		
[]	LIIIIII	[]	LIIIIII	[KII]	[KII]		[KN]	[KII]	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$	[!!!!!]	[KII]	[KII]		
							$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	$\alpha_{\rm HI} = 90^{\circ}$	$\alpha_{\rm AD} = 70^{\circ}$		α – N°	$\alpha = 90^{\circ}$		
4,0 x 25	8,0	10	15	0,77	0,77		α – υ	u – 70	0,60	α _{El} – v	2	0,7			
4,0 x 35	8,0	14	21	1,08	0,77				0,68		2	0,1			
4,0 x 40	8,0	16	24	1,24	0,77				0,72		2	0,			
4,0 x 45	8,0	18	27	1,39	0,77				0,76		2	0,			
4,0 x 55	8,0	22	33	1,55	0,77				0,78		2	1,0			
4,0 x 60	8,0	24	36	1,86	0,77				0,78		2	1,0			
4,0 x 70	8,0	28	42	2,17	0,77				0,78		2	1,	13		
4,0 x 80	8,0	32	48	2,48	0,77				0,78		2	1,3	20		
4,5 x 45	9,0	18	27	1,69	0,97				0,90		2	1,			
4,5 x 60	9,0	24	36	2,03	0,97				0,97		2	1,			
4,5 x 70	9,0	28	42	2,36	0,97				0,97		2	1,3			
4,5 x 80	9,0	32	48	2,70	0,97				0,97		2	1,4			
5,0 x 40	10,0	16	24	1,45	1,20				0,98		2	1,:			
5,0 x 45	10,0	18	27	1,63	1,20				1,03		2	1,5			
5,0 x 50	10,0	20	30	1,82	1,20				1,07		2	1,3			
5,0 x 60	10,0	24	36	2,18	1,20				1,15		2	1,4			
5,0 x 70	10,0	28	42	2,54	1,20				1,15		2	1,.			
5,0 x 80	10,0	32	48	2,90	1,20				1,15		2	1,5			
5,0 x 90	10,0	36	54 40	3,27	1,20				1,15		2	1,0			
5,0 x 100 6,0 x 60	10,0	40 24	60 36	3,63 2,46	1,20 1,73				1,15 1,48		2		76 77		
6,0 x 70	12,0 12,0	28	30 42	2,87	1,73				1,40		2		87		
6,0 x 70	12,0	32	48	3,28	1,73				1,60		2		97		
6,0 x 90	12,0	36	40 54	3,69	1,73				1,60		2	2,1			
6,0 x 100	12,0	40	60	4,10	1,73				1,60		2	2,			
6,0 x 120	12,0	50	70	4,79	1,73				1,60		2		35		

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{Nk}$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_k ($R_k \ge E_k$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}} \: / \: k_{\text{m$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE FRAISÉE, ACIER INOXYDABLE A4 ET A2

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisailleme	nt bois-bois		Cisaillement acier-bois		
dk annum we want of the state o	+		ET AD	N Fax,90,Rk	V (a= 0 ₀)	ET V	(a= 90°) (a= 90°) (a= 0°)	AD ET AD	V (α= 0°) V (α= 90°)		t t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{axheod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	$\alpha_{EI} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$
8,0 x 80	14,5	30	50	4,26	2,52	3,08	2,50	2,83	2,62	3	3,51	3,08
8,0 x 100	14,5	40	60	5,33	2,52	3,08	2,65	2,83	2,83	3	3,78	3,35
8,0 x 120	14,5	40	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 140	14,5	60	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 160	14,5	80	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 180	14,5	100	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 200	14,5	120	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 220	14,5	140	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 240	14,5	160	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 260	14,5	180	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 280	14,5	200	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 300	14,5	220	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 320	14,5	240	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 340	14,5	260	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 360	14,5	280	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 380	14,5	300	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80
8,0 x 400	14,5	320	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{ik}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{N}=1,3.$

→ Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5 = <u>7,20 kN</u>.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER INOXYDABLE

	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration de la tête	Cisaillement bois-bois				Cisaillement acier-bois		
dk munimus di	÷		ET AD	N Fax,90,Rk	V (a=	0°)	AD V(a=	90°)	AD ET	V (α= 0°) V (α= 90		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	$\alpha_{EI} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$
8,0 x 80	16,0	30	50	4,26	3,07	3,21	2,63	2,97	2,75	3	3,51	3,08
8,0 x 100	16,0	40	60	5,33	3,07	3,21	2,78	2,97	2,97	3	3,78	3,35
8,0 x 120	16,0	40	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 140	16,0	60	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 160	16,0	80	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 180	16,0	100	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 200	16,0	120	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 220	16,0	140	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 240	16,0	160	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 260	16,0	180	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 280	16,0	200	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 300	16,0	220	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 320	16,0	240	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 340	16,0	260	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 360	16,0	280	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 380	16,0	300	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80
8,0 x 400	16,0	320	80	7,10	3,07	3,21	2,78	2,97	2,97	3	4,22	3,80

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_k = 350 \text{ kg/m}^3$. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_k : $R_k = R_k \cdot k_{mod} / \gamma_{N_k}$. Les valeurs de dimensionnement de la capacité de charge R_k sont à comparer aux valeurs de dimensionnement des effets E_k ($R_k \ge E_k$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

INFORMATIONS TECHNIQUES PANELTWISTEC, TÊTE DÉCORATIVE, ACIER INOXYDABLE A4

		Dimensio	ons	Résistance à la pénétration de la tête			Cisaillement	bois-bois		
ioda 	· _		NO PRO	Fax.head.Rx		V (a= 0°)	AD ET	V (a= 90°) V (a= 90°) V (a= 90°)		
- d1			E	N	AD AD			V (α=0°)		
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,head,Rk} [kN]	$egin{array}{cccc} F_{l_0,Rk} & F_{l_0,Rk} & F_{l_0,Rk} \ [kN] & [kN] & [kN] \end{array}$			F _{lo.Rk} [kN]		
							$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$		
					$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	$\alpha_{\text{ET}} = 90^{\circ}$	$\alpha_{ET} = 0^{\circ}$		
3,2 x 25	5,1	7	18	0,31			0,34			
3,2 x 30	5,1	9	21	0,31	0,37					
3,2 x 35	5,1	16	19	0,31	0,45					
3,2 x 40	5,1	16	24	0,31			0,45			
3,2 x 50	5,1	16	34	0,31	0,45					

En raison de la résistance plus élevée à la pénétration de la tête décarative de la vis Paneltwistec par rapport à la résistance à l'arrachement de la vis, cette valeur peut être négligée.

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_k = 350 \text{ kg/m}^3$. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{R_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow min } R_k = R_d \cdot \gamma_M \: / \: k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER INOXYDABLE A2

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisaillement bo	ois-bois	Cis	aillement acier-bois
			ET AD	N Fax,90,8k	V (a= V (a= V (a= N V	0°)	AD $V(\alpha = 90)$ ET $V(\alpha = 90)$ AD $V(\alpha = 90)$ ET $V(\alpha = 90)$		AD V (Q=	- t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} † [kN] [mr	F _{la,Rk} F _{la,Rk} n] [kN] [kN]
								$\alpha_{\text{AD}} = \boldsymbol{0}^{\circ}$	$\alpha_{AD} = 90^{\circ}$	
						$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	$\alpha_{\rm H}$ = 90°	$\alpha_{\text{ET}} = 0^{\circ}$	$\alpha = 0^{\circ} \alpha = 90^{\circ}$
3,0 x 25	9	7	18	0,72	0,77	0. V	0,43	SIE[75	1	0,54
3,0 x 30	9	12	18	0,72	0,77		0,51		1	0,54
3,0 x 35	9	11	24	0,96	0,77		0,51		1	0,60
3,0 x 40	9	16	24	0,96	0,77		0,55		1	0,60
3,0 x 45	9	15	30	1,20	0,77		0,55		1	0,66
3,0 x 50	9	20	30	1,20	0,77		0,55		1	0,66
4,0 x 30	12	12	18	0,93	1,45		0,68		2	
4,0 x 40	12	16	24	1,24	1,45		0,84		2	0,89
4,0 x 50	12	20	30	1,55	1,45		0,95		2	
4,0 x 60	12	24	36	1,86	1,45		0,95		2	
4,0 x 70	12	28	42	2,17	1,45		0,78		2	
4,5 x 40	13	16	24	1,35	1,73		0,94		2	
4,5 x 50	13	20	30	1,69	1,73		1,12		2	
4,5 x 60	13	24	36	2,03	1,73		1,15		2	
4,5 x 70	13	28	42	2,36	1,73		1,15		2	
4,5 x 80	13	32	48	2,70	1,73		1,15		2	1,40
5,0 x 40	14 14	16 20	24	1,45	2,03		1,04		2 2	
5,0 x 50 5,0 x 60	14	24	30 36	1,82	2,03 2,03		1,23 1,36		2	1,31
5,0 x 00	14	28	42	2,18 2,54	2,03		1,36		2	
5,0 x 70	14	32	48	2,90	2,03		1,36		2	
5,0 x 100	14	40	60	3,63	2,03		1,36		2	
5,0 x 120	14	50	70	4,24	2,03		1,36		2	
6,0 x 60	15	24	36	2,46	2,35		1,64		3	
6,0 x 80	15	32	48	3,28	2,35		1,74		3	
6,0 x 100	15	30	70	4,79	2,35		1,74		3	
6,0 x 120	15	50	70	4,79	2,35		1,74		3	
6,0 x 140	15	70	70	4,79	2,35		1,74		3	
6,0 x 160	15	90	70	4,79	2,35		1,74		3	
6,0 x 180	15	110	70	4,79	2,35		1,74		3	
6,0 x 200	15	130	70	4,79	2,35		1,74		3	

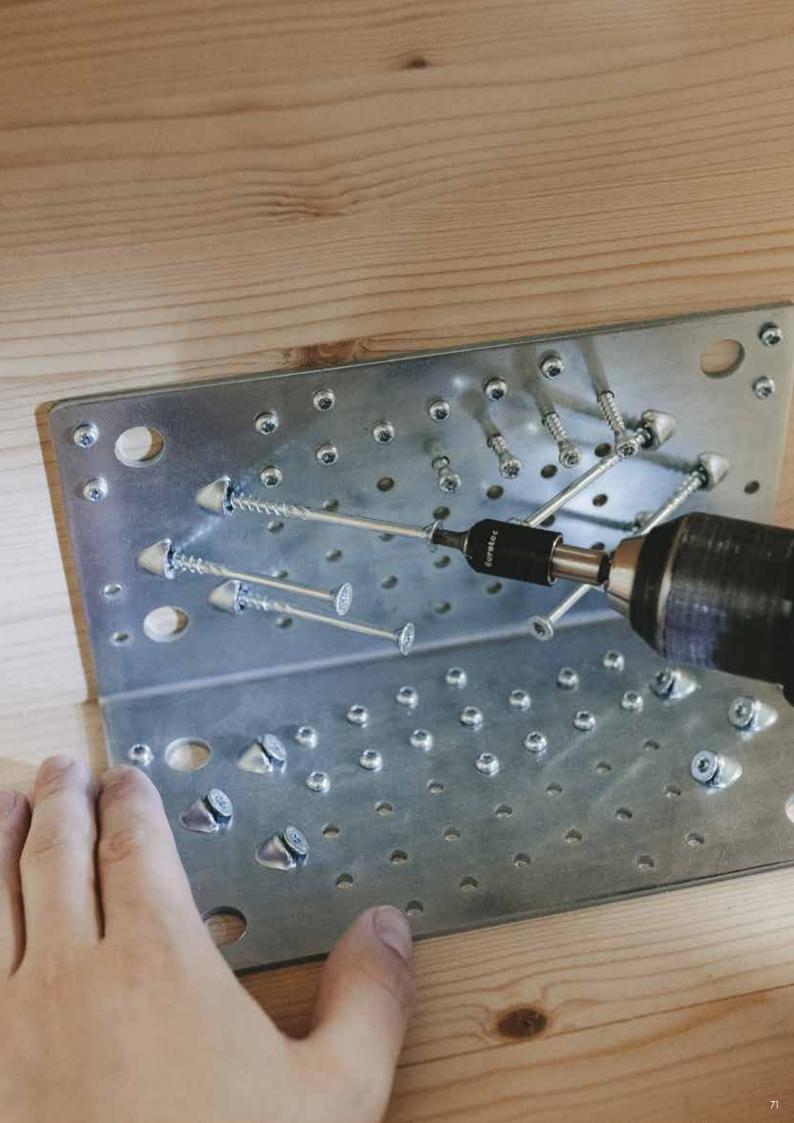
Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition. Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la dasse de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER INOXYDABLE A2


	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisailleme	nt bois-bois		Cisaillement acier-bois			
dk dt			ET AD	N Fax,90,Rk	Fax.head.Rk	V (a= 0°) V (a= 0°) V (a= 0°)	AD AD	V (a= 90°) V (a= 90°) V (a= 0°)	AD AD AD ET	V (α= 0° V (α= 90	77/		
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,heod,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$				
						$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	$\alpha_{\rm EI} = 90^{\circ}$	$\alpha_{\rm H} = 0^{\circ}$		$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	
8,0 x 80	14,5	30	50	4,26	2,52	3,08	2,50	2,83	2,62	3	3,51	3,08	
8,0 x 100	14,5	40	60	5,33	2,52	3,08	2,65	2,83	2,83	3	3,78	3,35	
8,0 x 120	14,5	40	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 140	14,5	60	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 160	14,5	80	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 180	14,5	100	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 200	14,5	120	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 220	14,5	140	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 240	14,5	160	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 260	14,5	180	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 280	14,5	200	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 300	14,5	220	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 320	14,5	240	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 340	14,5	260	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 360	14,5	280	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 380	14,5	300	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	
8,0 x 400	14,5	320	80	7,10	2,52	3,08	2,65	2,83	2,83	3	4,22	3,80	

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_k = 350 \text{ kg/m}^3$. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition. Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$.

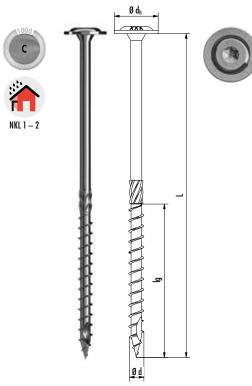
- \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$. C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod}$
- \rightarrow R_k = 7,20 kN \cdot 1,3/0,9 = 10,40 kN \rightarrow Mise en cohérence avec les valeurs du tableau.

PANELTWISTEC 1000

Acier avec revêtement spécial

La vis Paneltwistec 1000 en acier au carbone trempé avec revêtement spécial est un moyen de connexion utilisé pour les constructions en bois porteuses entre des éléments en bois massif (résineux), bois stratifié, bois de placage stratifié ou matériaux similaires à base de bois collés. La vis dispose d'un fût à la pointe de la vis et de nervures fraisantes au-dessus du filet. La vis est disponible dans les versions « tête fraisée » et « vis à embase ». La géométrie spéciale de la vis garantit une réduction de l'effet de fendillement lors du vissage. Par ailleurs, le revêtement spécial réduit la résistance au vissage, ce qui revient à dire que la friction entre le corps de vis et le bois est nettement plus faible.

Paneltwistec 1000 Tête fraisée, pointe de vis avec fût, acier avec revêtement spécial Seulement des vis avec un Ø de 3,0 mm NKL 1 - 2


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
R945034	3,0	12	5,6	Filetage complet	TX10°	1000
R945035	3,0	16	5,6	Filetage complet	TX10°	1000
R903038	3,0	20	5,6	Filetage complet	TX100	1000
R903039	3,0	25	5,6	Filetage complet	TX10 O	1000
R903040	3,0	30	5,6	18	TX10 °	1000
R903041	3,0	35	5,6	21	TX10 O	1000
R903042	3,0	40	5,6	24	TX10 O	1000
R945036	3,5	12	7,0	Filetage complet	TX20 •	1000
R945037	3,5	16	7,0	Filetage complet	TX20 •	1000
R903043	3,5	20	7,0	Filetage complet	TX20 -	1000
R903044	3,5	25	7,0	Filetage complet	TX20 •	1000
R903045	3,5	30	7,0	18	TX20 -	1000
R903046	3,5	35	7,0	21	TX20 •	1000
R903047	3,5	40	7,0	24	TX20 •	1000
R903048	3,5	50	7,0	27	TX20 •	500
R945038	4,0	16	8,0	Filetage complet	TX20 •	1000
R903001	4,0	20	8,0	Filetage complet	TX20 •	1000
R903002	4,0	25	8,0	Filetage complet	TX20 •	1000
R903003	4,0	30	8,0	18	TX20 •	1000
R903049	4,0	35	8,0	21	TX20 -	1000
R903004	4,0	40	8,0	24	TX20 •	1000
R902089	4,0	45	8,0	27	TX20 •	500
R903005	4,0	50	8,0	30	TX20 •	500
R903006	4,0	60	8,0	36	TX20 •	200
R903007	4,0	70	8,0	42	TX20 •	200
R903008	4,0	80	8,0	48	TX20 •	200
R945039	4,5	16	9,0	Filetage complet	TX20 •	1000
R903050	4,5	25	9,0	Filetage complet	TX20 -	500
R903051	4,5	30	9,0	18	TX20 •	500
R903052	4,5	35	9,0	21	TX20 -	500
R903009	4,5	40	9,0	24	TX20 •	500
R903010	4,5	50	9,0	30	TX20 •	500
R903011	4,5	60	9,0	36	TX20 •	200
R903012	4,5	70	9,0	42	TX20 •	200
R903013	4,5	80	9,0	48	TX20 •	200
R903468	4,5	90	9,0	54	TX20 •	200
R903063	4,5	100	9,0	60	TX20 •	200
R903053	5,0	25	10,0	Filetage complet	TX20 •	500
R903054	5,0	30	10,0	20	TX20 •	500
R903055	5,0	35	10,0	21	TX20 •	500
R903014	5,0	40	10,0	24	TX20 •	200
R903579	5,0	45	10,0	27	TX20 •	200
R903015	5,0	50	10,0	30	TX20 -	200
R903016	5,0	60	10,0	36	TX20 -	200
R903017	5,0	70	10,0	42	TX20 -	200
R903018	5,0	80	10,0	48	TX20 •	200
R903578	5,0	90	10,0	54	TX20 •	200
R903019	5,0	100	10,0	60	TX20 •	200
R903020	5,0	120	10,0	70	TX20 •	200
	,		'		A	

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
R903581	6,0	40	12,0	24	TX30 •	200
R903582	6,0	50	12,0	30	TX30 •	200
R903021	6,0	60	12,0	36	TX30 •	200
R903022	6,0	70	12,0	42	TX30 •	200
R903023	6,0	80	12,0	48	TX30 •	200
R903163	6,0	90	12,0	54	TX30 •	100
R903024	6,0	100	12,0	60	TX30 •	100
R903025	6,0	120	12,0	70	TX30 •	100
R903026	6,0	130	12,0	70	TX30 •	100
R903027	6,0	140	12,0	70	TX30 •	100
R903029	6,0	160	12,0	70	TX30 •	100
R903031	6,0	180	12,0	70	TX30 •	100
R903032	6,0	200	12,0	70	TX30 •	100
R903033	6,0	220	12,0	70	TX30 •	100
R903034	6,0	240	12,0	70	TX30 •	100
R903035	6,0	260	12,0	70	TX30 •	100
R903036	6,0	280	12,0	70	TX30 •	100
R903037	6,0	300	12,0	70	TX30 •	100

Paneltwistec 1000

Vis à embase, acier avec revêtement spécial

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
R901357	6,0	100	14,0	60	TX30 •	100
R901359	6,0	120	14,0	70	TX30 •	100
R901361	6,0	140	14,0	70	TX30 •	100
R901364	6,0	180	14,0	70	TX30 •	100
R901365	6,0	200	14,0	70	TX30 •	100
R903060	8,0	80	22,0	48	TX40 •	50
R903062	8,0	100	22,0	54	TX40 •	50
R903064	8,0	120	22,0	60	TX40 •	50
R903066	8,0	140	22,0	80	TX40 •	50
R903067	8,0	160	22,0	80	TX40 •	50
R903470	8,0	180	22,0	80	TX40 •	50
R903069	8,0	200	22,0	80	TX40 •	50
R903472	8,0	220	22,0	80	TX40 •	50
R903071	8,0	240	22,0	80	TX40 •	50
R903072	8,0	260	22,0	80	TX40 •	50
R903073	8,0	280	22,0	80	TX40 •	50
R903074	8,0	300	22,0	80	TX40 •	50
R903475	8,0	360	22,0	80	TX40 •	50
R904625	8,0	380	22,0	80	TX40 •	50
R903476	8,0	400	22,0	80	TX40 •	50
R903077	10,0	60	25,0	36	TX40 •	50
R903079	10,0	80	25,0	50	TX40 •	50
R903081	10,0	100	25,0	60	TX40 •	50
R903083	10,0	120	25,0	70	TX40 •	50
R903085	10,0	160	25,0	90	TX40 •	50
R903086	10,0	180	25,0	100	TX40 •	50
R903087	10,0	200	25,0	100	TX40 •	50
R903088	10,0	220	25,0	100	TX40 •	50
R903089	10.0	240	25.0	100	TX40 •	50

INFORMATIONS TECHNIQUES PANELTWISTEC , TÊTE FRAISÉE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000

	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de	la tête		Cisailleme	nt bois-bois		Cisaillement acier-bois		
dk summing di			ET AD	N Fax,90,Rk	Fax,head,Rk	V (α= 0°) V (α= 0°) V (α= 0°) V (α= 90°)		ET V(c	i= 90°) i= 90°) i= 90°)	AD ET	V (α= 0° V (α= 90		t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
[]	[]	[]	[]	[KII]	[mi]		[KII]	[KII]	$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$	[]	[KII]	[KII]
							α= 0 °	α ^{AD} = 90°	$\alpha_{AD} = 0$ $\alpha_{EI} = 90^{\circ}$	$\alpha_{AD} = 70$ $\alpha_{ET} = 0^{\circ}$		α= 0 °	α= 90 °
3,0 x 12	5,6	6	6	0,21	0,38		α= υ	$\alpha = 70$		$\alpha_{\rm H} = 0$	1		.27
3,0 x 12	5,6	8	8	0,28	0,38			0,			1		,37
3,0 x 10	5,6	10	10	0,35	0,38						1		,47
3,0 x 25	5,6	10	15	0,53	0,38				1		,60		
3,0 x 30	5,6	12	18	0,64	0,38			0,			1		,60
3,0 x 35	5,6	14	21	0,74	0,38				48		1		,63
3,0 x 40	5,6	16	24	0,85	0,38				52		1		,66
3,5 x 12	7	6	6	0,28	0,59				24		1		,30
3,5 x 16	7	8	8	0,37	0,59			0,	32		1		,41
3,5 x 20	7	10	10	0,47	0,59			0,	40		1		,52
3,5 x 25	7	10	15	0,70	0,59			0,	52		1	0,	,66
3,5 x 30	7	12	18	0,84	0,59			0,	62		1	0,	,86
3,5 x 35	7	14	21	0,98	0,59			0,	67		1	0,	,92
3,5 x 40	7	16	24	1,12	0,59				70		1		,95
3,5 x 50	7	20	30	1,40	0,59			0,			1		,02
4,0 x 16	8	8	8	0,41	0,77				35		2		,42
4,0 x 20	8	10	10	0,52	0,77				44		2		,55
4,0 x 25	8	10	15	0,77	0,77				60		2		,70
4,0 x 30	8	12	18	0,93	0,77			0,			2		,91
4,0 x 35	8	14	21	1,08	0,77				80		2		,07
4,0 x 40	8	16	24	1,24	0,77				84		2		,15
4,0 x 45	8	18	27	1,39	0,77				88		2		,19
4,0 x 50	8	20	30	1,55	0,77				92		2		,23
4,0 x 60	8	24	36	1,86	0,77				01		2		,31
4,0 x 70	8	28	42	2,17	0,77				03		2		,38
4,0 x 80	8	32	48	2,48	0,77			1,	03		2	1,	,46

Dimensionnement selon ETA-11/0024 Masse volumique pk= 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge sont, en ce qui concerne la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmod / γ M. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd \geq Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M \, / \, k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC , TÊTE FRAISÉE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000

	Dimensi	ions		Résistance à l'arrachement	Résistance à la pénétration c	le la tête	Cisaillement bois-bois				Cisaillement acier-bois		
dk	-		ET AD	N Fax.90.Rk	Fax.head.Rk	V (a= 0°) V (a= 0°) V (a= 0°) V (a= 0°)		AD	= 90°) = 90°) = 90°) = 0°)	AD ET	V (a= 0°) V		t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	$\alpha_{\rm EI}$ = 90°	$\alpha_{\rm EI} = 0^{\circ}$		α= 0 °	α= 90 °
4,5 x 16	9	8	8	0,45	0,97			0,		ov[i ♥	2		,46
4,5 x 25	9	10	15	0,84	0,97			0,			2		,76
4,5 x 30	9	12	18	1,01	0,97			0,			2		,92
4,5 x 35	9	14	21	1,18	0,97			0,			2		,09
4,5 x 40	9	16	24	1,35	0,97			1,1			2		,34
4,5 x 50	9	20	30	1,69	0,97			1,1			2		,44
4,5 x 60	9	24	36	2,03	0,97			1,			2		,53
4,5 x 70	9	28	42	2,36	0,97			1,			2		,61
4,5 x 80	9	32	48	2,70	0,97			1,	23		2		,75
4,5 x 90	9	36	54	3,04	0,97			1,	23		2	1,	,75
4,5 x 100	9	40	60	3,38	0,97			1,	23		2	1,	,75
5,0 x 25	10,0	10	15	0,91	1,20			0,2			2	0,	,81
5,0 x 30	10,0	10	20	1,21	1,20			0,			2		,00
5,0 x 35	10,0	14	21	1,27	1,20			0,			2		,17
5,0 x 40	10,0	16	24	1,45	1,20			1,			2		,44
5,0 x 45	10,0	18	27	1,63	1,20			1,5			2		,62
5,0 x 50	10,0	20	30	1,82	1,20			1,5			2		,67
5,0 x 60	10,0	24	36	2,18	1,20			1,			2		,76
5,0 x 70	10,0	28	42	2,54	1,20			1,			2		,85
5,0 x 80	10,0	32	48	2,90	1,20			1,			2		,94
5,0 x 90	10,0	36	54	3,27	1,20			1,			2		,03
5,0 x 100	10,0	40	60	3,63	1,20			1,			2		,12
5,0 x 120	10,0	50	70	4,24	1,20			1,	52		2	2,	,27

Dimensionnement selon ETA-11/0024 Masse volumique pk= 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmod / γ M. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd \geq Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{Nl} = 1,3.

 \rightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Ri= Ri · YiM / Kimed → Ri= 7,20 kN · 1,3/0,9= 10,40 kN → Mise en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC , TÊTE FRAISÉE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000

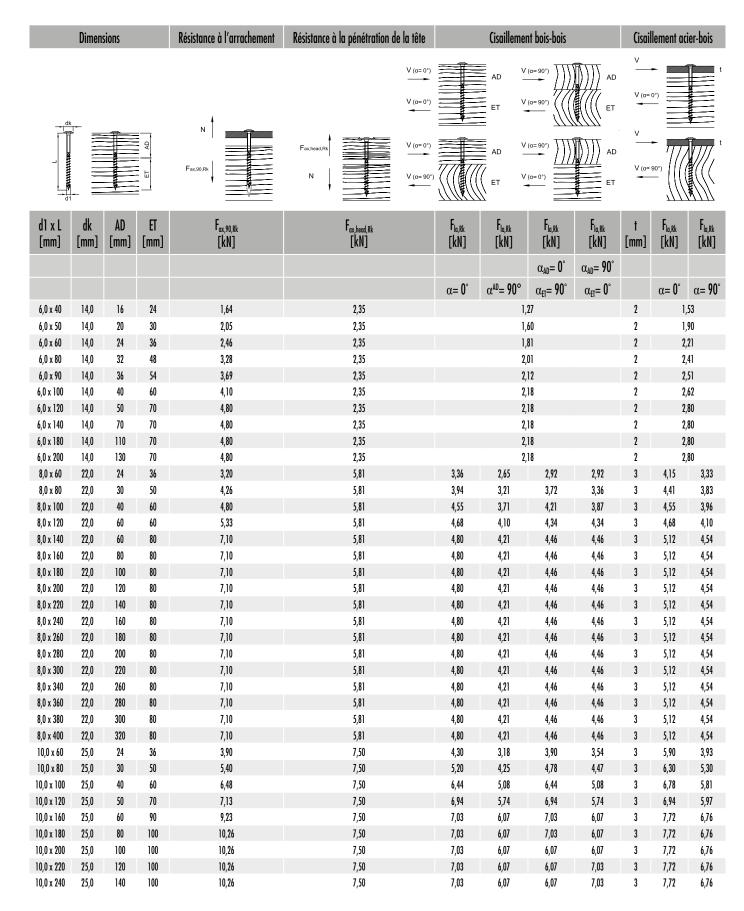
	Dimen	sions		Résistance à l'arrachement	Résistance à la pénétration de l	a tête		Cisaillemer	nt bois-bois		Cisail	lement aci	ier-bois
dk antimute			ET AO	Fax,90,Rk	Fax.head,RX	V (α= 0°) V (α= 0°) V (α= 0°)		ET V(i= 90°) i= 90°) i= 90°)	AD ET	V (α=0° V (α=90		t t
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							$\alpha = 0^{\circ}$	α^{AD} = 90°	$\alpha_{\text{ET}} = 90^{\circ}$	α_{EI} = 0°		$\alpha = 0^{\circ}$	α= 90 °
6,0 x 40	12,0	16	24	1,64	1,73			1,			2		53
6,0 x 50	12,0	20	30	2,05	1,73			1,			2		90
6,0 x 60	12,0	24	36	2,46	1,73			1,			2		21
6,0 x 70	12,0	28	42	2,87	1,73			1,			2		31
6,0 x 80	12,0	32	48	3,28	1,73			1,			2		41
6,0 x 90	12,0	36	54	3,69	1,73			1,			2		51
6,0 x 100	12,0	40	60	4,10	1,73			2,			2		62
6,0 x 120	12,0	50	70	4,79	1,73			2,			2		80
6,0 x 130	12,0	60	70	4,79	1,73			2,			2		80
6,0 x 140	12,0	70	70	4,79	1,73			2,			2		80
6,0 x 160	12,0	90	70	4,79	1,73			2,			2		80
6,0 x 180	12,0	110	70	4,79	1,73			2,			2		80
6,0 x 200	12,0	130	70	4,79	1,73			2,			2		80
6,0 x 220	12,0	150	70	4,79	1,73			2,			2		80
6,0 x 240	12,0	170	70	4,79	1,73			2,			2		80
6,0 x 260	12,0	190	70	4,79	1,73			2,			2		80
6,0 x 280	12,0	210	70	4,79	1,73			2,			2		80
6,0 x 300	12,0	230	70	4,79	1,73			2,	02		2	2,	80

Dimensionnement selon ETA-11/0024 Masse volumique ρ k= 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmod / γM. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd \geq Ed).

Exemple

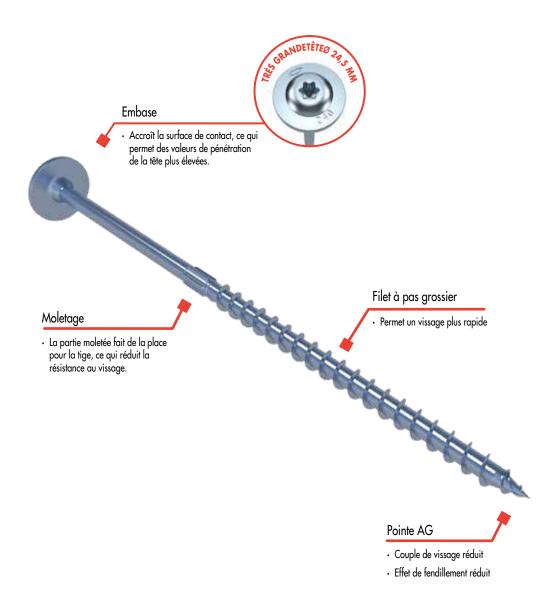
 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{ik}=1,3.$

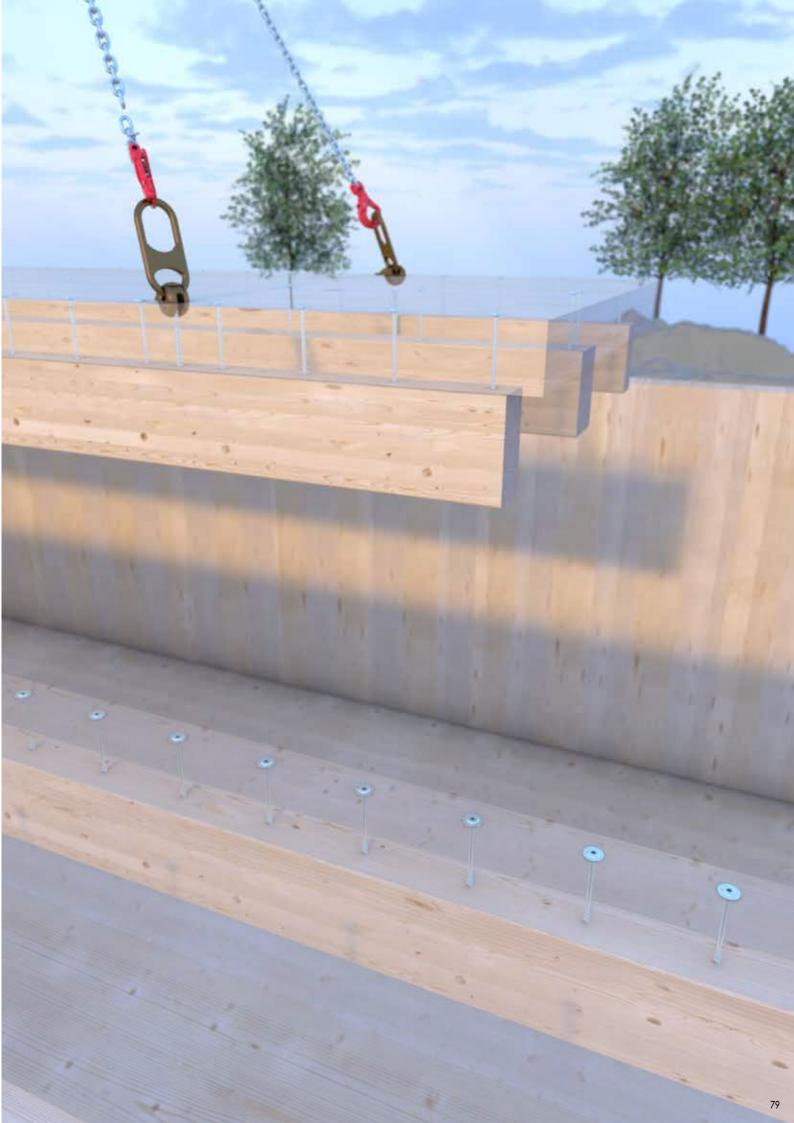

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}} \: / \: k_{\text{m$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES PANELTWISTEC, VIS À EMBASE, ACIER AVEC REVÊTEMENT SPÉCIAL 1000


PANELTWISTEC TK AG STRONGHEAD


Pour l'utilisation d'éléments en bois collés par compression

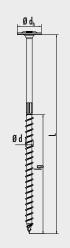
Les vis à bois Paneltwistec peuvent être insérées sans pré-perçage dans CLT ou dans du bois stratifié. La vis Paneltwistec a une pointe AG spéciale et des nervures fraisantes au-dessus du filet. Elles sont garantes d'un amorçage rapide de la vis dans le bois et d'un fendillement moindre lors du vissage. Par ailleurs, le filet n'accélère pas seulement le processus de montage, mais réduit également le couple de serrage. La vis à embase est garante d'une résistance à la pénétration de la tête et d'une pression suffisante entre deux surfaces à assembler, ce qui est très efficace pour un collage. Si le collage par compression est réalisé dans les règles de l'art pendant le durcissement des colles, il est possible de fabriquer des éléments en bois stratifié. Il est en outre possible de réaliser des plaques/panneaux nervurés.

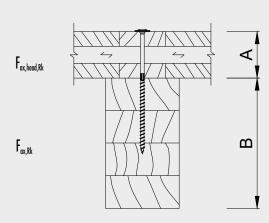


Eurotec | Paneltwistec

PANELTWISTEC TK AG STRONGHEAD

Vis à embase, acier galvanisé bleu




N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903170	8,0	200	24,5	120	TX40 •	50
903171	8,0	220	24,5	120	TX40 •	50
903172	8,0	240	24,5	120	TX40 •	50
903173	8,0	260	24,5	120	TX40 •	50
903174	8,0	280	24,5	120	TX40 •	50
903175	8,0	300	24,5	120	TX40 •	50
903176	8,0	320	24,5	120	TX40 •	50
903177	8,0	340	24,5	120	TX40 •	50
903178	8,0	360	24,5	120	TX40 •	50
903179	8,0	380	24,5	120	TX40 •	50
903180	8,0	400	24,5	120	TX40 •	50

Répartition de la compression lors du lamellé-collé de panneaux nervurés

COLLAGE PAR COMPRESSION DE VIS AVEC LONGUEURS MINIMALES REQUISES

	Ø 8 mm									
		Résistance à l'arrachement	Résistance à la pénétration de la tête							
A [mm]	L [mm]	F _{ax, Rk} [kN]	$F_{\alpha x, head, Rk}$							
80	200									
100	220									
120	240									
140	260									
160	280									
180	300	10,6	7,2							
200	320									
220	340									
240	360									
260	380									
280	400									

Les calculs se font selon ETA-11/0024 et EN 1995-1-1 avec des trous non pré-percés et une densité du bois ρk = 350 kg/m². Les valeurs de dimensionnement de Fax, Rd doivent être calculées compte tenu de kmod = 1 et γM = M = 1,3. Fax, d'est limité par la résistance à la pénétration de la tête, étant entendu que « L » est la longueur minimale de la vis pour atteindre la performance respective. Le composant A indique l'épaisseur maximale du panneau qui peut être comprimée à l'aide de vis sur une poutre nervurée. Le composant B correspond à la hauteur de la poutre nervurée : B ≥ [L - A].

EXIGENCES GÉNÉRALES AUXQUELLES DOIT SATISFAIRE LE LAMELLÉ-COLÉ (NORME DIN 1052:2004 ; EN 1995-1-1)

- Matériaux : bois massif, contreplaqué, OSB, lamellé-collé, lamellé-croisé
- · Adhésifs: EN 301 et DIN 68141 pour les structures porteuses et épaisseur du joint de collage selon la norme DIN EN 302
- Application: La partie filetée devrait être entièrement vissée dans l'élément à fixer. Avant l'application, la surface devrait être lisse, propre et exempte
 de poussière et de saletés. Plusieurs couches devraient être collées individuellement. L'épaisseur maximale autorisée pour le bois massif et les produits
 dérivés du bois est de 30 mm et/ou 55 mm. (Si les épaisseurs sont plus importantes, veuillez vous adresser aux personnes compétentes.)
- Température ambiante ≥ 20 °C
- Température du matériau ≥ 20 °C
- Taux d'humidité ≤ 15 m % (différence maximale 4 m %)
- Distance entre les fixations ≤ 150 mm
- Surface par élément de fixation $\leq 15~000~\text{mm}^2$
- Presse à vide, 0,1 MPa ~ 1,5 kN (force requise par élément de fixation sur la base de la surface)
- Presse hydraulique, 0,6 MPa ~ 9 kN (force requise par élément de fixation sur la base de la surface)

TIGE FILETÉE BRUTUS

Tige à filetage complet pour renfort transversal de bois collés

Les tiges filetées BRUTUS sont utilisées autant dans les nouvelles constructions (lors de la fabrication des poutres maîtresses) que dans les travaux de rénovation. Alors que dans les nouvelles constructions, elles permettent des envergures plus importantes et/ou des sections de bois plus minces, elles contribuent dans la rénovation à sécuriser ce qui existe déjà. Ainsi, il n'est pas nécessaire de remplacer de nombreuses poutres maîtresses ou de les redoubler, bien qu'elles soient manifestement traversées de fissures. Il est en tous les cas indispensable de réaliser une expertise. Les tiges filetées BRUTUS peuvent être raccourcies à la longueur souhaitée, quelle qu'elle soit, et sont pré-percées à 13 mm. Lors du perçage des trous, il faut veiller à ce qu'ils ne se décentrent pas. La tige filetée BRUTUS sert de renfort transversal au droit d'encoches et de traversées, de fixations transversales et de fermes de halls.

TIGE FILETÉE BRUTUS

Acier 8.8, galvanisé

NKL 1 – 2

N° de réf.	Ø d [mm]	L[mm]	PU
903170	16	3000	1

CE DONT VOUS DEVEZ TENIR COMPTE

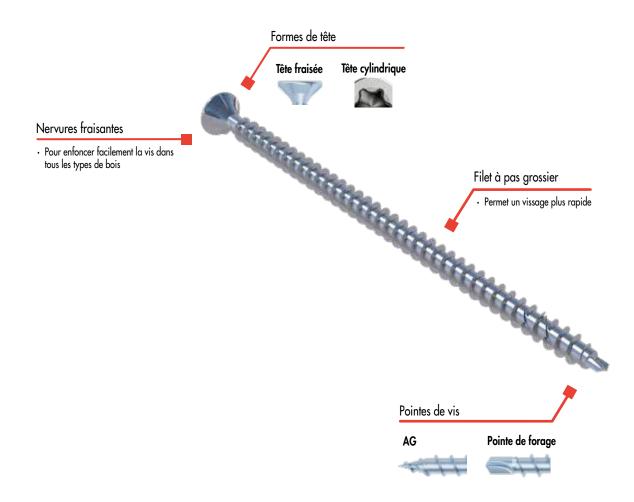
- · Pré-perçage au Ø 13 mm
- Si les trous de forage sont longs, le foret peut se décentrer.

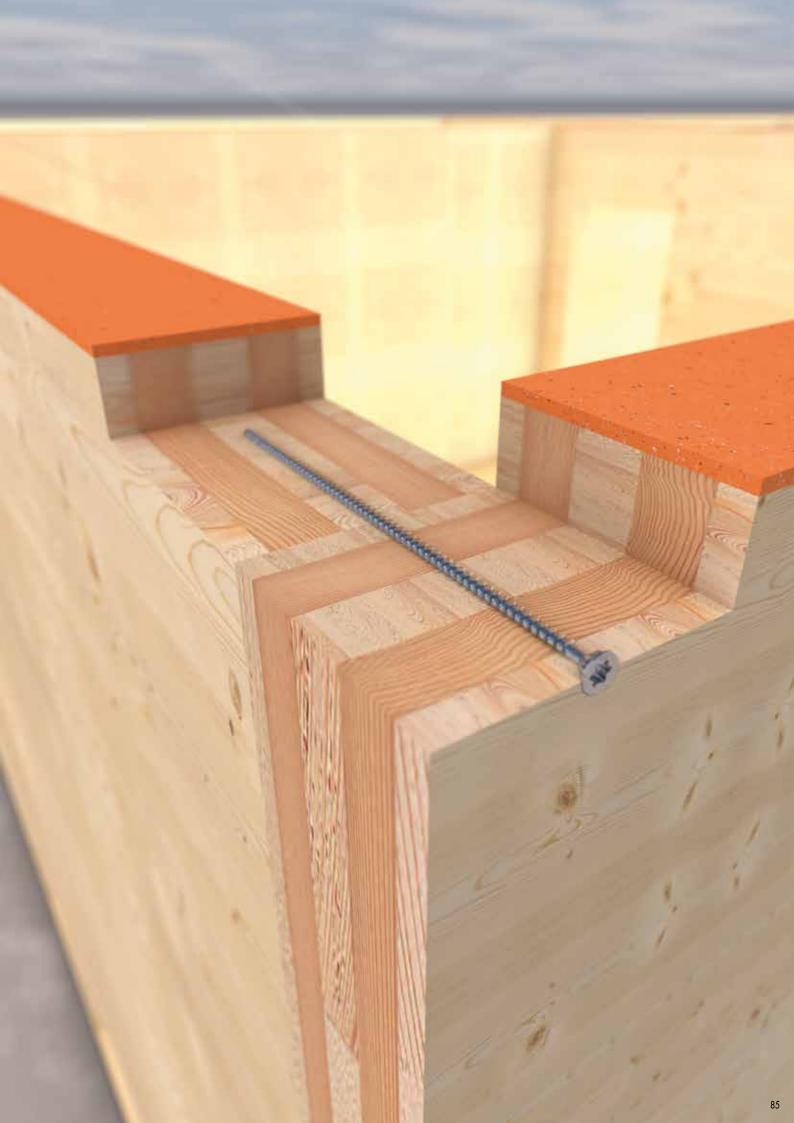
OUTIL DE VISSAGE

EXEMPLES D'APPLICATION

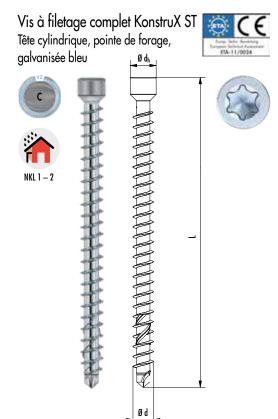
Traversée

Encoche



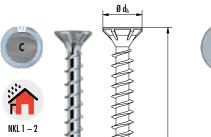

VIS À FILETAGE COMPLET KONSTRUX

La solution performante pour les nouvelles constructions et les travaux de rénovation


Les vis à filetage complet KonstruX maximisent la capacité de charge d'un assemblage du fait de la résistance élevée à l'arrachement du filet dans les deux éléments de construction. Si l'on utilise des vis à filetage partiel, la résistance à la pénétration de la tête, nettement plus faible, dans la pièce rapportée limite la capacité de charge de l'assemblage. Les vis à filetage complet KonstruX constituent une alternative financièrement avantageuse aux fixations traditionnelles ou aux connecteurs bois comme les sabots de solive et les poutrelles.

VIS À FILETAGE COMPLET KONSTRUX

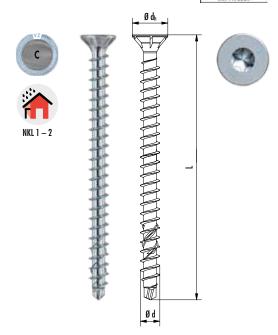
Acier au carbone, galvanisé bleu


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
100425	5,2	80	6,4	TX 25 •	100
100427	5,2	100	6,4	TX 25 •	100
100428	5,2	120	6,4	TX 25 •	100
100430	5,2	140	6,4	TX 25 •	100
100431	5,2	160	6,4	TX 25 •	100
100410	5,9	80	8,0	TX30 •	100
100412	5,9	100	8,0	TX30 •	100
100413	5,9	120	8,0	TX30 •	100
100415	5,9	140	8,0	TX30 •	100
100416	5,9	160	8,0	TX30 •	100
100417	5,9	180	8,0	TX30 •	100
100418	5,9	200	8,0	TX30 •	100
904808	6,5	80	8,0	TX30 •	100
904809	6,5	100	8,0	TX30 •	100
904810	6,5	120	8,0	TX30 •	100
904811	6,5	140	8,0	TX30 •	100
904812	6,5	160	8,0	TX30 •	100
904813	6,5	195	8,0	TX30 •	100
100063 ^{a)}	6,5	200	8,0	TX30 •	100
100064 ^{a)}	6,5	220	8,0	TX30 •	100
100065 ^{a)}	6,5	240	8,0	TX30 •	100
100066 ^{a)}	6,5	260	8,0	TX30 •	100
954081	8,0	125	10,0	TX40 •	50
904825	8,0	155	10,0	TX40 •	50
904826	8,0	195	10,0	TX40 •	50
904827	8,0	220	10,0	TX40 •	50
904828	8,0	245	10,0	TX40 •	50
904834	8,0	270	10,0	TX40 •	50
904829	8,0	295	10,0	TX40 ●	50
904830	8,0	330	10,0	TX40 •	50
904831	8,0	375	10,0	TX40 •	50
904832	8,0	400	10,0	TX40 ●	50
944804	8,0	430	10,0	TX40 ●	50
944805	8,0	480	10,0	TX40 •	50
944806	8,0	530	10,0	TX40 ●	50
944807	8,0	580	10,0	TX40 •	50
904872	10,0	195	13,0	TX50 ●	25
904873	10,0	220	13,0	TX50 ●	25
904874	10,0	245	13,0	TX50 ●	25
904875	10,0	270	13,0	TX50 ●	25
904815	10,0	300	13,0	TX50 ●	25
904816	10,0	330	13,0	TX50 ●	25
904817	10,0	360	13,0	TX50 ●	25
904818	10,0	400	13,0	TX50 ●	25
904819	10,0	450	13,0	TX50 ●	25
904820	10,0	500	13,0	TX50 ●	25
904821	10,0	550	13,0	TX50 ●	25
904822	10,0	600	13,0	TX50 ●	25
100080 ^{a)}	10,0	650	13,0	TX50 ●	25
100081 ^{a)}	10,0	700	13,0	TX50 ●	25
100082 ^{a)}	10,0	750	13,0	TX50 ●	25
100083 ^{a)}	10,0	800	13,0	TX50 ●	25
100084 ^{a)}	10,0	900	13,0	TX50 ●	25
100085 ^{a)}	10,0	1000	13,0	TX50 ●	25

a) Une évaluation technique européenne (ETE) a été demandée.

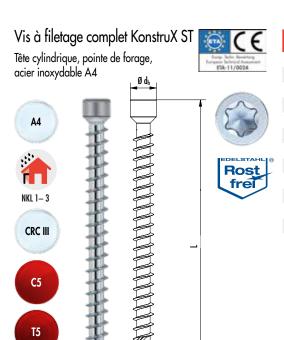
Vis à filetage complet KonstruX ST

Tête fraisée, pointe AG, galvanisée bleu

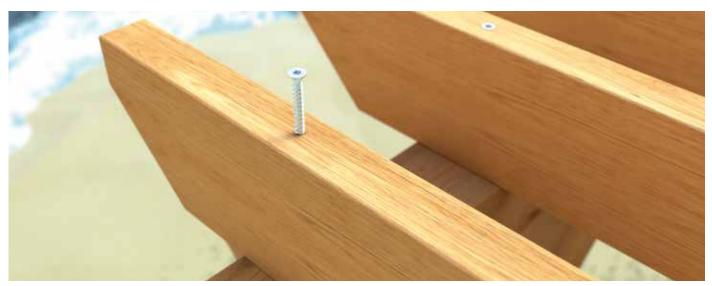


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
905737	11,3	300	18,0	TX50 ●	20
905738	11,3	340	18,0	TX50 ●	20
905739	11,3	380	18,0	TX50 ●	20
905740	11,3	420	18,0	TX50 ●	20
905741	11,3	460	18,0	TX50 ●	20
905742	11,3	500	18,0	TX50 ●	20
905743	11,3	540	18,0	TX50 ●	20
905744	11,3	580	18,0	TX50 ●	20
905745	11,3	620	18,0	TX50 ●	20
905746	11,3	660	18,0	TX50 ●	20
905747	11,3	700	18,0	TX50 ●	20
905748	11,3	750	18,0	TX50 ●	20
905749	11,3	800	18,0	TX50 ●	20
904750	11,3	900	18,0	TX50 ●	20
904751	11,3	1000	18,0	TX50 ●	20

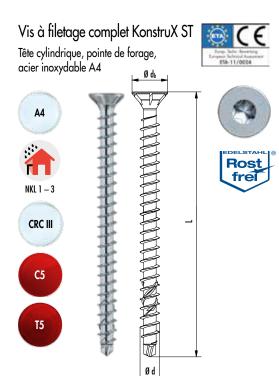
Vis à filetage complet KonstruX ST Tête fraisée, pointe de forage, galvanisée bleu


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
904876	5,2	80	6,4	TX25 •	100
904878	5,2	100	6,4	TX25 •	100
904879	5,2	120	6,4	TX25 •	100
904907	5,2	140	6,4	TX25 •	100
904908	5,2	160	6,4	TX25 •	100
904857	6,5	80	11,5	TX30 •	100
904858	6,5	100	11,5	TX30 •	100
904859	6,5	120	11,5	TX30 •	100
904860	6,5	140	11,5	TX30 •	100
904790	8,0	95	14,5	TX40 •	50
904791	8,0	125	14,5	TX40 •	50
904792	8,0	155	14,5	TX40 •	50
904793	8,0	195	14,5	TX40 •	50
904794	8,0	220	14,5	TX40 •	50
904795	8,0	245	14,5	TX40 •	50
904796	8,0	270	14,5	TX40 •	50
904797	8,0	295	14,5	TX40 •	50
904798	8,0	330	14,5	TX40 •	50
904799	8,0	375	14,5	TX40 •	50
904800	8,0	400	14,5	TX40 •	50
904801	8,0	430	14,5	TX40 •	50
904802	8,0	480	14,5	TX40 •	50
904803	8,0	545	14,5	TX40 •	50
904770	10,0	125	17,8	TX50 ●	25
904771	10,0	155	17,8	TX50 ●	25
904772	10,0	195	17,8	TX50 ●	25
904773	10,0	220	17,8	TX50 ●	25
904774	10,0	245	17,8	TX50 ●	25
904775	10,0	270	17,8	TX50 ●	25
904776	10,0	300	17,8	TX50 ●	25
904777	10,0	330	17,8	TX50 ●	25
904778	10,0	360	17,8	TX50 ●	25
904779	10,0	400	17,8	TX50 ●	25
904780	10,0	450	17,8	TX50 ●	25
904781	10,0	500	17,8	TX50 ●	25
904782	10,0	550	17,8	TX50 ●	25
904783	10,0	600	17,8	TX50 ●	25
100090	10,0	650	17,8	TX50 ●	25
100091	10,0	700	17,8	TX50 ●	25
100092	10,0	750	17,8	TX50 ●	25
100093	10,0	800	17,8	TX50 ◆	25
100094	10,0	900	17,8	TX50 ●	25
100095	10,0	1000	17,8	TX50 ●	25

VIS À FILETAGE COMPLET KONSTRTUX


Acier inoxydable A4

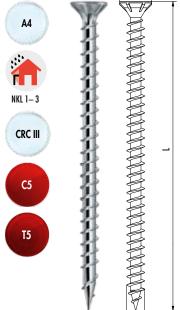
Les vis à filetage complet KonstruX ST A4 maximisent la capacité de charge d'un assemblage du fait de la résistance élevée à l'arrachement du filet dans les deux éléments de construction. En revanche, si l'on utilise des vis à filetage partiel, la résistance à la pénétration de la tête, nettement plus faible, dans la pièce rapportée limite la capacité de charge de l'assemblage.


Convient aux assemblages bois-bois à l'intérieur comme à l'extérieur. Les domaines d'application de la vis KonstruX ST A4 se trouvent à l'extérieur sur les aires de jeu, les balcons, dans la protection solaire sous forme de pergola, à proximité de la côte et dans le génie hydraulique, p. ex. sur les passerelles et les jetées.

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
944780	6,5	140	8,0	TX40 •	100
944781	6,5	160	8,0	TX40 •	100
944782	6,5	195	8,0	TX40 •	100
944783	8,0	155	8,0	TX40 •	50
944784	8,0	195	8,0	TX40 •	50
944785	8,0	220	8,0	TX40 •	50
944786	8,0	245	8,0	TX40 •	50
944787	8,0	270	8,0	TX40 •	50
944788	8,0	295	8,0	TX40 •	50
944789	8,0	330	8,0	TX40 •	50
944790	8,0	375	8,0	TX40 •	50
944791	8,0	400	8,0	TX40 •	50

KonstruX avec tête fraisée, acier inoxydable A4 : idéale pour les assemblages bois-bois dans les zones urbaines et zones industrielles polluées > 0,25 km de la côte.

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
944795	8,0	95	14,5	TX40 •	50
944792	8,0	125	14,5	TX40 •	50
944793	8,0	155	14,5	TX40 •	50
944794	8,0	195	14,5	TX40 •	50


Vis à filetage complet KonstrtuX Tête fraisée, acier inoxydable A4

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
905750	10,0	160	17,8	TX50 ●	25
905751	10,0	200	17,8	TX50 ◆	25
905752	10,0	220	17,8	TX50 ●	25
905753	10,0	240	17,8	TX50 ●	25
905754	10,0	260	17,8	TX50 ●	25
905755	10,0	280	17,8	TX50 ●	25
905756	10,0	300	17,8	TX50 ●	25
905757	10,0	350	17,8	TX50 ●	25
905758	10,0	400	17,8	TX50 ●	25

NOUVEAUX MODULES DANS NOTRE LOGICIEL ECS

Notre logiciel de dimensionnement ECS a été perfectionné dans le cadre d'une révision et extension globale. L'accent a été mis notamment sur l'intégration de modules pour l'ingénierie de construction du bois. L'objectif est de mettre à disposition de l'utilisateur des outils performants pour pouvoir pré-dimensionner rapidement et de manière contrôlable des fixations standardisées.

Pour obtenir d'autres informations sur le logiciel ECS, scannez tout simplement le code QR.

ASSEMBLAGE LATÉRAL À COUVRE-JOINTS

REDOUBLEMENT DE POUTRES

RENFORCEMENT DE SUPPORTS

FIXATION TRANSVERSALE

EXEMPLE D'APPLICATION: RENFORCEMENT DE SUPPORTS

ARMATURE DE POUTRES (PRESSION PERPENDICULAIRE À LA FIBRE)

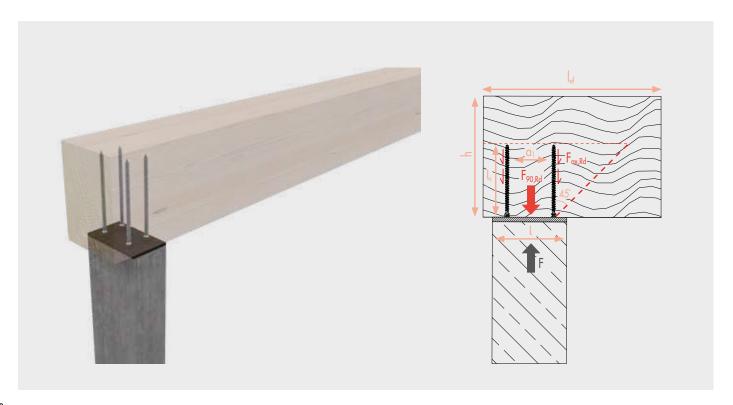
Contrairement au béton et à l'acier, le bois est un matériau naturel et son comportement mécanique est fortement anisotrope. Le rapport entre les résistances caractéristiques à la traction et à la pression, perpendiculairement et parallèlement à la fibre, est d'environ 1/30 et 1/8. Il convient donc de détailler minutieusement les structures en bois pour minimiser autant que possible ces sollicitations. Par ailleurs, il y a lieu d'utiliser des méthodes de renforcement pour compenser ces faiblesses en cas de besoin.

Un exemple est le support de poutres. Dans ce cas, on a fréquemment utilisé des tiges filetées collées et des panneaux de contreplaqué collés comme méthodes de renforcement, mais ces dernières prennent beaucoup de temps et sont onéreuses du fait de l'utilisation de colles époxy. Les vis à filetage complet sont une alternative plus moderne et plus avantageuse et peuvent accroître dans un cadre expérimental la capacité de charge du support de 300 % maximum. Elles sont placées devant la plaque porteuse en acier et absorbent une partie de la charge de compression locale par retrait (limité par la capacité de flexion), ce qui améliore la répartition de la tension dans le bois.

VALEUR DE DIMENSIONNEMENT DE LA CAPACITÉ DE CHARGE PERPENDICULAIREMENT À LA FIBRE, AVEC ARMATURE DE VIS :

$$\begin{aligned} F_{90,Rd} = min & \begin{cases} F_{c,90,Rd} + n_s \cdot F_{\alpha x,Rd} \\ b \cdot l_{ef} \cdot f_{c,90,d} \end{cases} \end{aligned}$$

$$F_{c,90,Rd} = k_{c,90} \cdot b \cdot l \cdot f_{c,90,d}$$


$$F_{\alpha x,Rd} = min$$
 Capacité de flexion de la vis Résistance à l'arrachement de la vis

Ns_s: Nombre de vis:

b : largeur de la surface de contact

 $k_{c,90}$: Facteur de répartition de la tension compte tenu de la configuration de la charge, de la possibilité de scission et du niveau de déformation à la compression $f_{c,90,d}$: Résistance à la compression de dimensionnement, perpendiculairement au sens de la fibre

Pour le dimensionnement de la résistance à l'arrachement et à la flexion de vis, voir ETA-11/0024.

EXEMPLE D'APPLICATION: FIXATION POUTRE MAÎTRESSE/POUTRE AUXILIAIRE

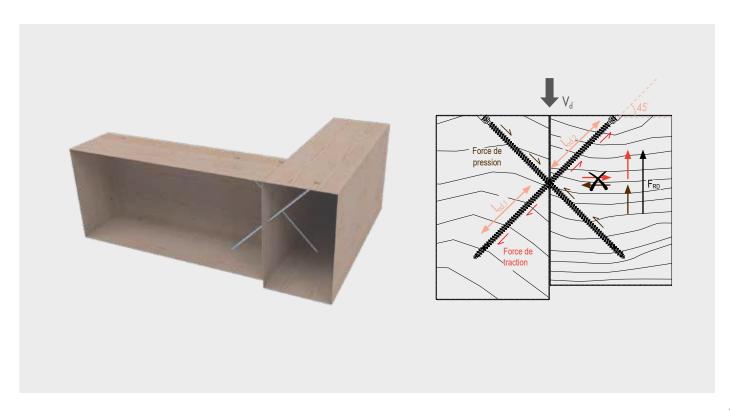
Pour la fixation de poutres maîtresses et de poutres auxiliaires, il existe différentes options d'assemblage, p. ex. des équerres métalliques à l'extérieur et des profilés en T en aluminium à l'intérieur. Des tôles supplémentaires peuvent toutefois être onéreuses et prendre beaucoup de temps dans la phase de montage. Elles peuvent simplement être remplacées par des vis autotaraudeuses pour fixer ce type d'assemblage.

Les vis à filetage complet constituent une solution économe et plus rapide. Les vis KonstruX sont placées en croix et par paires dans un angle de 45° par rapport au veinage du bois, de manière à préserver l'aspect architectural du bois. Il est encore plus important de noter que le comportement au feu s'en voit amélioré. Dans la construction en bois, il convient d'examiner trois types de défaillance lors du dimensionnement de vis cruciformes : (a) la capacité d'arrachement en utilisant la longueur effective du filet et le facteur kmod, (b) la résistance de la vis à la traction et (c) la résistance de la vis à la pression. Veuillez tenir compte du fait que seules les capacités nominales devraient être comparées (et non les valeurs caractéristiques), car les types de défaillance ont des facteurs de sécurité partiels différents.

DIMENSIONNEMENT DE LA CAPACITÉ DE CHARGE DE VIS CRUCIFORMES :

 $F_{Rd} = 2 \cdot \sin 45^{\circ} \cdot n_{page}^{0,9} \cdot F_{ax,Rd}$

 $\begin{aligned} F_{\text{ax,Rd}} &= \text{min} \left\{ \begin{array}{l} \text{Reprise} : I_{\text{ef}}, \, k_{\text{mod}}, \, \gamma_{\text{M}} = 1,3 \\ \text{Résistance à la traction} : \gamma_{\text{M2}} = 1,25 \\ \text{Capacité de flexion} : \gamma_{\text{M1}} = 1,00 \end{array} \right. \end{aligned}$


 $l_{ef} = min (l_{ad,1}; l_{ad,2})$

yMi : Facteur de sécurité partiel

n_{pair}: Nombre de vis:

k_{mod}: Facteur de modification qui tient compte de l'influence de la durée de sollicitation et du taux d'humidité de l'élément en bois.

Pour le dimensionnement de la résistance à l'arrachement et à la flexion de vis, voir ETA-11/0024.

EXEMPLE D'APPLICATION: ASSEMBLAGE LATÉRAL À COUVRE-JOINTS

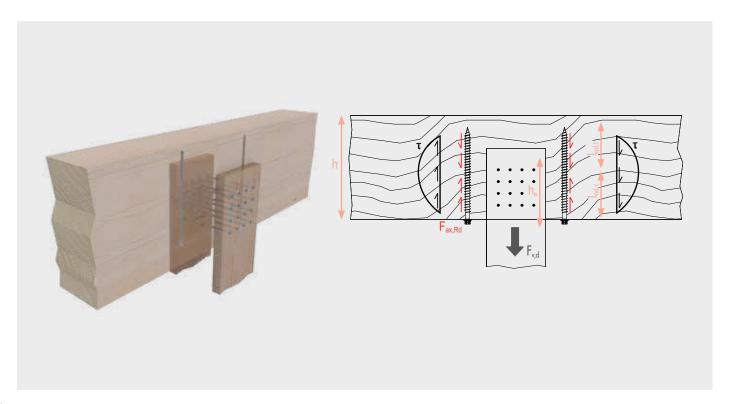
ARMATURE DE CONNEXION VISSÉE (NON DISPONIBLE DANS LE LOGICIEL ECS)

Dans le cadre du dimensionnement de constructions en bois, il est reconnu qu'il convient d'éviter si possible les tensions perpendiculaires au fil. La résistance du bois dans ce sens étant faible, des fissures peuvent apparaître rapidement dans les éléments de construction en bois et les affaiblir au fil du temps. Dans certains cas cependant, il n'est pas possible de faire autrement et il s'impose alors de prendre des mesures visant à renforcer la construction. Pour ce faire, il est possible d'utiliser soit des vis autotaraudeuses soit des tiges filetées collées. Les vis sont en général plus économiques et plus rapides à installer.

Les assemblages vissés qui sont soumis à une charge perpendiculaire au fil sont à cet égard très fréquents. L'armature est prouvée contre la force de traction nominale perpendiculairement au fil au plan qui est défini par la distance entre le bord sollicité et le centre de la vis la plus éloignée. La partie de l'armature dotée de filets devrait recouvrir au moins 75 % de la hauteur des poutres.

FORCE DE TRACTION DE DIMENSIONNEMENT PERPENDICULAIRE AU FIL QUI DOIT ÊTRE ABSORBÉE PAR L'ARMATURE :

compte tenu des contraintes de cisaillement


$$\begin{aligned} F_{t,90,d} &= F_{v,Ed} \cdot \overbrace{\left[1 - 3 \cdot \overrightarrow{k} + 2 \cdot \overrightarrow{k^3}\right]} \\ k &= \underbrace{\frac{h_e}{h}} \end{aligned}$$

 $l_{ef} = \min (l_{ad,t}) ; l_{ad,c}$

$$F_{t,90,Rd} = n_s \cdot min \begin{cases} f_{\alpha x,d} \cdot d \cdot I_{ef} \\ f_{tens,d} \end{cases}$$

$$\frac{F_{t,90,d}}{F_{t,90,Rd}} \ \leq 1,0$$

F_{v,d}: Valeur de dimensionnement de la composante de la force transversale perpendiculaire au fil

EXEMPLE D'APPLICATION: REDOUBLEMENT DE POUTRES

REDOUBLEMENT DE POUTRES (DISPONIBLE DANS ECS)

Le redoublement de poutres en bois est souvent utilisé pour renforcer la structure dans les travaux de transformation/rénovation, lorsque les charges provenant de l'étage supérieur augmentent suite à un changement d'affectation. La capacité de charge est améliorée par l'extension de la hauteur de la poutre à l'aide d'une poutre en bois supplémentaire apposée au-dessus ou au-dessous de la poutre existante. Le couple de flexion engendre des contraintes de cisaillement (mouvement de glissement) à l'interface des deux éléments de construction. Ces contraintes évoluent de plus en plus du centre de l'envergure vers les appuis d'extrémité. Pour transférer ces tensions, on utilise des vis qui permettent aux deux éléments de construction d'interagir comme une seule grande poutre. Les vis à filetage complet qui sont insérées en biais par rapport à la veine du bois tirent parti pour ce faire de leur résistance axiale et fournissent ainsi un résultat bien plus rigide que les vis décalées de 90° en position de cisaillement

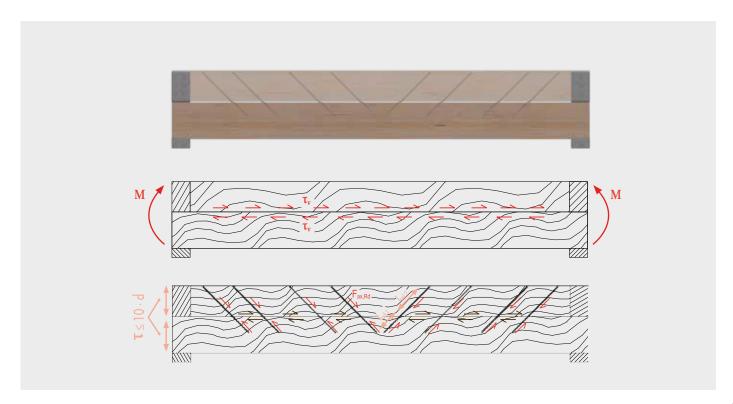
CONTRAINTE DE CISAILLEMENT DUE AUX VIS (INCLINÉES DE 45° PAR RAPPORT À LA VEINE DU BOIS) :

$$\tau_v = \frac{3}{2} \cdot \frac{F_{v,d}}{b \cdot 2h}$$

$$V_d = \tau_v \cdot b$$

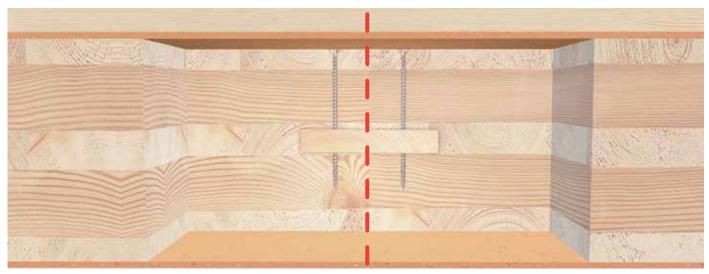
$$F_{\text{ax,Rd}} = \min \left\{ \begin{array}{l} f_{\text{ax,d}} \cdot d \cdot I_{\text{ef}} \\ f_{\text{tens,d}} \end{array} \right.$$

$$I_{ef} = \min_{\sigma} (I_{ad,1}; I_{ad,2})$$

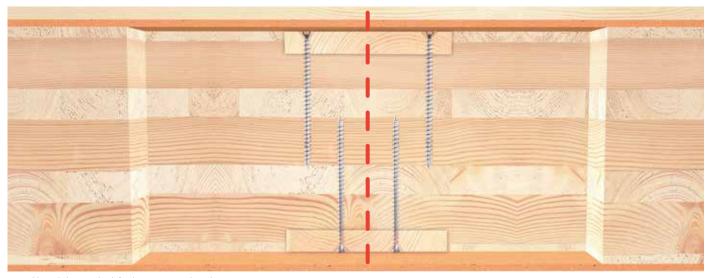

$$F_{v,Rd} = F_{\alpha x,Rd} \cdot \underline{n_s}$$

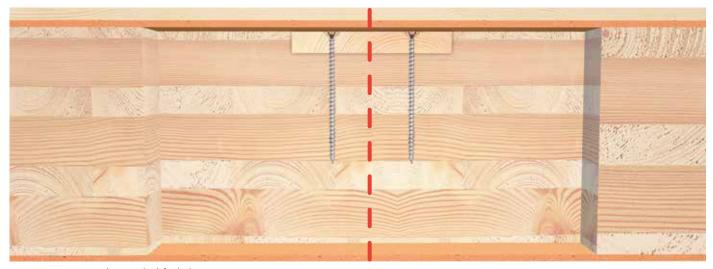
$$\frac{V_d}{F_{v,Rd}} \le 1.0$$

F_{v,d} est maximal au niveau des supports et minimale dans l'envergure moyenne. Pour optimiser la construction, les vis peuvent être réparties en conséquence.

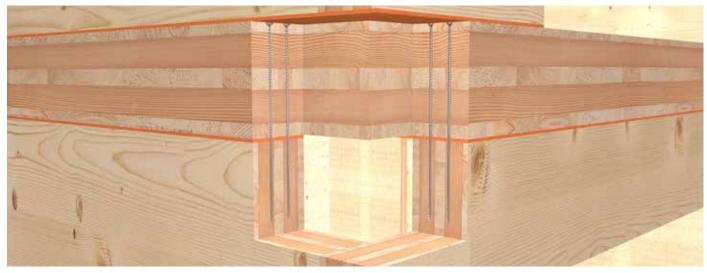

 V_{d} : Force transversale par mètre

a : distance entre les vis




EXEMPLES D'APPLICATION : ÉLÉMENTS DE PLAFOND

Assemblage d'éléments de plafond moyennant un bois de jointure interne

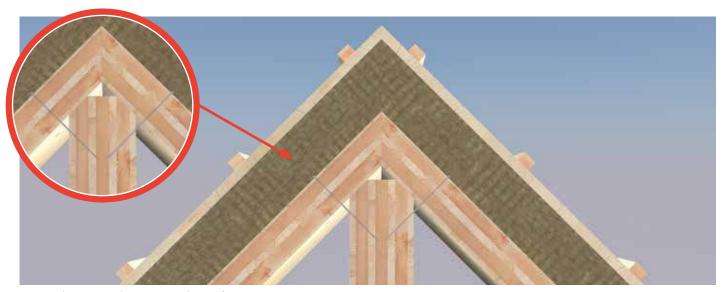


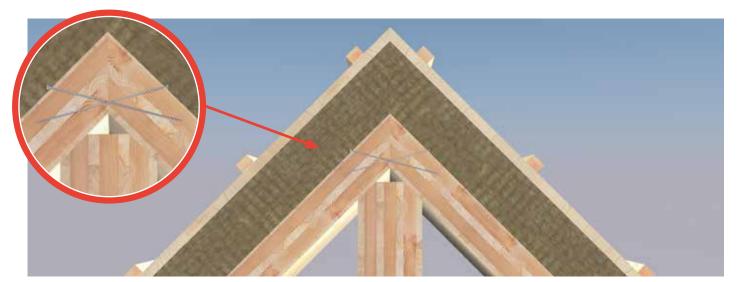
Assemblage d'éléments de plafond moyennant un bois de jointure externe

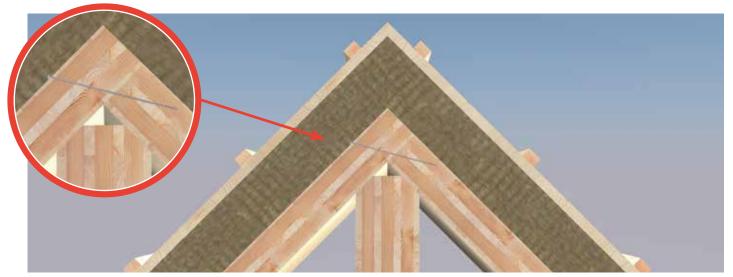
KonstruX pour connexion du mur et du plafond à l'étage

EXEMPLES D'APPLICATION : ÉLÉMENTS MURAUX

Connexion de l'élément mural et de l'élément de plafond


Connexion du mur et du plancher en bois à l'étage

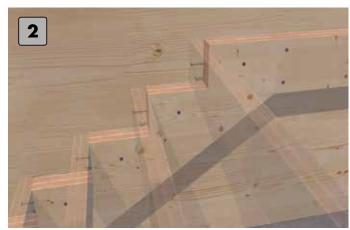

Connexion de l'élément de toit et de l'élément mural


EXEMPLES D'APPLICATION : ÉLÉMENTS DE TOIT

Panneaux de toiture en onglet - Vissage avec la panne faîtière



Panneaux de toiture en onglet - vissage en biais



Panneaux de toiture juxtaposés - vissage en biais

EXEMPLES D'APPLICATION: CONSTRUCTION DES ESCALIERS AVEC CLT

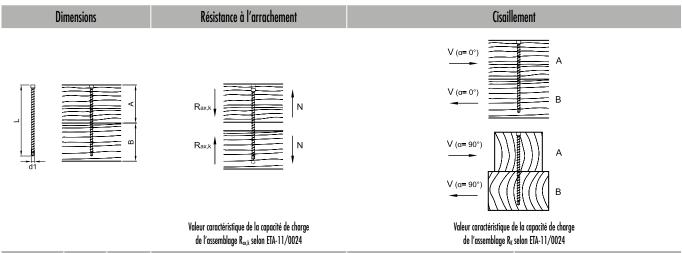
Poser la crémaillère sur le mur.

Poser les contremarches de manière frontale.

Poser les marches sur la crémaillère.

Et voilà !

LE SYSTÈME D'ASSEMBLAGE RAPIDE ET SÛR KONSTRUX VIS À TÊTE CYLINDRE / À TÊTE FRAISÉE


Exemples d		Tête cylindrique			Tête fraisée						
		Ø 5,2 [mm]	Ø 5,9 [mm]	Ø 6,5 [mm]	Ø 8,0 [mm]	Ø 10,0 [mm]	Ø 5,2 [mm]	Ø 6,5 [mm]	Ø 8,0 [mm]	Ø 10,0 [mm]	Ø 11,3 [mm]
Effort de traction bois-bois	Cisaillement bois-bois					√					√
Bois-bois en traction 45°	Bois-bois en traction 45°	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Effort de traction acier-bois	Cisaillement acier-bois	-	-	-	-	-	✓	✓	✓	✓	✓
Acier-bois en traction 45°	Acier-bois en traction 45°	_	-	-	-	-	✓	✓	✓	✓	✓
Fixation poutre maîtresse/poutre auxiliaire	Assemblage poteau-traverse	✓	✓	✓	✓	✓	✓	✓	✓	-	-
Renforcement de supports	Renforcement de supports	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Renfort transversal au niveau de l'encoche	Renfort transversal au niveau de la traversée	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Redoublemen	at de poutres	-	-	✓	✓	✓	✓	✓	✓	✓	✓
Renfort transversal	de fermes de halls	-	-	-	_	✓	-	_	✓	✓	✓

VIS À FILETAGE COMPLET KONSTRUX

Informations techniques

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 5,2 À 6,5 MM: FIXATION BOIS-BOIS

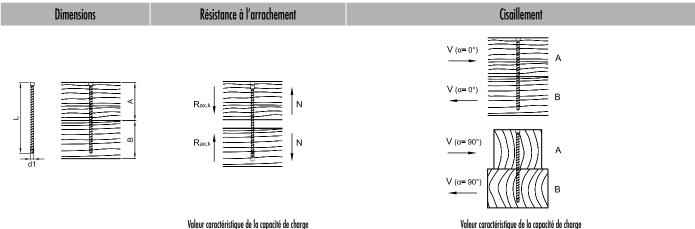
			ue i ussemblage nax selon EIA 11/ 002 i	ut i usstillbugg nik sololi Eliz 117 002 i				
d1 x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	R_k^{a} - [kN]	R_k^{a} - [kN]			
				$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$			
5,2 x 80	40	60	2,58	2,26	2,26			
5,2 x 100	60	60	3,44	2,48	2,48			
5,2 x 120	60	80	4,30	2,69	2,69			
5,2 x 140	80	80	5,16	2,91	2,91			
5,2 x 160	80	100	6,03	3,12	3,12			
5,9 x 80	40	60	2,93	3,15	2,42			
5,9 x 100	60	60	3,91	3,60	3,03			
5,9 x 120	60	80	4,88	3,84	3,41			
5,9 x 140	80	80	5,86	4,08	3,65			
5,9 x 160	80	100	6,84	4,33	3,89			
5,9 x 180	100	100	6,84	4,33	3,89			
5,9 x 200	100	120	8,79	4,82	4,37			
6,5 x 80	40	60	3,22	3,46	2,64			
6,5 x 100	60	60	4,30	3,82	3,28			
6,5 x 120	60	80	4,75	3,93	3,47			
6,5 x 140	80	80	4,75	3,93	3,47			
6,5 x 160	80	100	6,33	4,32	3,86			
6,5 x 195	100	100	7,52	4,62	4,16			
6,5 x 200	100	120	7,52	4,62	4,16			
6,5 x 220	120	120	9,68	5,16	4,55			
6,5 x 240	120	140	11,84	5,48	4,55			
6,5 x 260	140	140	12,91	5,48	4,55			

Dimensionnement selon ETA-11/0024 Masse volumique ρ_R = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caract\'{e}ristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{M}=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 8,0 MM: FIXATION BOIS-BOIS

de l'assemblage R_{ex.k} selon ETA-11/0024

Valeur caractéristique de la capacité de charge de l'assemblage R_K selon ETA-11/0024

d1 x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{a}$ - [kN]	R _k º) - [kN]	R _k a) - [kN]
				$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$
8,0 x 125	60	80	4,61	5,05	4,37
8,0 x 155	80	80	7,11	5,67	4,99
8,0 x 195	100	100	9,01	6,15	5,46
8,0 x 220	120	120	9,48	6,27	5,58
8,0 x 245	120	140	11,38	6,74	6,06
8,0 x 270	140	140	12,33	6,98	6,29
8,0 x 295	140	160	13,28	7,21	6,42
8,0 x 330	160	180	15,17	7,69	6,42
8,0 x 375	180	200	17,07	7,79	6,42
8,0 x 400	200	220	18,97	7,79	6,42
8,0 x 430	220	220	19,92	7,79	6,42
8,0 x 480	240	260	22,76	7,79	6,42
8,0 x 530	260	280	25,00	7,79	6,42
8,0 x 580	280	320	25,00	7,79	6,42

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{kl}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5 = $\underline{7,20 \text{ kN}}$.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kM}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 10,0 MM: FIXATION BOIS-BOIS

Dimensions	Résistance à l'arrachement	Cisaillement
	Rax,k N	$V(\alpha = 0^{\circ})$ $V(\alpha = 0^{\circ})$ $V(\alpha = 90^{\circ})$
	Valeur caractéristique de la capacité de charge de l'assemblaae R _{est} , selon ETA-11/0024	Valeur caractéristique de la capacité de charge de l'assemblage R. selon ETA-11/0074

				·	
d1 x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	$R_k^{a)}$ - [kN]	R_{k}^{a} - [kN]
				$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$
10,0 x 125	60	80	6,92	7,18	6,18
10,0 x 220	120	120	11,53	8,33	7,33
10,0 x 245	120	140	13,84	8,91	7,91
10,0 x 270	140	140	15,00	9,20	8,20
10,0 x 300	160	160	16,15	9,48	8,48
10,0 x 330	160	180	18,46	10,06	8,90
10,0 x 360	180	200	20,76	10,64	8,90
10,0 x 400	200	220	23,07	10,89	8,90
10,0 x 450	220	240	25,38	10,89	8,90
10,0 x 500	240	280	27,68	10,89	8,90
10,0 x 550	260	300	29,99	10,89	8,90
10,0 x 600	300	320	33,00	10,89	8,90
10,0 x 650	320	340	33,00	10,89	8,90
10,0 x 700	340	360	33,00	10,89	8,90
10,0 x 750	360	400	33,00	10,89	8,90
10,0 x 800	400	420	33,00	10,89	8,90
10,0 x 900	440	480	33,00	10,89	8,90
10,0 x 1000	480	540	33,00	10,89	8,90

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{tk}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \geq E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; / \; k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 5,2 À 6,5 MM: FIXATION BOIS-BOIS

Valeur caractéristique de la capacité de charge de l'assemblage $R_{\alpha\kappa,k}$ et/ou R_k selon ETA-11/0024

d1 x L [mm]	A [mm]	B [mm]	R _k °) - [kN]
			α = 45°
5,2 x 80	30	40	2,42
5,2 x 100	40	60	2,82
5,2 x 120	40	60	3,22
5,2 x 140	60	60	3,22
5,2 x 160	60	60	4,84
5,9 x 80	30	40	2,75
5,9 x 100	40	60	3,20
5,9 x 120	40	60	3,65
5,9 x 140	60	60	3,65
5,9 x 160	60	60	5,50
5,9 x 180	80	80	6,00
5,9 x 200	80	80	6,40
6,5 x 80	30	40	3,00
6,5 x 100	40	60	3,50
6,5 x 120	40	60	4,00
6,5 x 140	60	60	4,00
6,5 x 160	60	60	6,05
6,5 x 195	80	80	7,05
6,5 x 200	80	80	7,05
6,5 x 220	80	80	8,00
6,5 x 240	100	100	9,05
6,5 x 260	100	100	10,05

Dimensionnement selon ETA-11/0024 Masse volumique $ho_{
m N}=$ 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{N_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Evamnla .

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; l'assemblage \; est \; r\'eput\'ee \; l'assemblage \; l'assemblage$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min Rk = Rk · γ_{Ik} / k_{mot} → Rk = 7,20 kN · 1,3/0,9 = 10,40 kN → Mise en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 8,0 MM: FIXATION BOIS-BOIS

Valeur caractéristique de la capacité de charge de l'assemblage R_{ax,k} et/ou R_k selon ETA-11/0024

dl x L [mm]	A [mm]	B [mm]	$R_k^{a} - [kN]$
			$\alpha = 45^{\circ}$
8,0 x 125	40	60	3,20
8,0 x 155	60	60	4,70
8,0 x 195	80	80	5,49
8,0 x 220	80	100	7,17
8,0 x 245	100	100	6,95
8,0 x 270	100	100	9,61
8,0 x 295	120	100	8,40
8,0 x 330	120	140	10,75
8,0 x 375	140	140	11,87
8,0 x 400	160	140	11,65
8,0 x 430	160	160	13,66
8,0 x 480	180	180	15,12
8,0 x 530	180	200	17,67
8,0 x 580	220	220	17,67

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5 = $\underline{7,20 \text{ kN}}$.

 $La \; capacit\'e \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \\ \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \\ \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \\ \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \\ \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \\ \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \\ \longrightarrow min \; R_k = R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; l'a$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 10,0 MM: FIXATION BOIS-BOIS

Valeur caractéristique de la capacité de charge de l'assemblage R_{ax.k} et/ou R_k selon ETA-11/0024

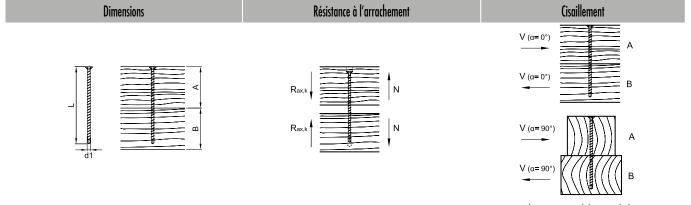
d1 x L [mm]	A [mm]	B [mm]	R_{k}^{a} - [kN]
			α = 45°
10,0 x 125	40	60	3,68
10,0 x 220	80	80	8,60
10,0 x 245	100	100	8,60
10,0 x 270	100	100	10,63
10,0 x 300	120	120	10,63
10,0 x 330	120	140	13,07
10,0 x 360	140	140	13,21
10,0 x 400	160	140	14,17
10,0 x 450	160	180	18,25
10,0 x 500	180	200	20,02
10,0 x 550	200	200	21,79
10,0 x 600	220	220	23,33
10,0 x 650	220	240	23,33
10,0 x 700	240	260	23,33
10,0 x 750	260	280	23,33
10,0 x 800	280	300	23,33
10,0 x 900	320	340	23,33
10,0 x 1000	360	380	23,33

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : R_d = R_k · k_{mod} / γ_M. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 5,2 À 8,0 MM: FIXATION BOIS-BOIS

Valeur caractéristique de la capacité de charge de l'assemblage R_{ax,k} selon ETA-11/0024

Valeur caractéristique de la capacité de charge de l'assemblage R_{K} selon ETA-11/0024

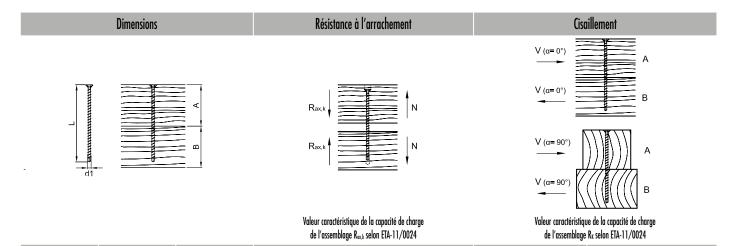
				uo i ussonibiago na	501011 E111 1 17 00 E 1
d1 x L[mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{a_1}$ - [kN]	$R_k^{a)}$ - [kN]	$R_k^{a)}$ - [kN]
				$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$
5,2 x 80	40	60	2,58	2,26	2,26
5,2 x 100	60	60	3,44	2,48	2,48
5,2 x 120	60	80	4,30	2,69	2,69
5,2 x 140	80	80	5,16	2,91	2,91
5,2 x 160	80	100	6,03	3,12	3,12
6,5 x 80	40	60	3,22	3,46	2,64
6,5 x 100	60	60	4,30	3,82	3,28
6,5 x 120	60	80	4,75	3,93	3,47
6,5 x 140	80	80	4,75	3,93	3,47
8,0 x 95	40	60	3,08	4,61	3,57
8,0 x 125	60	80	4,61	5,05	4,37
8,0 x 155	80	80	7,11	5,67	4,99
8,0 x 195	100	100	9,01	6,15	5,46
8,0 x 220	120	120	9,48	6,27	5,58
8,0 x 245	120	140	11,38	6,74	6,06
8,0 x 270	140	140	12,33	6,98	6,29
8,0 x 295	140	160	13,28	7,21	6,42
8,0 x 330	160	180	15,17	7,69	6,42
8,0 x 375	180	200	17,07	7,79	6,42
8,0 x 400	200	220	18,97	7,79	6,42
8,0 x 430	220	220	19,92	7,79	6,42
8,0 x 480	240	260	22,76	7,79	6,42
8,0 x 545	260	300	25,00	7,79	6,42

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_M=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; l'as$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$

KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 10,0 MM: FIXATION BOIS-BOIS

dl x L [mm] A [mm] B [mm] $R_{\alpha x,k}^{\alpha}$ - [kN] R_{k}^{α} - [kN] R_{ν}^{α} - [kN] $\alpha = 0^{\circ}$ $\alpha = 90^{\circ}$ 10,0 x 125 60 80 6,92 7,18 6,18 10,0 x 155 80 80 8,65 7,61 6,61 100 100 10,96 8,19 7,19 10,0 x 195 10,0 x 220 120 120 11,53 8,33 7,33 10,0 x 245 120 140 13.84 8.91 7.91 140 140 14,99 9,20 8,20 10,0 x 270 10,0 x 300 160 160 16,15 9,48 8,48 160 180 10,06 8,90 10,0 x 330 18,46 10,0 x 360 180 200 20,76 10,64 8,90 220 10,0 x 400 200 23,07 10,89 8,90 10,0 x 450 220 240 25,38 10,89 8,90 10,0 x 500 240 280 27,68 10,89 8,90 10,0 x 550 260 300 29,99 10,89 8,90 10,0 x 600 300 320 33.00 10,89 8,90 320 340 33,00 10,89 10,0 x 650 8,90 10,0 x 700 340 360 33,00 10,89 8,90 360 400 10,0 x 750 33,00 10,89 8,90

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_{\rm K}$ = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

33,00

33,00

33,00

10,89

10,89

10,89

8,90

8,90

8,90

Exemple:

10,0 x 800

10,0 x 900

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{M}=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=\underline{7,20\ kN}$.

400

440

480

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : Il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

420

480

540

KONSTRUX AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 11,3 MM: FIXATION BOIS-BOIS

 $Valeur\ caractéristique\ de\ la\ capacité\ de\ charge\ de\ l'assemblage\ R_{\alpha\kappa,k}\ \ et/ou\ R_k\ selon\ ETA-11/0024$

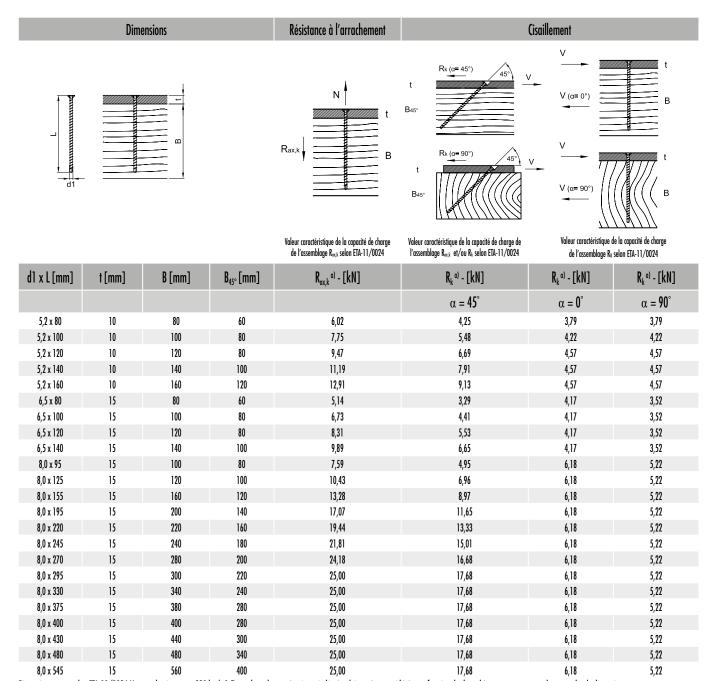
dl x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{\alpha)}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R _k °) - [kN]
			$\alpha = 45^{\circ}$		$\alpha_{A} = 90^{\circ}$ $\alpha_{B} = 45^{\circ}$		$\alpha_{\mathtt{A}} = \alpha_{\mathtt{B}} =$	90° 90°	$\alpha_A = 45^{\circ}$ $\alpha_B = 90^{\circ}$	
11,3 x 300	120	120	16,98	12,01	16,98	12,01	16,98	12,01	16,98	12,01
11,3 x 340	140	120	18,51	13,09	18,51	13,09	18,51	13,09	18,51	13,09
11,3 x 380	140	140	23,72	16,77	23,72	16,77	23,72	16,77	23,72	16,77
11,3 x 420	160	160	25,25	17,85	25,25	17,85	25,25	17,85	25,25	17,85
11,3 x 460	180	160	26,78	18,93	26,78	18,93	26,78	18,93	26,78	18,93
11,3 x 500	180	200	31,99	22,62	31,99	22,62	31,99	22,62	31,99	22,62
11,3 x 540	200	200	33,52	23,70	33,52	23,70	33,52	23,70	33,52	23,70
11,3 x 580	220	220	35,04	24,78	35,04	24,78	35,04	24,78	35,04	24,78
11,3 x 620	220	240	40,26	28,47	40,26	28,47	40,26	28,47	40,26	28,47
11,3 x 660	240	240	41,79	29,55	41,79	29,55	41,79	29,55	41,79	29,55
11,3 x 700	260	260	43,31	30,63	43,31	30,63	43,31	30,63	43,31	30,63
11,3 x 750	280	280	46,14	32,63	46,14	32,63	46,14	32,63	46,14	32,63
11,3 x 800	300	280	48,97	34,63	48,97	34,63	48,97	34,63	48,97	34,63
11,3 x 900	320	340	50,00	35,36	50,00	35,36	50,00	35,36	50,00	35,36
11,3 x 1000	360	360	50,00	35,36	50,00	35,36	50,00	35,36	50,00	35,36

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{th}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kM}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

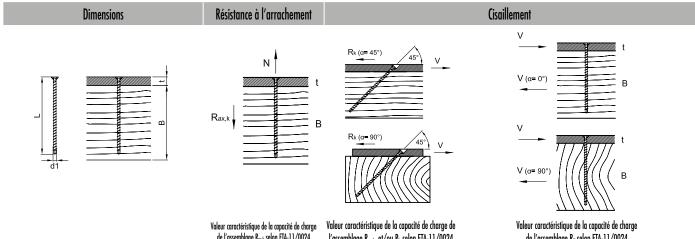
KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 5,2 À 8,0 MM: FIXATION ACIER-BOIS

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_k = 380 \text{ kg/m}^3$. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ \bar{c}aract\'{e}ristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{lk}=1,3.$


 \longrightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=\underline{7,20\ kN}.$

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \geq E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

KONSTRUX ST AVEC TÊTE FRAISÉE ET POINTE DE FORAGE 10,0 MM: FIXATION ACIER-BOIS

de l'assemblage R_{ex,k} selon ETA-11/0024

l'assemblage $R_{\alpha x,k}$ et/ou R_k selon ETA-11/0024

de l'assemblage R_K selon ETA-11/0024

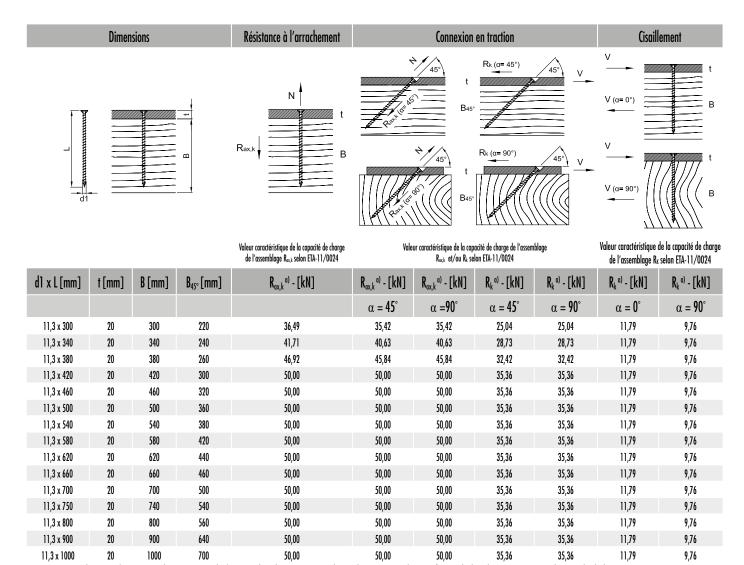
dl x L [mm]	t[mm]	B [mm]	B _{45°} [mm]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	R_k^{a} - [kN]	R _k a) - [kN]	R _k ^{a)} - [kN]
					$\alpha = 45^{\circ}$	$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$
10,0 x 125	15	120	100	12,69	8,46	8,72	7,30
10,0 x 155	15	160	120	16,15	10,91	8,72	7,30
10,0 x 195	15	200	140	20,76	14,17	8,72	7,30
10,0 x 220	15	220	160	23,65	16,21	8,72	7,30
10,0 x 245	15	240	180	26,53	18,25	8,72	7,30
10,0 x 270	15	280	200	29,41	20,29	8,72	7,30
10,0 x 300	15	300	220	32,87	22,74	8,72	7,30
10,0 x 330	15	340	240	33,00	23,33	8,72	7,30
10,0 x 360	15	360	260	33,00	23,33	8,72	7,30
10,0 x 400	15	400	280	33,00	23,33	8,72	7,30
10,0 x 450	15	460	320	33,00	23,33	8,72	7,30
10,0 x 500	15	500	360	33,00	23,33	8,72	7,30
10,0 x 550	15	560	400	33,00	23,33	8,72	7,30
10,0 x 600	15	600	420	33,00	23,33	8,72	7,30
10,0 x 650	15	660	480	33,00	23,33	8,72	7,30
10,0 x 700	15	720	520	33,00	23,33	8,72	7,30
10,0 x 750	15	660	560	33,00	23,33	8,72	7,30
10,0 x 800	15	800	600	33,00	23,33	8,72	7,30
10,0 x 900	15	920	640	33,00	23,33	8,72	7,30
10,0 x 1000	15	1000	720	33,00	23,33	8,72	7,30

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mr}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \geq E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) Gk = 2,00 kN et l'effet variable (p. ex. la charge de neige) Qk = 3,00 kN. kmd = 0,9. YM = 1,3.


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

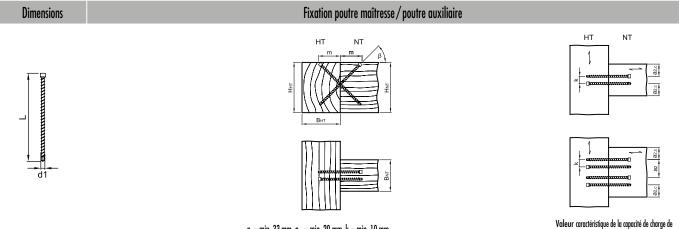
KONSTRUX AVEC TÊTE FRAISÉE ET POINTE DE FORAGE AG 11,3 MM: FIXATION ACIER-BOIS

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.


 \rightarrow Valeur de dimensionnement de l'effet $E_d=2,00\cdot 1,35+3,00\cdot 1,5=\underline{7,20\ kN}$.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; l'as$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 5,2 À 5,9 MM: FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

 a_2 = min. 33 mm, $a_{2,c}$ = min. 20 mm, k = min. 10 mm

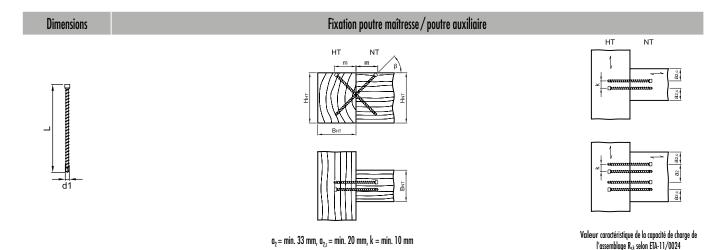
l'assemblage R_{vk} selon ETA-11/0024

dl x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Paire (n)
5,2 x 140	60 80 100 140	120	60	120	52	45	8,00 14,93 21,50 27.86	1 2 3 4
5,2 x 160	60 80 100 140	140	80	140	60	45	8,00 14,93 21,50 27.86	1 2 3 4
5,9 x 160	60 100 120 160	140	80	140	60	45	10,00 18,66 26,88 34,83	1 2 3 4
5,9 x 180	60 100 120 160	160	80	160	65	45	10,00 18,66 26,88 34,83	1 2 3 4
5,9 x 200	60 100 120 160	160	80	160	70	45	10,00 18,66 26,88 34,83	1 2 3 4

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd = Rk · k. mod / Ym. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \geq E_d$).

Valeur caractéristique pour l'effet permanent (propre charge) G1 = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q1 = 3,00 kN. kmet = 0,9. YM = 1,3.


→ Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow min } R_k = R_d \cdot \gamma_M \, / \, k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM: FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

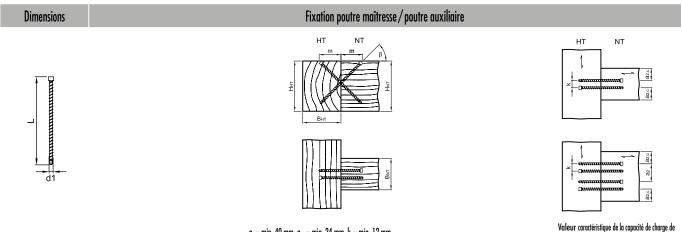
							i assemblage ma	,
dl x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Paire (n)
	60						10,91	1
/ 5 105	100	1/0	80	160	69	45	20,36	2
6,5 x 195	120	160	00				29,33	3
	160						38,00	4
	60						10,91	1
/ F 900	100	1/0	00	160	70	AF	20,36	2
6,5 x 200	120	160	80			45	29,33	3
	160						38,00	4
	60		100		80		12,90	1
/ F 990	100	180		180		ΑΓ	24,07	2
6,5 x 220	120			100		45	34,67	3
	160						44,92	4
	60					45	12,90	1
6,5 x 240	100	180	100	180	85		24,07	2
0,3 X 24U	120	100	100	100	Ď)		34,67	3
	160						44,92	4
	60						12,90	1
1 C v 710	100	200	100	200	00	45	24,07	2
6,5 x 260	120	200	100	200	90	45	34,67	3
	160						44,92	4

Dimensionnement selon ETA-11/0024 Masse volumique $\rho_k = 380 \text{ kg/m}^3$. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{NL}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_{M}=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2.00 \cdot 1.35 + 3.00 \cdot 1.5 = 7.20 \text{ kN}.$

 $La \ capacit\'e \ de \ charge \ de \ l'assemblage \ est \ r\'eput\'ee \ prouv\'ee \ lorsque \ R_d \geq E_d. \longrightarrow min \ R_k = R_d \cdot \gamma_M \ / \ k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 8,0 MM: FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

 a_2 = min. 40 mm, $a_{2,\varepsilon}$ = min. 24 mm, k = min. 12 mm

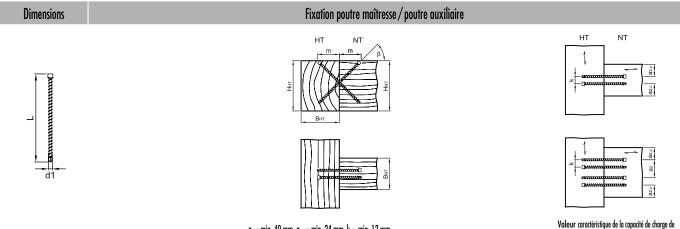
							i usseiiibiuge n _{v,k} s	GIOII LIA-I I/ OUZT
dl x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	R _{v,k} ^{a) b)} - [kN]	Paire (n)
	80						16,43	1
0.0045	100	200	100	200	87	45	30,66	2
8,0 x 245	140	200				45	44,16	3
	180						57,21	4
	80						17,44	1
0.0 970	100	200	100	200	95	AE	32,55	2
8,0 x 270	140	200	100			45	46,88	3
	180						57,21	4
	80	220	120		104		17,44	1
0 0 200	100			220		45	32,55	2
8,0 x 295	140			220		43	46,88	3
	180						60,74	4
	80						17,44	1
8,0 x 330	100	260	140	260	117	45	32,55	2
0,0 X 330	140	200	140	200	117	43	46,88	3
	180						60,74	4
	80						17,44	1
8,0 x 375	100	280	160	200	199	AE	32,55	2
	140	200	100	280	133	45	46,88	3
	180						60,74	4

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd = Rk · kmod / Ym. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \geq E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G1 = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q1 = 3,00 kN. kmet = 0,9. YM = 1,3.


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2.00 \cdot 1.35 + 3.00 \cdot 1.5 = 7.20 \text{ kN}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kM}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 8,0 MM: FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

 $\alpha_2 =$ min. 40 mm, $\alpha_{2,c} =$ min. 24 mm, k = min. 12 mm

Valeur caractéristique de la capacité de charge d l'assemblage R_{vk} selon ETA-11/0024

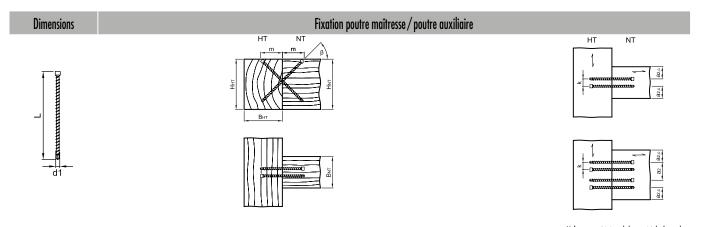
dl x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a)b}$ - [kN]	Paire (n)
	80						17,44	1
8,0 x 400	100	300	160	300	141	45	32,55	2
0,0 X 400	140	300	100				46,88	3
	180						60,74	4
	80						17,44	1
8,0 x 430	100	320	180	320	152	45	32,55	2
0,0 X 430	140	320	100	320		43	46,88	3
	180						60,74	4
	80	360	180	360	170		17,44	1
8,0 x 480	100					45	32,55	2
0,0 X 100	140						46,88	3
	180						60,74	4
	80			400	187	45	17,44	1
8,0 x 530	100	400	200				32,55	2
0,0 X 330	140	100	200	100	107	10	46,88	3
	180						57,21	4
	80						17,44	1
8,0 x 580	100	440	220	440	205	45	32,55	2
0,0 A J00	140	UTT	770	440	203	45	46,88	3
	180						57,21	4

Dimensionnement selon ETA-11/0024 Masse volumique ho_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9.\ \gamma_M=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 10,0 MM: FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

 α_2 = min. 50 mm, $\alpha_{2\ell}$ = min. 30 mm, k = min. 15 mm

Valeur caractéristique de la capacité de charge de l'assemblage R_{v.k} selon ETA-11/0024

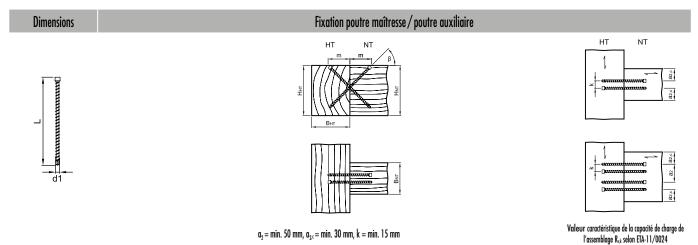
								,
dl x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Paire (n)
10,0 x 300	80 140 180 240	240	120	240	106	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 330	80 140 180 240	260	140	260	117	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 360	80 140 180 240	280	140	280	127	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 400	80 140 180 240	300	160	300	141	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 450	80 140 180 240	340	180	340	159	45	23,67 44,18 63,63 82,44	1 2 3 4
10,0 x 500	80 140 180 240	380	200	380	177	45	23,67 44,18 63,63 82,44	1 2 3 4

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{M}=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kM}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 10,0 MM: FIXATION POUTRE MAÎTRESSE/POUTRE AUXILIAIRE

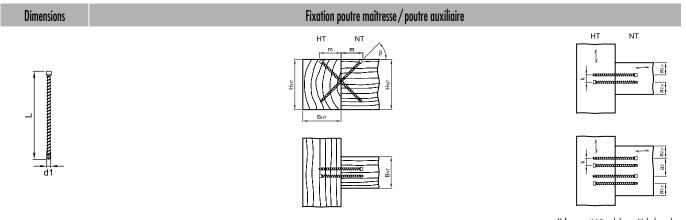
							. assemblage max se	,
dl x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	R _{v,k} ^{a) b)} - [kN]	Paire (n)
	80						23,67	1
10.0 550	140	400	000	400	195	45	44,18	2
10,0 x 550	180	400	200	400			62,63	3
	240						82,44	4
	80						23,67	1
10.0 (00	140	440	000	440	010	45	44,18	2
10,0 x 600	180	440	220		212	45	62,63	3
	240						82,44	4
	80		240		230		23,67	1
10,0 x 650	140	480		480		45	44,18	2
10,0 X 030	180			400	230		62,63	3
	240						82,44	4
	80		260	520	250	45	23,67	1
10.0 700	140	520					44,18	2
10,0 x 700	180	320					62,63	3
	240						82,44	4
	80						23,67	1
10.0 750	140	560	280	560	265	45	44,18	2
10,0 x 750	180	300	200	300	200	43	62,63	3
	240						82,44	4
	80						23,67	1
10,0 x 800	140	600	200	400	280	45	44,18	2
	180	000	300	600			62,63	3
	0.10						00.44	4

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{NL}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{mod}=0,9,\ \gamma_M=1,3.$


 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 10,0 MM: FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

 α_2 = min. 50 mm, $\alpha_{2,\epsilon}$ = min. 30 mm, k = min. 15 mm

Valeur caractéristique de la capacité de charge de l'assemblage $R_{v,k}$ selon ETA-11/0024

d1 x L[mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	m [mm]	β°	$R_{v,k}^{a) b}$ - [kN]	Paire (n)
	80		340	680	320	45	23,67	1
10,0 x 900	140	/00					44,18	2
	180	680					62,63	3
	240						82,44	4
	80			700	350	45	23,67	1
10.0 1000	140	700					44,18	2
10,0 x 1000	180	720	360	720			62,63	3
	240						82,44	4

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_t ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_t sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_t \cdot k_{mod} / \gamma_{Nt}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$, $\gamma_M = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau.}$

CONSTRUCTION À OSSATURE BOIS AVEC KONSTRUX ST

Assemblages avec vis à filetage complet

La vis KonstruX ST est une vis universelle à filetage complet pour les assemblages d'éléments d'ossature bois comme les poteaux et les traverses. La vis KonstruX ST ZK de Ø 6 notamment convient à l'assemblage d'éléments d'ossature bois dans les classes d'utilisation 1 et 2.

La géométrie spéciale de la pointe de forage permet d'utiliser les distances au bord et les entraxes réduits. C'est la condition sine qua non à l'utilisation dans de petites sections. La pointe de forage réduite n'a pas d'impact négatif sur la résistance à l'arrachement du filet de la vis. Le filet double fin derrière la pointe de forage réduit le couple de vissage.

Les vis à filetage complet sont utilisées de manière optimale lorsqu'elles sont sollicitées de manière axiale, c'est-à-dire en traction (ou pression). S'il n'y a qu'un effort de cisaillement, les vis à filetage complet ne peuvent pas exploiter tout leur potentiel. On essaie pour cette raison de placer les vis si possible dans le sens de la force appliquée. Si l'angle force-axe (à ne pas confondre avec l'angle axe-fibre) se situe entre 0° et 45°,, on considère que les vis sont sollicitées exclusivement en traction. Il n'est alors pas nécessaire de prouver un cisaillement. L'assemblage est donc nettement plus solide dans un vissage en biais que dans un vissage de 90° par rapport à la force. Les vis KonstruX ST peuvent être placées indépendamment du fil, c'est-à-dire également en parallèle au fil. Du point de vue arithmétique, la résistance à l'arrachement reste constante entre 45° et 90°.

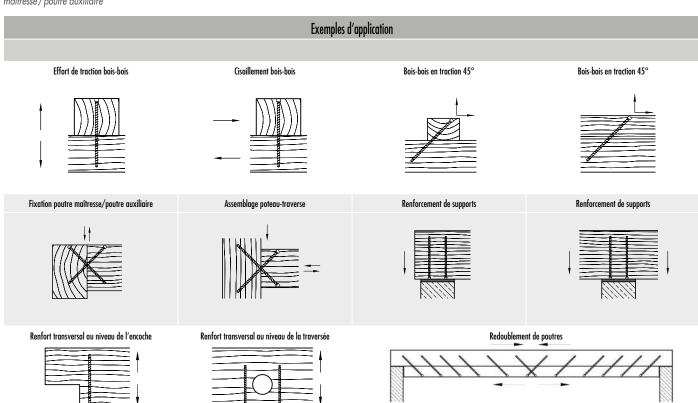
VIS ASSORTIE

KonstruX ST : tête cylindrique, Ø 6,5 mm Longueurs de la vis : 80 – 195 mm Tête cylindrique enfonçable Matériau : acier trempé Revêtement superficiel galvanisé

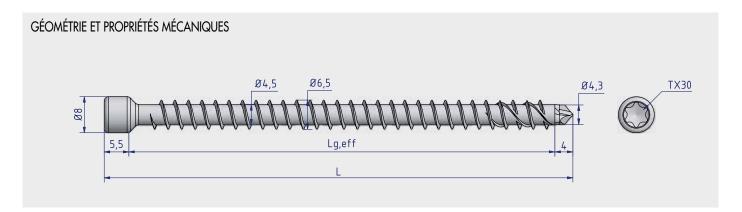
EXEMPLES D'APPLICATION

Il existe de multiples applications pour les vis à filetage complet. Les vis à tête cylindrique sont conçues pour l'assemblage d'éléments bois-bois. Les têtes cylindriques peuvent être enfoncées profondément dans le bois à l'aide d'un embout long. En cas de poutres apparentes, les éléments de connexion ne sont pratiquement pas visibles. Contrairement aux vis à filetage partiel, il n'est pas important que la tête soit dans un élément donné dans le cas des vis à filetage complet, exception faite bien sûr des connexions acier/bois. Dans ce cas, les les distances minimales au bord et les entraxes requis sont à respecter.

Fixation de traverses sur des constructions à ossature bois légères


Fixation de supports sur des constructions à ossature bois

Fixation de supports sur des constructions à ossature bois et des connexions poutre maîtresse/poutre auxiliaire



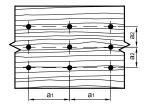
Fixation de supports sur des constructions à ossature bois au niveau de la sablière inférieure

Eurotec° | KonstruX

KONSTRUX ST AVEC TÊTE CYLINDRIQUE 6,5 MM

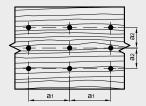
	KonstruX ST ZK Ø 6,5xL -TX30											
N° de réf.	L [mm]	L _{g,eff} [mm]	Unité/ PU	Diamètre de pré-perçage Ød _v [mm]	Valeur caractéristique de la résistance à l'arran-chement $\mathfrak{f}_{\omega_x}[\mathbb{N}/\mathbb{mm}^2]$	Valeur caractéristique de la résistance d'une fixation soumise à la traction f _{tens,k} [kN]	Couple d'écoulement caractéristique M _{y,k} [Nmm]	Limite d'élasticité caractéristique f _{y,k} [N/mm²]				
904808	80	71	100	4,5	11,4	17,0	15000	1000				
904809	100	91	100	4,5	11,4	17,0	15000	1000				
904810	120	111	100	4,5	11,4	17,0	15000	1000				
904811	140	131	100	4,5	11,4	17,0	15000	1000				
904812	160	151	100	4,5	11,4	17,0	15000	1000				
904813	195	186	100	4,5	11,4	17,0	15000	1000				

Entraxes et distances au bord Les distances minimales pour les vis KonstruX sollicitées exclusivement dans le sens axial dans des trous pré-percés et des trous non pré-percés dans des éléments de construction d'une épaisseur minimale t = 65 et d'une largeur minimale de 60 mm sont à choisir comme suit : Entraxe parallèle au fil [mm] 5. d Entraxe perpendiculaire au fil 33 5- d [mm] Distance entre le centre de gravité de la vis insérée dans le bois et la surface du bois de bout A3_{1 c} 5∙ d 33 [mm] Distance entre le centre de gravité de la vis insérée dans le bois et la surface de bois de bordure 3. d 20 A3_{2 c} [mm] Entraxe entre la paire de vis qui se croise 1,5∙ d 10 [mm]

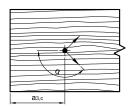

Les entraxes et distances au bord sont des distances minimales selon la norme DIN EN 1995:2014 (ECS) et s'appliquent en général aux moyens de connexion sollicités dans le sens transversal.

[mm]

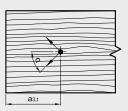
2,5∙ d

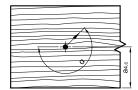

a) Distance entre les moyens de connexion dans une rangée dans le sens de la fibre

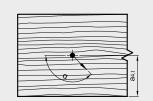
Entraxe réduit α_2 à angle droit par rapport au fil lorsque $\alpha_1\cdot\alpha_2\geq 25\cdot d^2$



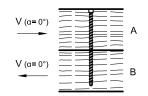
16

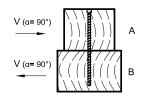

a₂ Distance entre les moyens de connexion perpendiculairement au sens de la fibre


A3_{3 c} Distance entre le moyen de connexion et le bois de bout non sollicité $90^{\circ} \le \alpha \le 270^{\circ}$


A3₃₁ Distance entre le moyen de connexion et le bois de bout sollicité -90° $\leq \alpha \leq 90^{\circ}$

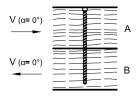
A3_{4 c} Distance entre le moyen de connexion et le bord non sollicité $180^{\circ} \le \alpha \le 360^{\circ}$

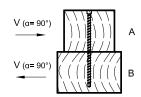

 a_{t1} Distance entre le moyen de connexion et le bord sollicité $0^{\circ} \le \alpha \le 180^{\circ}$



Après évaluation, les distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous pré-percés se présentent comme suit en fonction du sens de la fibre

Distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous pré-percés avec un angle force-fibre de 0° et de 90°

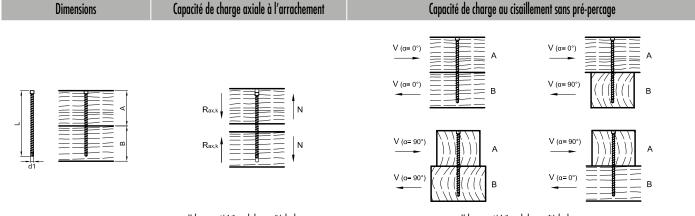




			Angle force-fibre $\alpha = 0^{\circ}$		Angle force-f	ibre α = 90°
Entraxe parallèle au fil	\mathbf{q}_1	[mm]	5∙ d	33	4- d	33
Entraxe perpendiculaire au fil	O ₂	[mm]	3- d	20	4- d	33
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout non sollicité	u _{3,c}	[mm]	7- d	46	7- d	46
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout sollicité	a _{3,t}	[mm]	12· d	78	7- d	46
Entraxe à angle droit par rapport au bord non sollicité	a 4,c	[mm]	3∙ d	20	3- d	20
Entraxe par rapport au bord sollicité	Q _{4,1}	[mm]	3- d	20	7. d	46

Après évaluation, les distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous non pré-percés se présentent comme suit en fonction du sens de la fibre

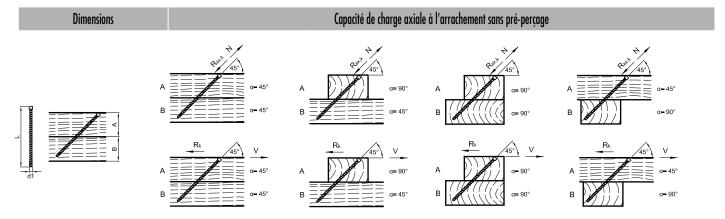
Distances minimales pour les vis KonstruX sollicitées dans le sens transversal dans des trous non pré-percés avec un angle force-fibre de 0° et de 90°



			Angle force-f	fibre α = 0°	Angle force-f	ibre α = 90°
Entraxe parallèle au fil	\mathfrak{a}_1	[mm]	12∙ d	78	5∙ d	33
Entraxe perpendiculaire au fil	a ₂	[mm]	5∙ d	33	5∙ d	33
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout non sollicité	A33,	[mm]	10· d	65	10· d	65
Distance entre le centre de gravité de la vis insérée dans le bois et le bois de bout sollicité	A3 ₃₁	[mm]	15· d	98	10∙ d	65
Entraxe à angle droit par rapport au bord non sollicité	А34 с	[mm]	5. d	33	5∙ d	33
Entraxe par rapport au bord sollicité	Q4+	[mm]	5. d	33	10∙ d	65

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM : CAPACITÉ DE CHARGE AU CISAILLEMENT SANS PRÉ-PERÇAGE

Valeur caractéristique de la capacité de charge de l'assemblage R_{ack} selon ETA-11/0024 Valeur caractéristique de la capacité de charge de l'assemblage R_K selon ETA-11/0024

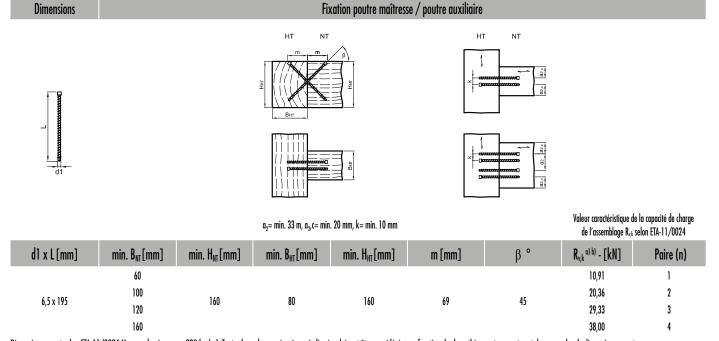

ØdlxL[mm]	A [mm]	B [mm]	$R_{\alpha x,k}{}^{\alpha j}$ - [kN]	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]	$R_k^{a)}$ - [kN]	R_k^{a} - [kN]
				α= 0 °	α= 90 °	$\alpha_{\mathtt{A}} = 0^{\circ}$	α_{A} = 90°
				α= υ	α= 90	$\alpha_{\mathtt{B}} = 90^{\circ}$	$\alpha_{\mathtt{B}} = 0^{\circ}$
6,5 x 120	60	80	4,35	3,83	3,37	3,83	3,37
6,5 x 140	80	80	4,43	3,85	3,39	3,39	3,85
6,5 x 160	80	100	5,94	4,22	3,76	4,22	3,76
6,5 x 195	100	100	7,20	4,54	4,08	4,08	4,54

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM : CAPACITÉ DE CHARGE AXIALE À L'ARRACHEMENT SANS PRÉ-PERÇAGE

Valeur caractéristique de la capacité de charge de l'assemblage R_k selon ETA-11/0024


Ød1 x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{a}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{α} - [kN]
			α=	45°	$\alpha_{A}=$ $\alpha_{B}=$		$\alpha_{A}=$ $\alpha_{B}=$		$\alpha_A = \alpha_B = \alpha_B$	
6,5 x 160	60	80	5,51	3,90	5,51	3,90	5,51	3,90	5,51	3,90
6,5 x 195	80	80	6,04	4,27	6,04	4,27	6,04	4,27	6,04	4,27

Dimensionnement selon ETA-11/0024 Masse volumique ρ_{λ} = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{dk}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

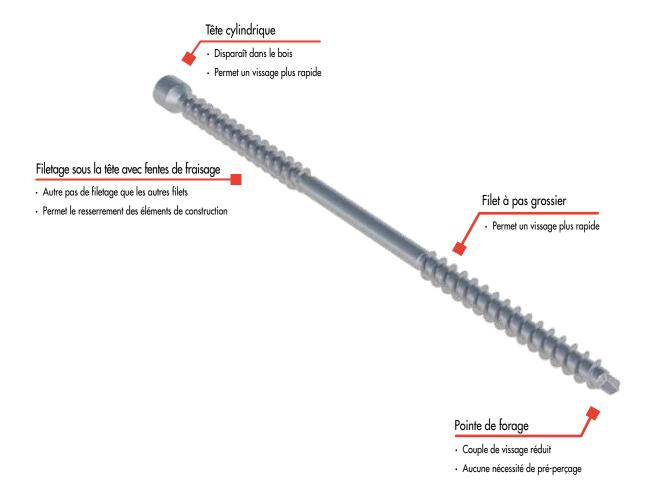
KONSTRUX ST AVEC TÊTE CYLINDRIQUE ET POINTE DE FORAGE 6,5 MM : FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

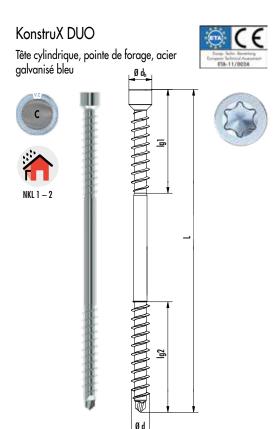
Dimensionnement selon ETA-11/0024 Masse volumique p_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{dk}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

KONSTRUX DUO

Vis à filetage complet avec effet de resserrement




La vis KonstruX DUO est une vis à filetage complet innovante qui combine les points forts des vis à filetage complet et des vis à filetage partiel:

Maximisation de la capacité de charge de l'assemblage grâce à une résistance à l'arrachement identique dans les deux éléments de construction. La vis

KonstruX DUO résiste à la corrosion sous certaines réserves et est utilisable dans les classes d'utilisation 1 et 2 selon la norme DIN EN 1995 (eurocode 5).

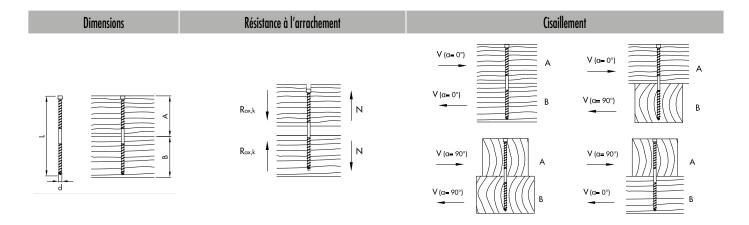
Les domaines d'application se trouvent dans les nouvelles constructions et dans la rénovation de bâtiments.

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/lg2[mm]	Empreinte	PU
100606	6,5	90	8,0	40/40	TX30 •	100
100607	6,5	130	8,0	43/43	TX30 •	100
100608	6,5	160	8,0	67/67	TX30 •	100
100609	6,5	190	8,0	82/82	TX30 •	100
100611	8,0	160	10,0	67/67	TX40 •	100
100612	8,0	190	10,0	92/92	TX40 •	100
100613	8,0	220	10,0	92/92	TX40 •	100
100614	8,0	245	10,0	107/107	TX40 •	100
100615	8,0	280	10,0	107/107	TX40 •	100
100616	8,0	300	10,0	137/137	TX40 •	100
100617	8,0	330	10,0	137/137	TX40 •	100
100618	8.0	400	10.0	137 / 137	TX40 •	100

EXEMPLES D'APPLICATION

KonstruX DUO pour la construction d'un soubassement d'escalier

Vue en coupe KonstruX DUO entre deux éléments de construction


KonstruX DUO pour la fixation d'une poutre supérieure

KonstruX DUO pour la fixation d'une poutre inférieure

INFORMATIONS TECHNIQUES KONSTRUX DUO, ACIER GALVANISÉ BLEU

d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{ a)}$ - [kN]	R_k^{α} - [kN]	R _k a) - [kN]	R_k^{a} - [kN]	R_k^{a} - [kN]
				n °	$\alpha = 90^{\circ}$	$\alpha_{A} = 0^{\circ}$	$\alpha_{A} = 90^{\circ}$
				$\alpha = 0^{\circ}$	$\alpha = 70$	$\alpha_{B} = 90^{\circ}$	$\alpha_{\rm B} = 0^{\circ}$
6,5 x 90	40	40	0,96	3,00	2,51	2,75	2,64
6,5 x 130	60	60	1,04	3,02	2,57	2,77	2,77
6,5 x 160	80	80	1,71	3,19	2,74	2,94	2,94
6,5 x 190	100	100	2,12	3,29	2,85	3,04	3,04
8,0 x 160	80	80	5,74	5,37	4,72	5,00	5,00
8,0 x 190	100	100	8,11	5,97	5,31	5,60	5,60
8,0 x 220	120	120	8,11	5,97	5,31	5,60	5,60
8,0 x 245	120	120	9,53	6,32	5,67	5,95	5,95
8,0 x 280	140	140	9,53	6,32	5,67	5,95	5,95
8,0 x 300	160	160	12,38	7,03	6,38	6,66	6,66
8,0 x 330	180	180	12,38	7,03	6,38	6,66	6,66
8,0 x 400	200	200	12,38	7,03	6,38	6,66	6,66

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{Me} = 1,3$. \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$ C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20$ kN $\cdot 1,3/0,9 = 10,40$ kN \rightarrow Mise en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES KONSTRUX DUO, ACIER GALVANISÉ BLEU

Dimensions		Connexion en	traction	
	A 45° C= 45°	A A G 90° B C 45°	A A 45° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A
	A	A α= 90° B α= 45°	A	A Quit 45° B Q= 90°

vit vite	1.1 9/1.1	II/ II n	./ D FTA 11/0004
valeur caracteristique	e de la cabacite de cn	arae ae i assembiaae k"	ι et/ou Rι selon ETA-11/0024

d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{\alpha l}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{α} - [kN]	$R_{\alpha x,k}^{a)}$ - [kN]	R_k^{a} - [kN]
			α =	45°	$\alpha_{A} = \alpha_{B} = \alpha_{B}$	90° 45°	$\alpha_{A} = \alpha_{B} = \alpha_{B}$: 45° : 90°
6,5 x 90	40	40	0,68	0,48	0,68	0,48	0,68	0,48	0,68	0,48
6,5 x 130	40	40	0,74	0,52	0,74	0,52	0,74	0,52	0,74	0,52
6,5 x 160	60	60	1,21	0,86	1,21	0,86	1,21	0,86	1,21	0,86
6,5 x 190	60	60	1,50	1,06	1,50	1,06	1,50	1,06	1,50	1,06
8,0 x 160	60	60	4,06	2,87	4,06	2,87	4,06	2,87	4,06	2,87
8,0 x 190	60	60	5,73	4,05	5,73	4,05	5,73	4,05	5,73	4,05
8,0 x 220	80	80	5,73	4,05	5,73	4,05	5,73	4,05	5,73	4,05
8,0 x 245	100	100	6,74	4,77	6,74	4,77	6,74	4,77	6,74	4,77
8,0 x 280	100	100	6,74	4,77	6,74	4,77	6,74	4,77	6,74	4,77
8,0 x 300	120	120	8,75	6,19	8,75	6,19	8,75	6,19	8,75	6,19
8,0 x 330	120	120	8,75	6,19	8,75	6,19	8,75	6,19	8,75	6,19
8.0 x 400	140	140	8.75	6.19	8.75	6.19	8.75	6.19	8.75	6.19

Dimensionnement selon ETA-11/0024 Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{Mc}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

 $Valeur\ caract\'eristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{M}=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_k \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

KONSTRUX DUO, ACIER GALVANISÉ BLEU FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

Dimensions Fixation poutre maîtresse / poutre auxiliaire

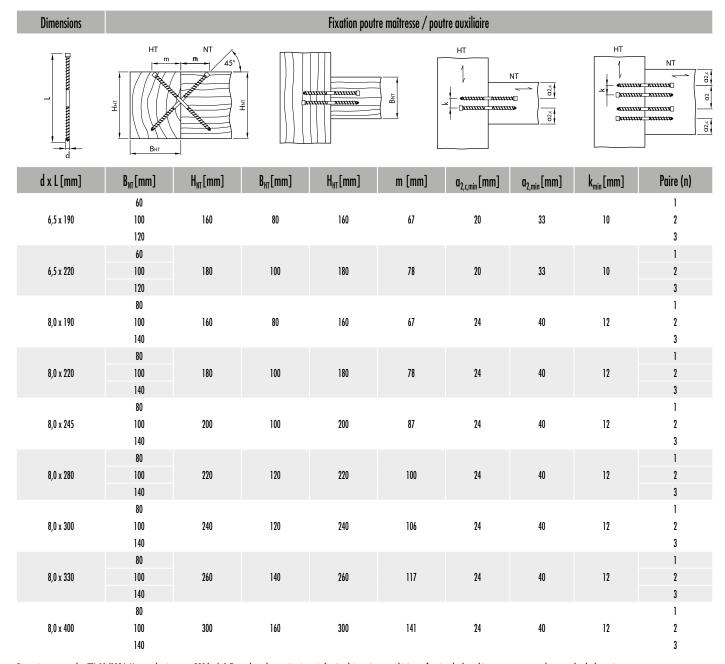
d x L [mm]	min. B _{NT} [mm]	min. H _{NT} [mm]	min. B _{HT} [mm]	min. H _{HT} [mm]	F _{v,Rd}	[kN]	Paire (n)
					$k_{mod} = 0.8$	$k_{mod} = 0.9$	
	60			'	1,84	2,08	1
6,5 x 190	100	160	160 80	160	3,43	3,88	2
	120				4,95	5,59	3
	60				2,21	2,49	1
6,5 x 220	100	180	100	180	4,13	4,64	2
	120				5,94	6,69	3
	80				7,06	7,94	1
8,0 x 190	100	160	80	160	13,17	14,81	2
	140				18,97	21,34	3
	80				7,06	7,94	1
8,0 x 220	100	180	100	180	13,17	14,81	2
	140				18,97	21,34	3
	80				8,30	9,33	1
8,0 x 245	100	200	100	200	15,48	17,41	2
	140				22,30	25,08	3
	80				8,30	9,33	1
8,0 x 280	100	220	120	220	15,48	17,41	2
	140				22,30	25,08	3
	80				10,77	12,12	1
8,0 x 300	100	240	120	240	20,10	22,61	2
	140				28,95	32,57	3
	80				10,77	12,12	1
8,0 x 330	100	260	140	260	20,10	22,61	2
	140				28,95	32,57	3
	80				10,77	12,12	1
8,0 x 400	100	300	160	300	20,10	22,61	2
	140				28,95	32,57	3

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{M_k}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple :

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{M} = 1,3.


 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}C'$ est-à-dire que la valeur minimale caractéristique de la capacité de charge est dimensionnée comme min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

b) déterminé à partir du nombre effectif de paires de vis à : $^{0.9}$.

KONSTRUX DUO, ACIER GALVANISÉ BLEU FIXATION POUTRE MAÎTRESSE / POUTRE AUXILIAIRE

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R₄ : R₄= Rk · k₂ √ γμ. Les valeurs de dimensionnement de la capacité de charge R₄ sont à comparer aux valeurs de dimensionnement des effets E₄ (R₄ ≥ E₄).

Fxemnle

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

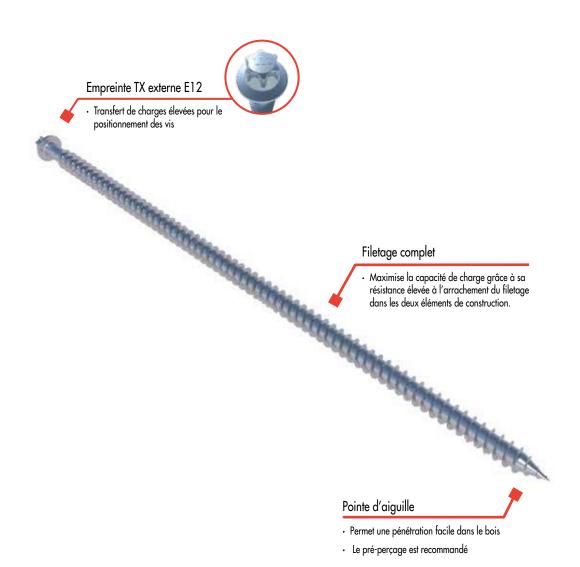
→ Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= <u>7,20 kN.</u>

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}C'$ est-à-dire que la valeur minimale caractéristique de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \frac{10,40 \text{ kN}}{2} \rightarrow Mise en cohérence avec les valeurs du tableau.$

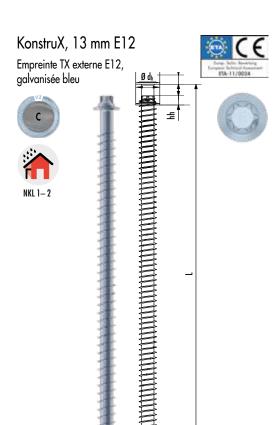
b) déterminé à partir du nombre effectif de paires de vis à : $^{\rm 0.9}.$

KONSTRUX, 13 MM E12

Pour de grandes envergures dans la construction en bois

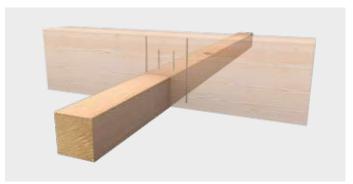


La vis KonstruX avec empreinte E12 est utilisée dans de nombreuses applications dans l'ingénierie et la construction en bois, la charpenterie, les constructions à ossature bois, la construction de halles et les éléments de construction en bois ainsi que dans la rénovation de plafonds et dans bien d'autres secteurs. Les vis à filetage complet KonstruX maximisent la capacité de charge d'un assemblage du fait de leur résistance élevée à l'arrachement du filet dans les deux éléments de construction.


Avec un filet à pas grossier sur toute la longueur et un diamètre extérieur de 13 mm, cette vis est conçue pour une excellente résistance axiale à l'arrachement dans des éléments de construction en bois. Avec sa remarquable résistance à la traction de 75 kN, la vis peut tirer parti de sa longueur maximale de 1400 mm et convient notamment aux grands projets de renforcement.

Les applications typiques sont les éléments de lamellé-collé et les fermes de halles de grande envergure, les renforcements de poutres et de raccordements, les renforts transversaux, les renforcements au niveau des encoches, les renforcements au niveau de traversées ainsi que les renforcements de supports pour accroître, préserver ou restaurer la capacité de charge et réduire les déformations dans le long terme.

Eurotec° | KonstruX

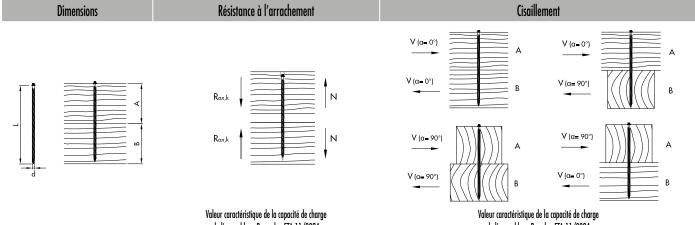

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	hh [mm]	Empreinte	PU
904840	13,0	300	18	10	TX50 ●	20
904841	13,0	320	18	10	TX50 ●	20
904842	13,0	340	18	10	TX50 ●	20
904843	13,0	360	18	10	TX50 ●	20
904844	13,0	380	18	10	TX50 ●	20
904845	13,0	420	18	10	TX50 ●	20
904846	13,0	460	18	10	TX50 ●	20
904847	13,0	500	18	10	TX50 ●	20
904848	13,0	540	18	10	TX50 ●	20
904849	13,0	580	18	10	TX50 ●	20
904850	13,0	620	18	10	TX50 ◆	20
904851	13,0	660	18	10	TX50 ●	20
904852	13,0	700	18	10	TX50 ◆	20
904853	13,0	750	18	10	TX50 ◆	20
904854	13,0	800	18	10	TX50 ●	20
904855	13,0	900	18	10	TX50 ●	20
904856	13,0	1000	18	10	TX50 ●	20
904861°)	13,0	1200	18	10	TX50 ◆	20
904862°)	13,0	1400	18	10	TX50 ●	20

a) Une évaluation technique européenne (ETE) a été demandée.

EXEMPLES D'APPLICATION

Renforcement des encoches de traverses

Renforcement des appuis des poutres maîtresses/poutres auxiliaires


Renforcement de traverses rainurées

Renforcement de traverses courbées (sous forme de trapèze)

INFORMATIONS TECHNIQUES KONSTRUX, 13 MM E12, ACIER GALVANISÉ BLEU

de l'assemblage R_{ax,k} selon ETA-11/0024

de l'assemblage Rx selon ETA-11/0024

ue i ussembiage K _{ax,k} seion cta-11/0024					de i asseniblage ng selon eta-11/0024				
d x L [mm]	A [mm]	B [mm]	$R_{\alpha_X,k}^{\alpha_I}$ - [kN]	R_k^{α} - [kN]	$R_k^{\alpha)}$ - [kN]	$R_k^{a} - [kN]$	$R_k^{a} - [kN]$		
				α= 0 °	α= 90 °	α_{A} = 0°	α_{A} = 90°		
				J	<i>a. 10</i>	$\alpha_{\mathtt{B}} = 90^{\circ}$	$\alpha_{\mathtt{B}} = 0^{\circ}$		
13,0 x 300	150	150	22,49	16,20	14,13	15,00	15,00		
13,0 x 320	160	160	24,00	16,57	14,50	15,37	15,37		
13,0 x 340	170	170	25,49	16,95	14,88	15,75	15,75		
13,0 x 360	180	180	27,00	17,32	15,25	16,12	16,12		
13,0 x 380	190	190	28,49	17,70	15,63	16,50	16,50		
13,0 x 420	210	210	31,49	18,45	16,38	17,25	17,25		
13,0 x 460	230	230	34,49	19,20	17,02	18,00	18,00		
13,0 x 500	250	250	37,49	19,25	17,02	18,75	18,75		
13,0 x 540	270	270	40,49	20,70	17,02	18,75	18,75		
13,0 x 580	290	290	43,48	21,15	17,02	18,75	18,75		
13,0 x 620	310	310	46,48	21,15	17,02	18,75	18,75		
13,0 x 660	330	330	49,48	21,15	17,02	18,75	18,75		
13,0 x 700	350	350	52,48	21,15	17,02	18,75	18,75		
13,0 x 750	375	375	56,23	21,15	17,02	18,75	18,75		
13,0 x 800	400	400	59,98	21,15	17,02	18,75	18,75		
13,0 x 900	450	450	67,48	21,15	17,02	18,75	18,75		
13,0 x 1000	500	500	74,97	21,15	17,02	18,75	18,75		
13,0 x 1200*	600	600	75,00	21,15	17,02	18,75	18,75		
13,0 x 1400*	700	700	75,00	21,15	17,02	18,75	18,75		

Dimensionnement selon ETA-11/0024. Masse volumique ho_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

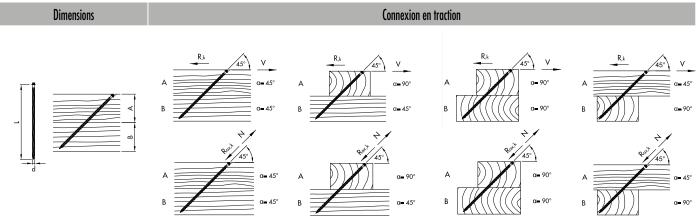
a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \longrightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$. C' (est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod}$. C' (est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod}$. C'

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

*Une évaluation technique européenne (ETE) a été demandée.

DOUILLE TX EXTERNE 1/2"



N° de réf.	Empreinte	PU
800420	E12	1

INFORMATIONS TECHNIQUES KONSTRUX, 13 MM E12, ACIER GALVANISÉ BLEU

Valour caractéristique de	la canacitá de charae de	l'accomhlano R . ot	ou Ruselon ETA-11/0024
valeur caracierisilaue ae	la cabacile de charde de	i assembiade K _{rv} i, ei	/ OU K, SEION CIA-1 1/ UU Z4

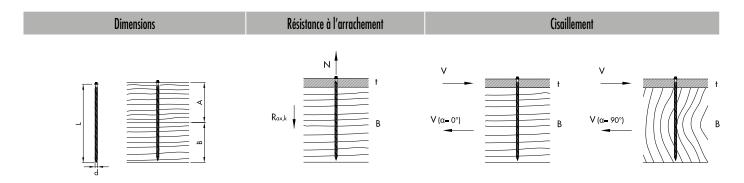
d x L [mm]	A [mm]	B [mm]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{\alpha}$ - [kN]	$R_k^{a)}$ - [kN]	$R_{\alpha x,k}^{a}$ - [kN]	R_k^{a} - [kN]	$R_{\alpha x,k}^{a}$ - [kN]	R_k^{a} - [kN]
			α = 45°		$\alpha_A = 90^{\circ}$ $\alpha_B = 45^{\circ}$		$\alpha_A = 90^{\circ}$ $\alpha_B = 90^{\circ}$		$\alpha_A = 45^{\circ}$ $\alpha_B = 90^{\circ}$	
13,0 x 300	105	105	15,75	11,14	15,75	11,14	15,75	11,14	15,75	11,14
13,0 x 340	120	120	17,99	12,72	17,99	12,72	17,99	12,72	17,99	12,72
13,0 x 380	135	135	20,05	14,18	20,05	14,18	20,05	14,18	20,05	14,18
13,0 x 420	150	150	22,05	15,59	22,05	15,59	22,05	15,59	22,05	15,59
13,0 x 460	160	160	23,99	16,96	23,99	16,96	23,99	16,96	23,99	16,96
13,0 x 500	180	180	26,02	18,40	26,02	18,40	26,02	18,40	26,02	18,40
13,0 x 540	190	190	28,49	20,15	28,49	20,15	28,49	20,15	28,49	20,15
13,0 x 580	205	205	30,74	21,74	30,74	21,74	30,74	21,74	30,74	21,74
13,0 x 620	220	220	32,76	23,16	32,76	23,16	32,76	23,16	32,76	23,16
13,0 x 660	235	235	34,75	24,57	34,75	24,57	34,75	24,57	34,75	24,57
13,0 x 700	250	250	36,73	25,97	36,73	25,97	36,73	25,97	36,73	25,97
13,0 x 750	265	265	39,74	28,10	39,74	28,10	39,74	28,10	39,74	28,10
13,0 x 800	285	285	42,09	29,76	42,09	29,76	42,09	29,76	42,09	29,76
13,0 x 900	320	320	47,45	33,55	47,45	33,55	47,45	33,55	47,45	33,55
13,0 x 1000	355	355	52,80	37,34	52,80	37,34	52,80	37,34	52,80	37,34
13,0 x 1200	425	425	53,03	37,50	53,03	37,50	53,03	37,50	53,03	37,50
13,0 x 1400	500	500	53,03	37,50	53,03	37,50	53,03	37,50	53,03	37,50

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m². Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_{N} = 1,3.


 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_{d} \geq E_{d}. \longrightarrow min~R_{k} = R_{d} \cdot \gamma_{M} \: / \: k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

INFORMATIONS TECHNIQUES KONSTRUX, 13 MM E12, ACIER GALVANISÉ BLEU

d x L [mm]	t [mm]	B [mm]	$R_{\alpha x,k}^{a}$ - [kN]	R _k a) - [kN]	R _k ^{a)} - [kN]
				α= 0 °	α= 90 °
13,0 x 300	20	300	41,99	25,45	22,53
13,0 x 340	20	340	47,98	26,95	24,03
13,0 x 380	20	380	53,98	28,45	24,07
13,0 x 420	20	420	59,98	29,91	24,07
13,0 x 460	20	460	65,98	29,91	24,07
13,0 x 500	20	500	71,97	29,91	24,07
13,0 x 540	20	540	75,00	29,91	24,07
13,0 x 580	20	580	75,00	29,91	24,07
13,0 x 620	20	620	75,00	29,91	24,07
13,0 x 660	20	660	75,00	29,91	24,07
13,0 x 700	20	700	75,00	29,91	24,07
13,0 x 750	20	750	75,00	29,91	24,07
13,0 x 800	20	800	75,00	29,91	24,07
13,0 x 900	20	900	75,00	29,91	24,07
13,0 x 1000	20	1000	75,00	29,91	24,07
13,0 x 1200	20	1200	75,00	29,91	24,07
13,0 x 1400	20	1400	75,00	29,91	24,07

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 380 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

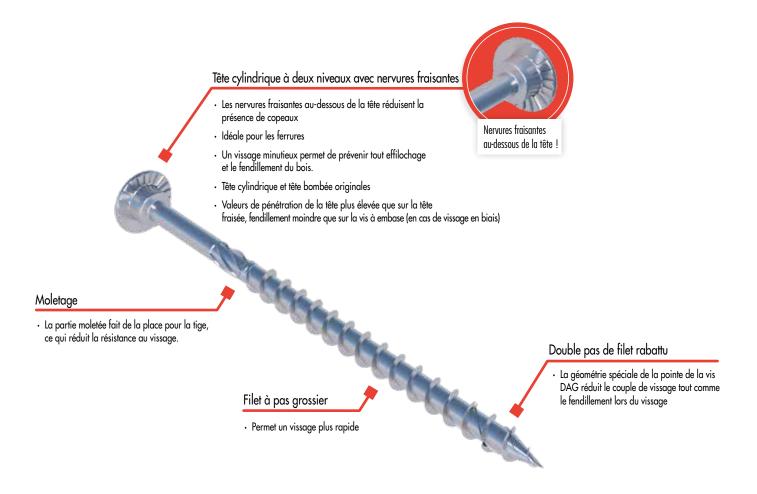
a) Les valeurs caractéristiques de la capacité de charge Ri ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Ri sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Ri : Ri= Ri · Kimal / yii. Les valeurs de dimensionnement de la capacité de charge Ri sont à comparer aux valeurs de dimensionnement des effets Ei (Ri ≥ Ei).

Exemple :

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00 \text{ kN}$ et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00 \text{ kN}$. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

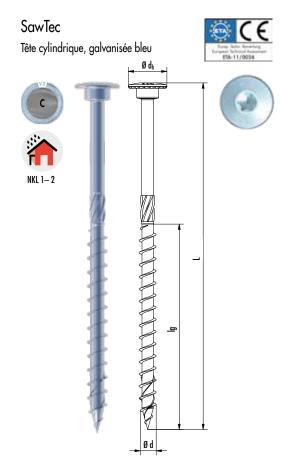
 \rightarrow Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= $\underline{7,20 \text{ kN}}$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \: / \: k_{\text{mod}}$


C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

SAWTEC

Vis à bois en acier au carbone trempé



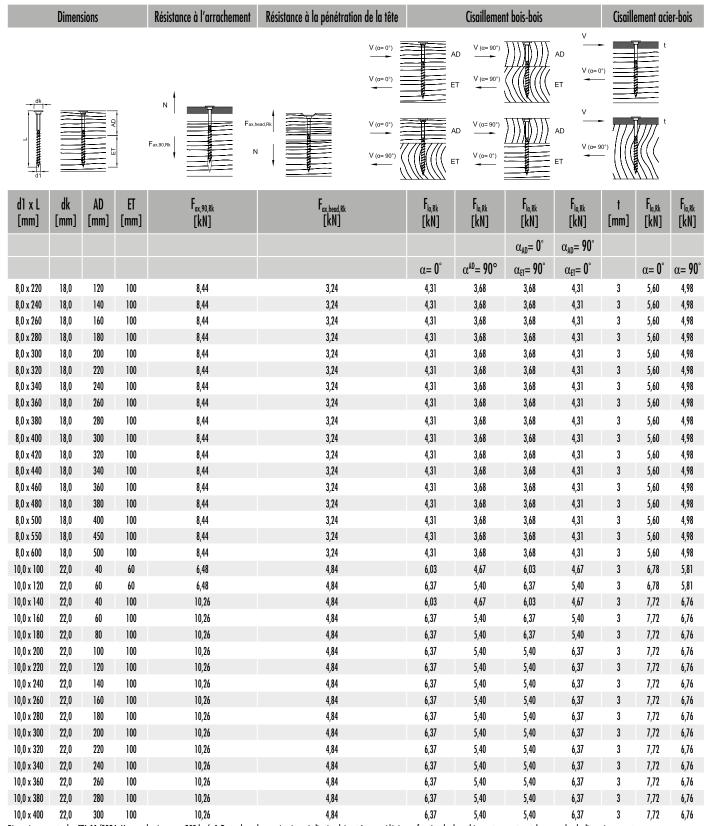
La vis SawTec est une vis à bois avec pointe spéciale et nervures fraisantes au-dessous de la tête. La vis a une tête cylindrique à deux niveaux. La géométrie spéciale de la pointe de la vis réduit le couple de vissage et garantit par ailleurs un fendillement moindre lors du vissage.

Eurotec° | SawTec

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
954115	5,0	40	10,5	24	TX25 ●	200
954117	5,0	50	10,5	30	TX25 •	200
954118	5,0	60	10,5	36	TX25 •	200
954119	5,0	70	10,5	42	TX25 •	200
954120	5,0	80	10,5	48	TX25 •	200
954121	5,0	90	10,5	54	TX25 •	200
954122	5,0	100	10,5	60	TX25 •	200
954124	5,0	120	10,5	60	TX25 •	200
954128	6,0	60	13,0	36	TX30 •	100
954129	6,0	70	13,0	42	TX30 •	100
954130	6,0	80	13,0	48	TX30 •	100
954131	6,0	100	13,0	60	TX30 •	100
954133	6,0	120	13,0	60	TX30 •	100
954135	6,0	140	13,0	70	TX30 •	100
954137	6,0	160	13,0	70	TX30 •	100
954138	6,0	180	13,0	70	TX30 •	100
954139	6,0	200	13,0	70	TX30 •	100
954140	6,0	220	13,0	70	TX30 •	100
954141	6,0	240	13,0	70	TX30 •	100
954142	6,0	260	13,0	70	TX30 •	100
954143	6,0	280	13,0	70	TX30 •	100
954144	6,0	300	13,0	70	TX30 •	100
954145	8,0	80	18,0	48	TX40 •	50
954146	8,0	100	18,0	60	TX40 •	50
954147 954148	8,0	120	18,0	60 95	TX40 •	50 50
954149	8,0	140 160	18,0	95	TX40 ● TX40 ●	50
954150	8,0 8,0	180	18,0 18,0	95	TX40 •	50
954151	8,0	200	18,0	95	TX40 •	50
954152	8,0	220	18,0	95	TX40 •	50
954153	8,0	240	18,0	95	TX40 •	50
954154	8,0	260	18,0	95	TX40 •	50
954155	8,0	280	18,0	95	TX40 •	50
954156	8,0	300	18,0	95	TX40 •	50
954157	8,0	320	18,0	95	TX40 •	50
954158	8,0	340	18,0	95	TX40 •	50
954159	8,0	360	18,0	95	TX40 •	50
954160	8,0	380	18,0	95	TX40 •	50
954161	8,0	400	18,0	95	TX40 •	50
954181	8,0	420	18,0	95	TX40 •	50
954182	8,0	440	18,0	95	TX40 •	50
954183	8,0	460	18,0	95	TX40 •	50
954184	8,0	480	18,0	95	TX40 •	50
954185	8,0	500	18,0	95	TX40 •	50
954186	8,0	550	18,0	95	TX40 •	50
954187	8,0	600	18,0	95	TX40 •	50
954162	10,0	100	22,0	60	TX50 ◆	50
954163	10,0	120	22,0	60	TX50 ●	50
954164	10,0	140	22,0	95	TX50 ●	50
954165	10,0	160	22,0	95	TX50 ●	50
954166	10,0	180	22,0	95	TX50 ●	50
954167	10,0	200	22,0	95	TX50 ●	50
954168	10,0	220	22,0	95	TX50 ◆	50
954169	10,0	240	22,0	95	TX50 ●	50
954170	10,0	260	22,0	95	TX50 ●	50
954171	10,0	280	22,0	95	TX50 ●	50
954172	10,0	300	22,0	95	TX50 ◆	50
954173	10,0	320	22,0	95	TX50 ●	50
954174	10,0	340	22,0	95	TX50 ●	50
954175	10,0	360	22,0	95	TX50 ●	25
954176	10,0	380	22,0	95	TX50 ●	25
954177	10,0	400	22,0	95	TX50 ●	25

INFORMATIONS TECHNIQUES SAWTEC, TÊTE CYLINDRIQUE, ACIER GALVANISÉ BLEU

				no de la		a III I I I I				EIR*11/0024				
Dimensions				Résistance à l'arrachement	nce à l'arrachement Résistance à la pénétration de la tête			Cisaillement bois-bois				Cisaillement acier-bois		
- dk				N	-	/ (a= 0°)	AD ET	V (a= 90°) V (a= 90°)		ΔD V (α=	0°)	t		
			ET AD	Fax,90,Fk	- 100,1000,100	/ (a= 90°)	AD ET	V (a= 90°)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AD V (α=	90°)	t		
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ox,head,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]		
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$					
						$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	$\alpha_{EI} = 90^{\circ}$	$\alpha_{\text{ET}} = 0^{\circ}$		$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$		
5,0 x 40	10,5	16	24	1,45	1,10		1	1,09		2	1	,44		
5,0 x 50	10,5	20	30	1,82	1,10			1,22		2		,67		
5,0 x 60	10,5	24	36	2,18	1,10		1,31			2	1,76			
5,0 x 70	10,5	28	42	2,54	1,10	1,41			2	1,85				
5,0 x 80	10,5	32	48	2,90	1,10	1,49			2	1,94				
5,0 x 90	10,5	36	54	3,27	1,10	1,49			2	2,03				
5,0 x 100	10,5	40	60	3,63	1,10	1,49			2	2,12				
5,0 x 120	10,5	60	60	3,63	1,10		1,49			2	2,12			
6,0 x 60	13,0	24	36	2,46	1,69		1,70		2	2,26				
6,0 x 70	13,0	28	42	2,87	1,69			1,81		2	2,36			
6,0 x 80	13,0	32	48	3,28	1,69			1,92		2	2,46			
6,0 x 90	13,0	36	54	3,69	1,69			2,04		2	2,57			
6,0 x 100	13,0	40	60	4,10	1,69			2,07		2	2,67			
6,0 x 110	13,0	50	60	4,10	1,69			2,07		2		,67		
6,0 x 120	13,0	60	60	4,10	1,69			2,07		2		,67		
6,0 x 130	13,0	60	70	4,79	1,69			2,07		2		,84		
6,0 x 140	13,0	70	70	4,79	1,69			2,07		2		,84		
6,0 x 150	13,0	80	70	4,79	1,69			2,07		2		,84		
6,0 x 160	13,0	90	70 70	4,79	1,69 1,69			2,07 2,07		2		,84 o4		
6,0 x 180 6,0 x 200	13,0 13,0	110 130	70 70	4,79 4,79	1,69					2		,84 84		
6,0 x 220	13,0	150	70	4,79	1,69		2,07		2	2,84 2,84				
6,0 x 240	13,0	170	70	4,79	1,69		2,07 2,07		2	2,84				
6,0 x 260	13,0	190	70	4,79	1,69		2,07		2	2,84				
6,0 x 280	13,0	210	70	4,79	1,69		2,07		2	2,84				
6,0 x 300	13,0	230	70	4,79	1,69		2,07		2		,84			
8,0 x 80	18,0	30	50	4,26	3,24	3,89	3,08	3,89	3,08	3	4,61	3,94		
8,0 x 100	18,0	40	60	5,33	3,24	4,31	3,48	4,31	3,48	3	4,83	4,20		
8,0 x 120	18,0	60	60	5,33	3,24	4,31	3,68	4,31	3,68	3	4,83	4,20		
8,0 x 140	18,0	40	100	8,44	3,24	4,31	3,48	4,31	3,48	3	5,60	4,98		
8,0 x 160	18,0	60	100	8,44	3,24	4,31	3,68	4,31	3,68	3	5,60	4,98		
8,0 x 180	18,0	80	100	8,44	3,24	4,31	3,68	4,31	3,68	3	5,60	4,98		
8,0 x 200	18,0	100	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98		


Dimensionnement selon ETA-11/0024. Masse volumique $\rho_{\rm R}=350~{\rm kg/m^3}$. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition. a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement $R_d: R_d = R_k \cdot k_{\rm mod} / \gamma_{NL}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$. \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00$ · 1,35 + 3,00 · 1,5 = 7,20 kN. La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \rightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$. C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod}$. \rightarrow $R_k = 7,20$ kN · 1,3/0,9 = 10,40 kN \rightarrow Mise en cohérence avec les valeurs du tableau. Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

Attention : vérifiez les hypothèses retenues. Les valeurs indiquées, le type et le nombre de moyens de fixation sont pré-dimensionnés. Les projets ne peuvent être dimensionnés que par des personnes autorisées selon le code de la construction du Land. Pour obtenir une attestation de stabilité (payante), veuillez vous adresser à un spécialiste de structures porteuses selon le code de construction du Land. N'hésitez pas à nous contacter si vous souhaitez obtenir un contact.

Eurotec® | SawTec

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge Rk ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge Rk sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement Rd : Rd= Rk · kmd / γM. Les valeurs de dimensionnement de la capacité de charge Rd sont à comparer aux valeurs de dimensionnement des effets Ed (Rd ≥ Ed).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) G_k = 2,00 kN et l'effet variable (p. ex. la charge de neige) Q_k = 3,00 kN. k_{mod} = 0,9. γ_M = 1,3.

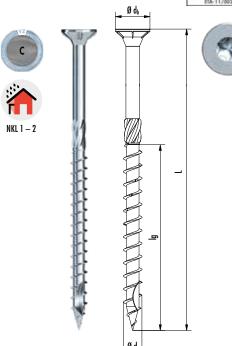
 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_d \geq E_d. \longrightarrow \text{min } R_k = R_d \cdot \gamma_M \: / \: k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit: min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kM} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

 $[\]rightarrow$ Valeur de dimensionnement de l'effet E_d = 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

VIS EN BANDE

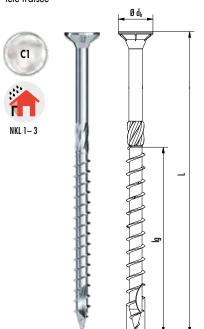
Système Holzher



Paneltwistec

En bande, acier galvanisé bleu, tête fraisée

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	Unité/sangle	Coil/carton
905613	4,0	40	8,0	24	TX20 -	167	12
905614	4,0	50	8,0	30	TX20 -	167	12
905615	4,0	60	8,0	36	TX20 •	167	12
905616	4,5	50	9,0	30	TX25 •	125	12
905617	4,5	60	9,0	36	TX25 •	125	12
905622	4,5	70	9,0	42	TX25 •	125	5
905635	5,0	50	10,0	30	TX25 •	125	10
905636	5,0	60	10,0	36	TX25 •	125	10
905637	5,0	70	10,0	42	TX25 •	125	5



Paneltwistec

En bande, acier inoxydable trempé, tête fraisée

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	Unité/sangle	Coil/carton
905650	4,5	50	9,0	30	TX20 •	125	12
905651	4,5	60	9,0	36	TX20 -	125	12
903612	5,0	60	10,0	36	TX25 •	125	5
903609	5,0	70	10,0	42	TX25 •	125	5
903608	5,0	80	10,0	48	TX25 •	125	10

INFORMATIONS TECHNIQUES PANELTWISTEC EN BANDE, ACIER GALVANISÉ BLEU

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisaillem	ent bois-bois		Cisai	llement ac	cier-bois
	dl x L dk AD ET [mm] [mm] [mm]			N Fax,90 Rk	$V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$		ET V	(a= 90°) (a= 90°) (a= 90°)	AD ET ET	V (α= 0 V (α= 9		
d1 x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ox,90,Rk} [kN]	F _{ox, head, Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
								$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
						α= 0 °	α^{AD} = 90°	α_{EI} = 90°	$\alpha_{\text{EI}} = 0^{\circ}$		$\alpha = 0^{\circ}$	α= 90 °
4,0 x 40	8,0	16	24	1,24	0,77			0,84		2	1	,15
4,0 x 50	8,0	20	30	1,55	0,77		(0,92		2	1	,23
4,0 x 60	8,0	24	36	1,86	0,77			1,01		2	1	,31
4,0 x 70	8,0	28	42	2,17	0,77			1,03		2	1	,38
4,5 x 50	9,0	20	30	1,69	0,97			1,08		2		,44
4,5 x 60	9,0	24	36	2,03	0,97			1,17		2		,53
5,0 x 50	10,0	20	30	1,82	1,20			1,24		2		,67
5,0 x 60	10,0	24	36	2,18	1,20	1,34				2		,76
5,0 x 70	10,0	28	42	2,54	1,20	1,44				2		,85
5,0 x 80	10,0	32	48	2,90	1,20			1,52		2	1	,94

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement.

Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

Exemple:

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN.\ k_{mod}=0,9.\ \gamma_{N}=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

INFORMATIONS TECHNIQUES PANELTWISTEC EN BANDE, ACIER INOXYDABLE TREMPÉ

	Dimens	sions		Résistance à l'arrachement	Résistance à la pénétration de	la tête		Cisailleme	nt bois-bois		Cisail	lement ac	ier-bois
all million		***	ET AD	N Fax,90,Rk	Faxhead.Rk	V (a= 0°) V (a= 0°) V (a= 0°)		ET V	(a=90°) (a=90°) (a=0°)	AD ET ET	V (a= 0°		t
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,head,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]
									$\alpha_{AD} = 0^{\circ}$	$\alpha_{AD} = 90^{\circ}$			
							α= 0 °	α^{AD} = 90°	α_{ET} = 90°	$\alpha_{\text{ET}} = 0^{\circ}$		α= 0 °	α= 90 °
4,5 x 50	9,0	20	30	1,69	0,97			1,	08		2	1,	44
4,5 x 60	9,0	24	36	2,03	0,97			1,	17		2	1,	.53
5,0 x 60	10,0	24	36	2,18	1,20			1,	34		2	1,	76
5,0 x 70	10,0	28	42	2,54	1,20				44		2		85
5,0 x 80	10,0	32	48	2,90	1,20				52		2	1,	94

Dimensionnement selon ETA-11/0024. Masse volumique $\rho_{\rm K}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_{jk}$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_{M} = 1,3$.

 $\text{La capacit\'e de charge de l'assemblage est r\'eput\'ee prouv\'ee lorsque } R_{\text{d}} \geq E_{\text{d}}. \longrightarrow \text{min } R_{\text{k}} = R_{\text{d}} \cdot \gamma_{\text{M}} \, / \, k_{\text{mod}}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise}$ en cohérence avec les valeurs du tableau.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

 $[\]rightarrow$ Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 kN.$

VIS À BOIS UNIVERSELLE

Vis en bande pour la construction à ossature bois et la construction en bois massif.

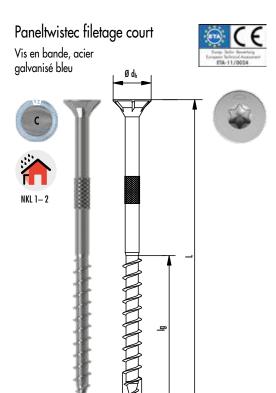
HBS

En bande, acier galvanisé bleu


N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
945080	4,2	41	7,5	30	PH 2	1000
945081	4,2	55	7,5	30	PH 2	1000

AVANTAGES

- · Utilisation universelle
- · Traitement rapide avec la bande
- · La partie moletée sous la tête garantit une tenue optimale dans le champ d'application
- · Les nervures fraisantes au niveau de la tête fraisée empêchent le fendillement du bois lors du vissage


UTILISATION UNIVERSELLE, P. EX.

- · Pour fixation de panneaux en matériaux dérivés du bois sur des ossatures bois
- · Pour fixation dans la construction à ossature bois et construction en bois massif

VIS EN BANDE

Système Holzher

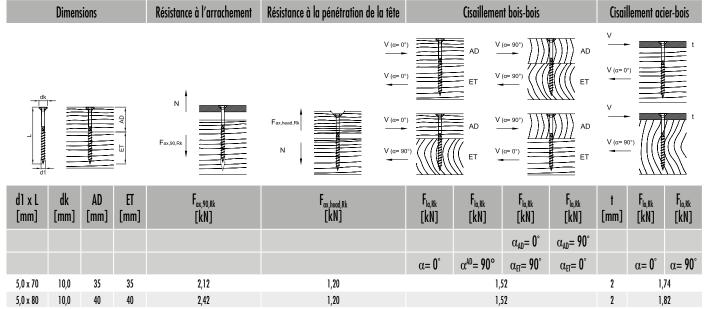
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	Unité/sangle	Coil/carton
905638	5,0	70	10,0	35	TX20 -	125	5
905642	5,0	80	10,0	40	TX20 -	125	5

AVANTAGES

- · La longueur raccourcie du filetage permet de compresser des pièces rapportées plus fortes
- · Résistance aux sollicitations mécaniques
- $\boldsymbol{\cdot}\;$ Le fût permet un vissage rapide et simple

APPLICATION

 Pour des structures en bois porteuses entre des éléments en bois de construction, lamellé-collé, panneaux OSB et bois de placage stratifié



La vis en bande Paneltwistec permet un vissage rapide et simple dans les assemblages bois-bois grâce à l'utilisation d'un chargeur de vis en bande.

INFORMATIONS TECHNIQUES PANELTWISTEC EN BANDE, ACIER GALVANISÉ BLEU

Dimensionnement selon ETA-11/0024. Masse volumique $\rho_{\rm k}$ = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : R_d = R_k · k_{med} / γ_M. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d (R_d ≥ E_d).

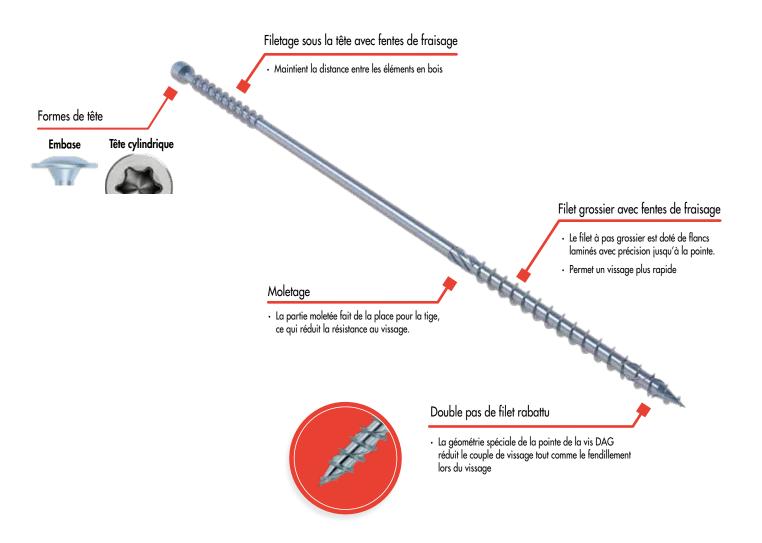
Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_N = 1,3$.

 \rightarrow Valeur de dimensionnement de l'effet E_d= 2,00 · 1,35 + 3,00 · 1,5= 7,20 kN.

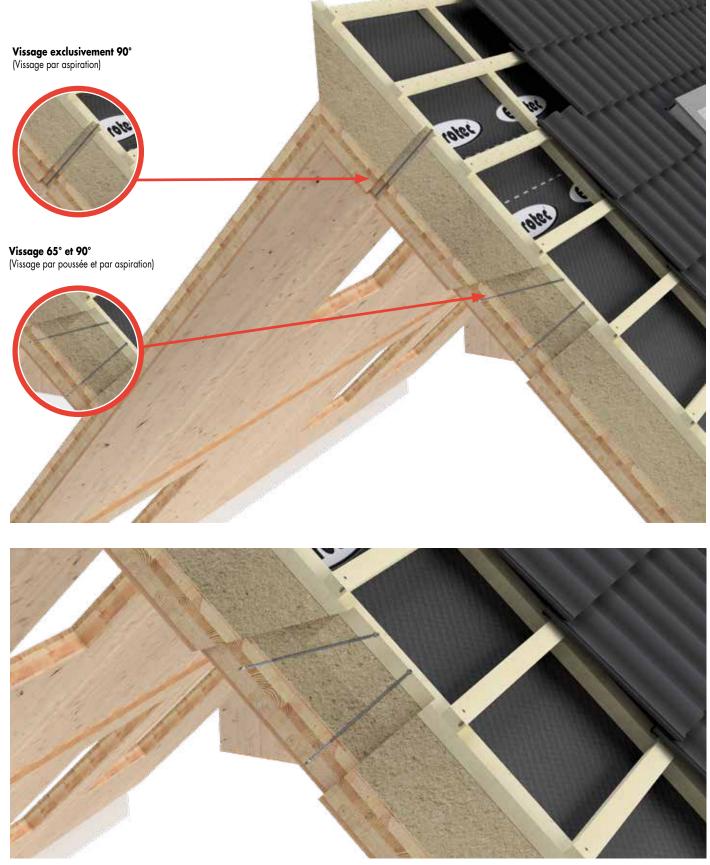
 $La \; capacit\'e \; de \; charge \; de \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; prouv\'ee \; lorsque \; R_d \geq E_d. \; \longrightarrow min \; R_k = \; R_d \cdot \gamma_M \; / \; k_{mod} \; l'assemblage \; est \; r\'eput\'ee \; l'assemblage \; est \; r\'eput\'ee \; l'assemblage \; l'assemblage$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$


 $Attention: il s'agit d'outils \ d'aide \ \grave{a} \ la \ planification. \ Les \ projets \ ne \ peuvent \ \hat{e} tre \ dimensionnés \ que \ par \ des \ personnes \ autorisées.$

VIS POUR CONSTRUCTION DE TOITS TOPDUO

La vis à bois pour tous les systèmes d'isolation sur chevrons


Grâce à la vis pour construction de toits TopDuo, il est possible de fixer des isolations sur chevrons, qu'elles soient résistantes ou non à la pression. La résistance élevée à l'arrachement dans les deux bois d'assemblage rendent la vis Topduo intéressante pour de nombreuses autres applications dans la construction en bois. La vis dispose d'un double filetage et est disponible avec embase et tête cylindrique.

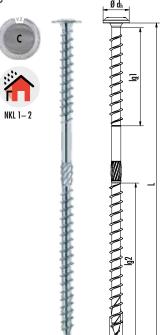


POSSIBILITÉS DE VISSAGE

La vis Topduo convient aux isolations résistantes à la pression (≥ 50 kPa) et à celles qui ne résistent pas à la pression. La résistance à la pression $_{10\%}$ figure dans la fiche de données sur les produits du fabricant des isolations.

Topduo à tête cylindrique pour la fixation de matériau d'isolation

Construction de toits avec TopDuo

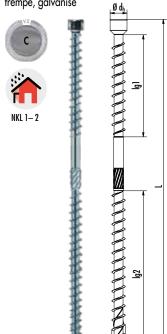

Construction de façades avec TopDuo

VIS POUR CONSTRUCTION DE TOITS TOPDUO

La vis à bois pour tous les systèmes d'isolation sur chevrons

Vis pour construction de toits TopDuo

Vis à embase, acier au carbone trempé, galvanisé



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/ lg2 [mm]	Empreinte	PU
945870	8,0	165	16,0	60/66	TX40 •	50
945871	8,0	195	16,0	60/95	TX40 •	50
945813	8,0	225	16,0	60/95	TX40 •	50
945814	8,0	235	16,0	60/95	TX40 •	50
945815	8,0	255	16,0	60/95	TX40 •	50
945816	8,0	275	16,0	60/95	TX40 •	50
945817	8,0	302	16,0	60/95	TX40 •	50
945818	8,0	335	16,0	60/95	TX40 •	50
945819	8,0	365	16,0	60/95	TX40 •	50
945820	8,0	397	16,0	60/95	TX40 •	50
945821	8,0	435	16,0	60/95	TX40 •	50
945843	8.0	472	16.0	60/95	TX40 •	50

Vis pour construction de toits TopDuo

Vis à tête cylindrique, acier au carbone trempé, galvanisé $_{,\emptyset} d_{h_{1}}$

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg1/ lg2 [mm]	Empreinte	PU
946027	8,0	165	10,0	60/95	TX40 •	50
946028	8,0	195	10,0	60/95	TX40 •	50
945956	8,0	225	10,0	60/95	TX40 •	50
945965	8,0	235	10,0	60/95	TX40 •	50
945957	8,0	255	10,0	60/95	TX40 •	50
945958	8,0	275	10,0	60/95	TX40 •	50
945960	8,0	302	10,0	60/95	TX40 •	50
945961	8,0	335	10,0	60/95	TX40 •	50
945962	8,0	365	10,0	60/95	TX40 •	50
945963	8,0	397	10,0	60/95	TX40 •	50
945964	8,0	435	10,0	60/95	TX40 •	50

DÉTERMINATION DE LA QUANTITÉ DE VIS POUR CONSTRUCTION DE TOITS TOPDUO ISOLANTS NON RÉSISTANTS À LA PRESSION SUR LE PLAN STATIQUE AVEC $\,$ MIT $\Sigma_{10\%} < 50$ KPA

Nombre de vis	Topduo par m²														
Ép	aisseur de l'isolation	40	60	80	100	120	140	140	160	180	200	220	240	260	280
É	paisseur du coffrage	24	24	24	24	24	-	24	24	24	24	24	24	24	24
Dimensio	n Topduo TK ou ZKº)	8 x 165 ^{b)}	8 x 195 ^{b)}	8 x 225	8 x 235	8 x 255	8 x 275	8 x 302	8 x 335	8 x 335	8 x 365	8 x 365	8 x 397	8 x 435	8 x 435
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Zone de charge de	$0^{\circ} \le DN \le 10^{\circ}$	2,20	2,20	2,38	2,38	2,38	2,38	2,38	2,29	2,29	2,48	3,01	3,57	4,08	4,76
neige 2*c) Zone de charge de	$10^{\circ} \leq \alpha \leq 25^{\circ}$	2,38	2,38	2,60	2,60	2,60	2,60	2,60	2,60	2,60	3,17	3,81	4,40	e)	e)
vent 4 ^{d)} Niveau de la mer	25° ≤ α ≤ 40°	2,72	2,72	3,01	3,01	3,01	3,01	3,01	3,01	3,01	3,57	4,40	5,19	e)	e)
≤ 285 m	40° ≤ α ≤ 60°	2,86	3,01	3,17	3,17	3,36	3,36	3,36	3,36	3,36	3,57	4,40	5,19	e)	e)
Zone de charge de	$0^{\circ} \le DN \le 10^{\circ}$	1,79	1,79	1,97	2,04	2,04	2,04	2,04	2,12	2,60	3,81	4,40	5,19	e)	e)
neige 3 F) Zone de charge de	$10^{\circ} < \text{DN} \leq 25^{\circ}$	2,29	2,29	2,48	2,60	2,60	2,60	2,60	2,72	3,36	4,76	e)	e)	e)	e)
. 0 a)	$25^{\circ} < \text{DN} \le 40^{\circ}$	2,38	2,48	2,72	2,72	2,72	2,86	2,86	2,86	3,57	5,19	e)	e)	e)	e)
≤ 600 m	$40^{\circ} < DN \le 60^{\circ}$	2,60	2,60	2,86	2,86	2,86	2,86	2,86	3,01	3,57	5,19	e)	e)	e)	e)

a) Quantité toujours rapportée à la valeur la plus défavorable découlant de Topduo TK et ZK

Autres hypothèses :

Dimensionnement avec le logiciel ECS conformément à ETA-11/0024 ; angle de vissage 65°; toit à pignon ; hauteur du faîte au-dessus du sol 18 m au plus ; masse volumique de l'isolation 1,50 kN/m³ ; chevrons C24 8/≥12 cm ; contre-latte C24 4/6 cm ; entraxe chevrons 0,70 m ; propre poids de la couverture 0,55 kN/m² ; présence d'un dispositif d'arrêt de la neige ; détermination des quantités concernant l'action du vent en fonction de la partie du toit la plus défavorable. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues. Ce sont donc des exemples de dimensionnement, sous réserve d'erreurs de composition ou d'impression.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

DÉTERMINATION DE LA QUANTITÉ DE VIS POUR CONSTRUCTION DE TOITS TOPDUO ISOLANTS NON RÉSISTANTS À LA PRESSION SUR LE PLAN STATIQUE AVEC $\Sigma_{10\%} \geq 50$ KPA

Exemple de dimensionnement pour les hypothèses mentionnées ; le dimensionnement du projet peut déboucher sur des résultats nettement plus avantageux															
Nombre de vis Topduo par m²															
Épo	aisseur de l'isolation	40	60	80	100	120	140	160	180	200	220	240	260	280	300
Éŗ	oaisseur du coffrage	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Dimensio	n Topduo TK ou ZK®	8 x 195 ^{b)}	8 x 225	8 x 235	8 x 255	8 x 275	8 x 302	8 x 335	8 x 335	8 x 365	8 x 365	8 x 397	8 x 435	8 x 435	8 x 472 ^{b)}
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Zone de charge de	$0^{\circ} \le DN \le 10^{\circ}$	1,96	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,12	1,80	2,40	2,32
neige 2°a Zone de charge de	$10^{\circ} < \text{DN} \leq 25^{\circ}$	2,11	2,05	1,97	1,94	1,97	1,90	1,85	2,14	2,01	2,74	2,57	2,38	3,23	2,93
vent 4 ^{d)} Niveau de la mer	25° < DN ≤ 40°	2,48	2,41	2,28	2,35	2,41	2,35	2,18	2,67	2,49	3,48	3,22	2,96	4,42	3,79
≤ 285 m	$40^{\circ} < \text{DN} \leq 60^{\circ}$	2,31	2,30	2,56	2,65	2,74	2,65	2,42	2,96	2,74	4,00	3,70	3,48	4,87	4,47
Zone de charge de	$0^{\circ} \le DN \le 10^{\circ}$	2,65	2,54	2,39	2,34	2,26	2,23	2,34	2,34	2,16	2,46	2,32	2,19	2,86	2,65
neige 3 ⁽⁾ Zone de charge de	$10^{\circ} < \text{DN} \leq 25^{\circ}$	4,04	3,81	3,55	3,33	3,33	3,15	3,15	2,99	2,99	3,66	3,37	3,06	4,37	3,74
vent 2 g) . Niveau de la mer	25° < DN ≤ 40°	4,46	4,16	3,84	3,58	3,58	3,58	3,37	3,37	3,37	4,67	4,20	3,92	e)	e)
≤ 400 m	$40^{\circ} < \text{DN} \leq 60^{\circ}$	3,55	3,26	3,26	3,26	3,44	3,26	2,96	3,66	3,44	e)	4,67	4,27	e)	e)

a) Quantité toujours rapportée à la valeur la plus défavorable découlant de Topduo TK et ZK

Autres hypothèses

Dimensionnement avec le logiciel ECS conformément à ETA-11/0024 ; angle de vissage de la vis de poussée pour toits 65°/vis d'aspiration du vent 90°; toit à pignon ; hauteur du faîte au-dessus du sol 18 m au plus ; masse volumique de l'isolation 1,50 kN/m³; chevrons C24 8/≥12 cm ; contre-latte C24 4/6 cm ; entraxe chevrons 0,70 m ; propre poids de la couverture 0,55 kN/m²; présence d'un dispositif d'arrêt de la neige ; détermination des quantités concernant l'action du vent en fonction de la partie du toit la plus défavorable.

Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues. Ce sont donc des exemples de dimensionnement, sous réserve d'erreurs de composition ou d'impression.

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

b) Uniquement Topduo TK, c) comprend la zone de charge de neige 1, 2 et 2*, d) comprend toutes les zones de charge de vent à l'exception des îles dans la mer du Nord

e) Recommandation d'utiliser notre service de dimensionnement rapporté aux projets. Les exemples de dimensionnement indiqués ici sont des cas défavorables, c'est-à-dire offrant une sécurité statique.

f) comprend la zone de charge de neige 1, 2 et 3, g) comprend la zone de charge de vent 1 et 2 (intérieur des terres)

b) Uniquement Topduo TK, c) comprend la zone de charge de neige 1, 2 et 2* avec dispositif de retenue de neige à chaque fois, d) comprend toutes les zones de charge de vent à l'exception des îles dans la mer du Nord

e) Recommandation d'utiliser notre service de dimensionnement rapporté aux projets. Les exemples de dimensionnement indiqués ici sont des cas défavorables, c'est-à-dire offrant une sécurité statique.

f) comprend la zone de charge de neige 1, 2 et 3, g) comprend la zone de charge de vent 1 et 2 (intérieur des terres)

SERVICE DE MESURE EUROTEC

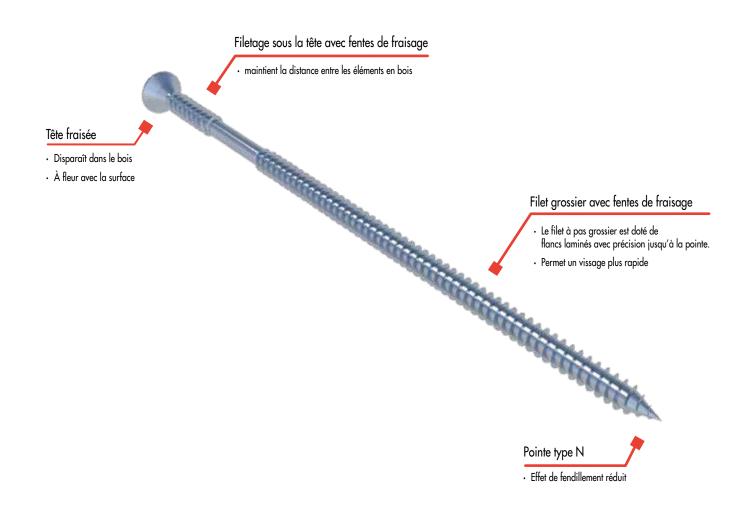
Isolation de toit extérieur selon ATE-11/0024

par téléphone +49 2331 6245-444 · par fax au +49 2331 6245-200 · par mail à technik@eurotec.team

Contactez notre service technique ou utilisez le service de conception gratuit dans l'onglet service sur notre page d'accueil.

commorcant:				personne chargée de l'exécution:	
commerçant:			_	personne chargee de l'execution.	
interlocuteur:			_	interlocuteur:	
E-mail:			_	téléphone:	
projet de construction:			_	E-mail:	
INDICATIONS CONCER	NANT LE PR	OJET DE	CON	STRUCTION	
☐ toit en appentis ☐ toit	à deux versants	☐ toit en d	roupe	afficiency approximation of the contraction of the	
ongueur de bâtiment côté chéneau:			_ m	saille de chéneau saille de longueur côté chéneau	de rive
largeur de pignon:			_ m	largeur de contrelatte: (mind. 60 mm)	1
ongueur de chevron: indication facultative)			_ m	hauteur de contrelatte: (mind. 40 mm)	
nauteur de faîtage: en surplomb du terrain)			_ m	longueur de contrelatte: (longueur des pièces de contrelatte effectivement posées)	
saillie de toit: la détermination de quantité est effectuée pou	<u>chéneau</u> r la surface totale de toit	/rive	_ m	Charge de couverture de toit et de lattage:	0,35 kN/n
nclinaison de toit:	toit principal	/croupe	0	□ couverture en assemblage métallique par agrafage sur bords relevés □ tuiles en béton, tuiles	0,55 kN/n
solation: Nom du fabricant du produit isolant)			_	couverture double à chapiteau avec tuiles à crochet	0,75 kN/n
épaisseur d'isolation:			_ mm	OU	kN/ı
argeur de chevron:			_ mm	(y compris l'ossature)	kN/ı
nauteur de chevron:			_ mm	code postal du projet de construction: (pour la détermination de la zone de charge de vent et de neige)	
distance de chevron:			_ mm	charge caractéristique de neige au sol sk: (uniquement pour les communes bénéficiant d'un régime spécial)	kN/ı
spaisseur de coffrage:			_ mm	hauteur de terrain au-dessus du niveau de la mer: (important pour les localités à relief prononcé)	
CHOIX VIS				grille à neige prévue? 🗆 oui	\square non

^{*} uniquement pour les matériaux isolants résistants à la pression ayant une résistance à la pression de 50 kPa

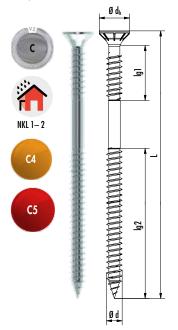

^{**} également pour les matériaux isolants non résistants à la pression

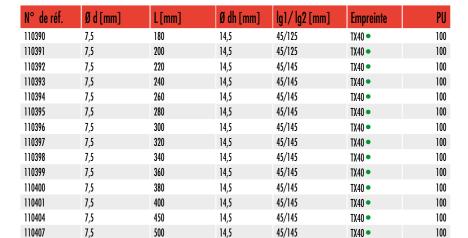
VIS SYSTÈME BLUE-POWER

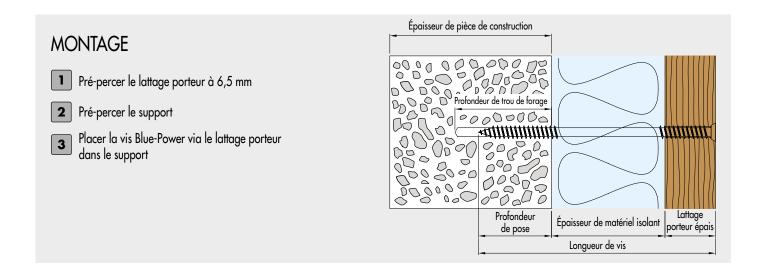
Pour fixation d'ossatures en bois sur béton ou maçonnerie

Le système de fixation sur la façade Blue-Power est une solution efficace pour la fixation rapide d'ossatures en bois sur béton ou maçonnerie. Ces vis absorbent sans problèmes les forces de traction et les forces transversales, notamment dans les applications sur isolations de façades. L'isolation absorbe une partie des forces transversales et requiert une résistance à la pression d'au moins 50 kPa pour une compression de 10 %. Pour une stabilité maximale, la section transversale du lattage porteur en C24 devrait être d'au moins 30 x 50 mm.

Le système est résistant à la corrosion conformément à la norme EN 12944-6 en C4 long et C5-M long, convient aux classes d'utilisation 1 et 2 conformément à la norme EN 1995-1-1. Il résiste aux sollicitations mécaniques mais ne convient toutefois pas aux bois contenant des tanins. Le montage sans chevilles et les temps de montage courts font du système de fixation sur la façade Blue-Power une solution pragmatique pour tous les projets de construction performants.




VIS SYSTÈME BLUE-POWER


Pour fixation d'ossatures en bois sur béton ou maçonnerie

Vis Blue-Power

Tête fraisée, utilisation d'acier au carbone trempé, revêtement à base de zinc

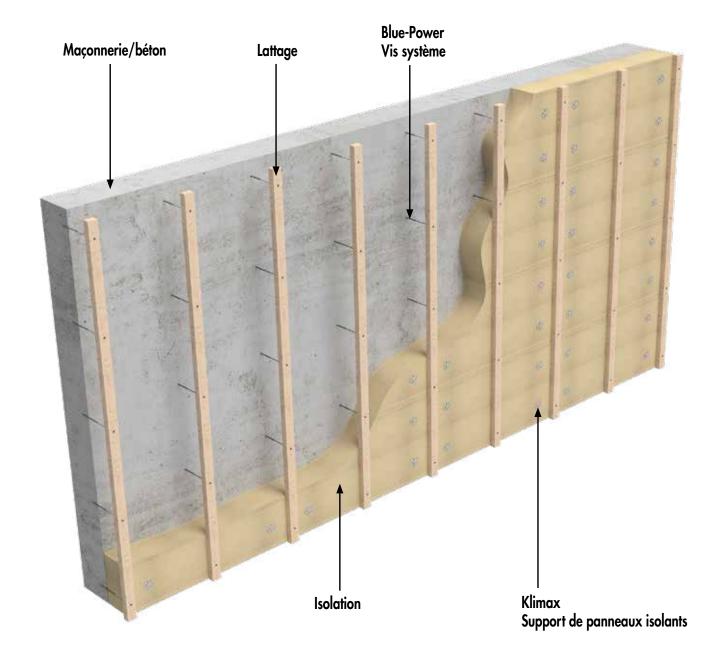
Eurotec Vis système Blue-Power

VALEURS STATISTIQUES

Support	Ø de perçage Support [mm]	Profondeur min. du trou [mm]	Profondeur min. d'implantation de la vis [mm]	Procédure de forage ^{a)}	Épaisseur minimale de l'élément de construction [mm]	Distance minimale au bord [mm]	Entraxe min. [mm]	Résistance caractéris- tique à la traction N _{Rk} b) [kN]	Capacité de charge transversale caractéris- tique V _{RK} [kN]
Béton C20/25	6,0	70	50	H	100	50	100	2,5	0,75
Brique de construction (Mz)	6,0	70	50	H	115	50	100	3,5	0,6
Brique silico-calcaire pleine	6,0	70	50	H	115	50	100	3,5	0,5
Béton cellulaire	5,0	85	70	D	115	50	100	0,9	0,3
Brique silico-calcaire creuse	5,0	85	70	D	115	50	100	2,0	0,6
Brique perforée (HLz)	6,5	140	120	D	175	50	100	0,5	0,4
Bois	c)	c)	50	D	60	25	100	d)	d)

d) à dimensionner selon la norme 1995-1-1:2010-12.

	Pour des isolations d'une épaisseur maximale de ^{a)}				
N° de réf.	Béton, brique de construction & brique silico-cal- caire pleine [mm] ^{o)}	Béton cellulaire & brique silico-calcaire creuse [mm]º)	Brique perforée [mm] ^{o)}		
110390	100	80	30		
110391	120	100	50		
110392	140	120	70		
110393	160	140	90		
110394	180	160	110		
110395	200	180	130		
110396	220	200	150		
110397	240	220	170		
110398	260	240	190		
110399	280	260	210		
110400	300	280	230		
110401	320	300	250		
110404	340	320	270		
110407	360	340	290		

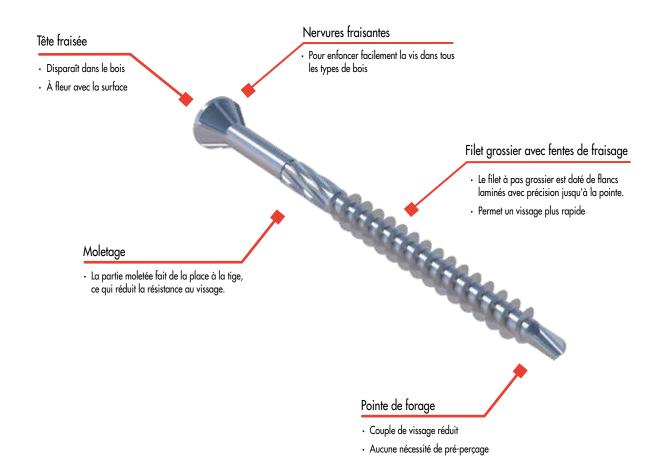

a) Pour une épaisseur du lattage de 30 mm

Longueur de la vis ≥ profondeur d'implantation minimale + épaisseur de l'isolation + épaisseur du lattage

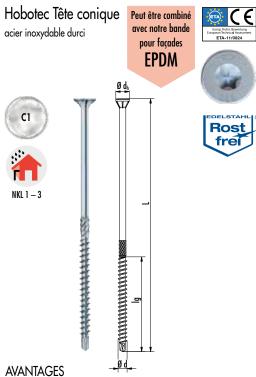
a) H = Perçage au marteau perforateur, D = perçage rotatif
b) La résistance caractéristique à la pénétration de la tête F_{ax,hood,Rd} dans le lattage porteur doit être pris en compte. F_{ax,hood,Rd} (p_k 350)= 1,45 kN. Le lattage porteur doit être pré-percé sur 6,5 mm.

c) Le support en bois ne doit pas être pré-percé.

STRUCTURE SCHÉMATIQUE


HOBOTEC

Acier galvanisé et acier inoxydable trempé



Les vis Hobotec permettent de réaliser des assemblages bois-boissimples, rapides et propres. Ces vis conviennent particulièrement aux applications présentant un risque élevé de fissuration et de fendillement. Le nouveau filet et la pointe de forage innovante sont garants d'un positionnement propre et de valeurs d'arrachement élevées. Les vis Hobotec sont disponibles en acier inoxydable trempé et en acier galvanisé.

Eurotec | Hobotec

- N° d'art. Dimensions / Longueur du filetage [mm] UE **Impulsion** 903323 4,0 x 30/21 TX15 • 500 110299 4,0 x 40/26 TX15 • 500 TX15 • 110300 4,0 x 45/28 500 110301 500 4,0 x 50/30 TX15 • 110302 4,0 x 60/36 TX15 • 500 110319 TX20 200 4,5 x 40/26 944839 4,5 x 45/28 TX20 • 200 200 110303 4,5 x 50/30 TX20 110304 4,5 x 60/36 TX20 200 110305 4,5 x 70/42 TX20 200 110306 4,5 x 80/48 200 TX20 • 110307 5,0 x 50/30 TX25 • 200 110308 5,0 x 60/36 TX25 • 200 110309 200 5,0 x 70/42 TX25 • 110310 5,0 x 80/48 TX25 • 200 110311 5,0 x 90/54 TX25 • 200 110312 5,0 x 100/60 TX25 • 200 110313 TX25 • 100 6,0 x 80/48 110314 6,0 x 90/54 TX25 • 100 110315 TX25 • 100 6,0 x 100/60 110316 6,0 x 120/60 TX25 • 100 110317 6,0 x 140/70 TX25 • 100 110318 6,0 x 160/70 TX25 • 100

- · un forage préalable n'est pas nécessaire
- · aucune formation de déchirure ou de fission dans les zones étroites en bordure
- · aucun battement des vis grâce à l'impulsion TX

acier inoxydable durci	EPDM	<u>○ CE</u>
cı V	Ø d _h	
NKL 1 – 3		Rost

Hobotec Tête
ornementale
acier inoxydable durc

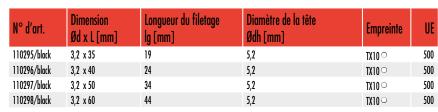
- Façades Clôtures
- Terrasses

	0N 14992-3004+A1:3012
Ø d _h	
	Rost frei

Attention

Les vis d'un diamètre de 3,2 mm ne sont pas réglementées par l'ETA.

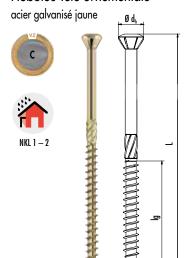
N° d'art.	Dimensions / Longueur du filetage [mm]	Impulsion	UE
900782	3,2 x 25*	TX10 O	500
110294	3,2 x 30/17,5	TX10 O	500
110295	3,2 x 35/19	TX10 O	500
110296	3,2 x 40/24	TX10°	500
110297	3,2 x 50/34	TX10 O	500
110298	3,2 x 60/44	TX10°	500
945040	4,0 x 40/24	TX15 •	500
945653	4,0 x 45/27	TX15 •	500
945041	4,0 x 50/30	TX15 •	500
945042	4,0 x 60/36	TX15 •	500
945043	4,0 x 70/42	TX15 •	500
945044	4,0 x 80/48	TX15 •	500
945045	4,5 x 40/24	TX20 •	200
945046	4,5 x 45/27	TX20 •	200
945047	4,5 x 50/30	TX20 •	200
945048	4,5 x 60/36	TX20 •	200
945049	4,5 x 70/42	TX20 •	200
945050	4,5 x 80/48	TX20 •	200
945051	5,0 x 50/30	TX25 •	200
945052	5,0 x 60/36	TX25 •	200
945053	5,0 x 70/42	TX25 •	200
945054	5,0 x 80 / 48	TX25 •	200
945055	5,0 x 90/54	TX25 •	200
945056	5,0 x 100/60	TX25 •	200


Le filetage nouveau ainsi que la pointe de forage innovatrice permettent, outre un positionnement correct, de hautes valeurs d'étirage. Particulièrement approprié dans le cas de bois friables. Non approprié pour les bois à haute teneur en tanin tels que cumaru, chêne, merbau, robinier, etc.

Hobotec Tête ornementale acier inoxydable durci, noir

AVANTAGES

- · Le filetage novateur et la pointe de perçage innovante permettent un ajustement parfait et des valeurs d'extraction élevées.
- · Particulièrement adapté aux bois tendres
- · Ne convient pas aux bois riches en tanins tels que le cumaru, le chêne, le merbau, le robinier, etc.


UTILISATION

- · Lattes de recouvrement en construction de façade
- Clôtures
- · Lattes en construction de terrasses

Attention

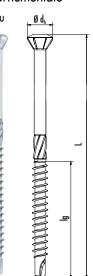
Les vis d'un diamètre de 3,2 mm ne sont pas réglementées par l'ETA.

Hobotec Tête ornementale

N° d'art.	Dimension [mm]	Empreinte	UE
110280	3,2 x 20*	TX10°	500
110281	3,2 x 25*	TX10 O	500
110282	3,2 x 30	TX10 O	500
110283	3,2 x 35	TX10 O	500
110284	3,2 x 40	TX10 O	500
110285	3,2 x 50	TX10 O	500
110286	3,2 x 60	TX10 O	500
944778	4,2 x 70	TX15 ●	200
944779	4,2 x 80	TX15 ●	200

*sans nervures de fraisage

Hobotec Tête conique



N° d'art.	Dimension Ød x L [mm]	Longueur du filetage lg [mm]	Diamètre de la tête Ødh [mm]	Empreinte	UE
111494	4,0 x 30	21	7,7	TX15 ●	1000
111495	4,0 x 35	24	7,7	TX15 •	1000
111496	4,0 x 40	26	7,7	TX15 •	1000
111497	4,0 x 45	28	7,7	TX15 •	500
111498	4,0 x 50	30	7,7	TX15 •	500
111499	4,0 x 60	36	7,7	TX15 ●	200
111501	4,5 x 35	24	8,7	TX20 -	500
111502	4,5 x 40	26	8,7	TX20 -	500
111503	4,5 x 45	28	8,7	TX20 -	500
111504	4,5 x 50	30	8,7	TX20 -	500
111505	4,5 x 60	36	8,7	TX20 -	200
111506	4,5 x 70	42	8,7	TX20 -	200
111507	5,0 x 40	26	9,7	TX25 •	200
111508	5,0 x 50	30	9,7	TX25 •	200
111509	5,0 x 60	36	9,7	TX25 •	200
111510	5,0 x 70	42	9,7	TX25 •	200
111511	5,0 x 80	48	9,7	TX25 •	200
111512	5,0 x 90	54	9,7	TX25 •	200
903623	5,0 x 100	60	9,7	TX25 •	200
903117	6,0 x 80	48	11,7	TX25 •	200
903118	6,0 x 90	54	11,7	TX25 •	100
903119	6,0 x 100	60	11,7	TX25 •	100
903120	6,0 x 120	60	11,7	TX25 •	100
903121	6,0 x 140	70	11,7	TX25 •	100
903122	6,0 x 160	70	11,7	TX25 •	100

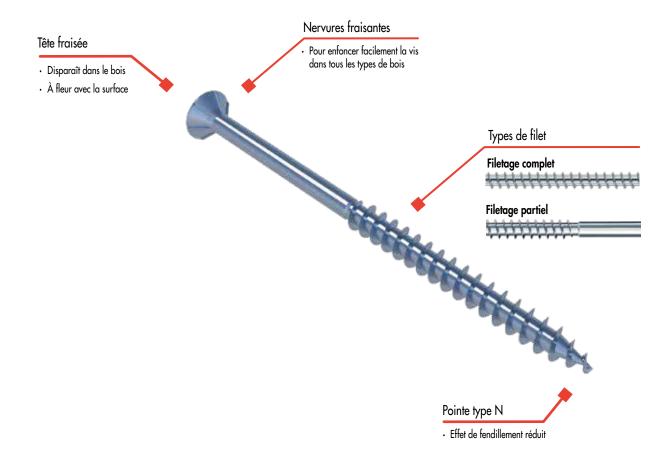
Hobotec Tête ornementale

114	592	2004	+4.1	2011
_	_	-		
9	e		h	
	(H	'n.		
Ų	'n	d	F	7
	9111	-0		

N° d'art.	Dimension Ød x L [mm]	Longueur du filetage lg [mm]	Diamètre de la tête Ødh [mm]	Empreinte	UE
110287	3,2 x 20*	Filetage intégral	5,2	TX10 o	500
110288	3,2 x 25*	Filetage intégral	5,2	TX10 O	500
110289	3,2 x 30	17,5	5,2	TX10 O	500
110290	3,2 x 35	19	5,2	TX10 O	500
110291	3,2 x 40	24	5,2	TX10 O	500
110292	3,2 x 50	34	5,2	TX10 O	500
110293	3,2 x 60	44	5,2	TX10 o	500
w110288**	3,2 x 25*	Filetage intégral	5,2	TX10 o	500
w110289**	3,2 x 30	17,5	5,2	TX10 o	500
w110290**	3,2 x 35	19	5,2	TX10 o	500
w110291**	3,2 x 40	24	5,2	TX10 o	500
w110292**	3,2 x 50	34	5,2	TX10 o	500
w110293**	3,2 x 60	44	5,2	TX10 o	500

*sans nervures de fraisage **laqué en tête, blanc

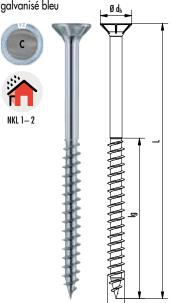
Eurotec | EcoTec


ECOTEC

Vis pour panneaux d'agglomérés pour l'intérieur

La vis pour panneaux d'agglomérés EcoTec est une vis à bois principalement utilisée à l'intérieur.

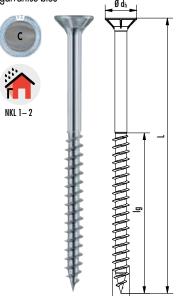
Elle est disponible en acier au carbone, galvanisé, trempé et en A2. Par ailleurs, elle existe avec un filetage partiel pour un assemblage par friction de plusieurs éléments en bois ainsi qu'avec un filetage complet pour l'absorption de forces de traction et de pression élevées.



Eurotec | EcoTec

EcoTec

Vis pour panneaux d'agglomérés, acier galvanisé bleu $\emptyset d_h$

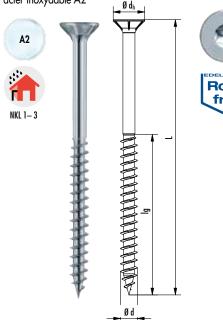

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Empreinte	PU
903714	3,0	13	Filetage complet	TX10 O	1000
903715	3,0	15	Filetage complet	TX100	1000
903716	3,0	20	Filetage complet	TX10 °	1000
903717	3,0	25	Filetage complet	TX10 °	1000
903718	3,0	30	Filetage complet	TX10 °	1000
903719	3,0	35	Filetage complet	TX10 o	1000
903720	3,0	40	23	TX10 o	1000
903721	3,0	45	23	TX10 O	1000
903722	3,5	12	Filetage complet	TX20 -	1000
903723	3,5	15	Filetage complet	TX20 -	1000
903724	3,5	20	Filetage complet	TX20 -	1000
903725	3,5	25	Filetage complet	TX20 -	1000
903726	3,5	30	Filetage complet	TX20 -	1000
903727	3,5	35	21	TX20 -	1000
903728	3,5	40	23	TX20 -	1000
903729	3,5	45	25	TX20 -	500
903730	3,5	50	30	TX20 -	500
903731	4,0	15	Filetage complet	TX20 -	1000
903732	4,0	20	Filetage complet	TX20 -	1000
903733	4,0	25	Filetage complet	TX20 -	1000
903734	4,0	30	Filetage complet	TX20 -	1000
903735	4,0	35	Filetage complet	TX20 -	1000
903736	4,0	40	23	TX20 -	1000
903737	4,0	45	25	TX20 -	500
903738	4,0	50	30	TX20 -	500
903739	4,0	60	39	TX20 -	200
903740	4,0	70	44	TX20 -	200
903783	4,0	80	44	TX20 -	200
903741	4,5	20	Filetage complet	TX20 -	500
903742	4,5	25	Filetage complet	TX20 -	500
903743	4,5	30	Filetage complet	TX20 -	500
903744	4,5	35	Filetage complet	TX20 -	500
903745	4,5	40	23	TX20 -	500
903746	4,5	45	25	TX20 -	500
903747	4,5	50	30	TX20 -	500
903748	4,5	60	39	TX20 -	200
903749	4,5	70	44	TX20 -	200
903750	4,5	80	44	TX20 -	200
903751	5,0	20	Filetage complet	TX20 -	500
903752	5,0	25	Filetage complet	TX20 -	500
903753	5,0	30	Filetage complet	TX20 -	500
903754	5,0	35	Filetage complet	TX20 -	500
903755	5,0	40	23	TX20 -	200
903756	5,0	45	25	TX20 -	200
903757	5,0	50	30	TX20 -	200
903758	5,0	60	39	TX20 -	200
903759	5,0	70	44	TX20 -	200
903760	5,0	80	44	TX20 -	200
903761	5,0	90	54	TX20 -	200
903762	5,0	100	54	TX20 -	200
903763	5,0	120	70	TX20 -	200
903764	6,0	40	Filetage complet	TX30 •	200
903765	6,0	50	Filetage complet	TX30 •	200
903766	6,0	60	39	TX30 •	200
903767	6,0	70	44	TX30 •	200
903768	6,0	80	44	TX30 •	200
903769	6,0	90	54	TX30 •	100 Autres tailles à la page suivante

ATTENTION : les vis de \varnothing = 3,0 mm ne sont pas réglées selon ETE

EcoTec | Eurotec°

EcoTec

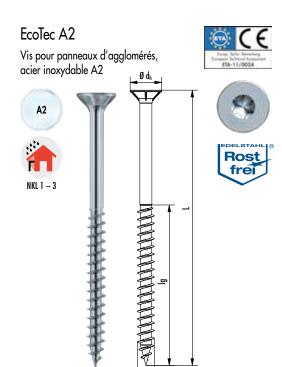
Vis pour panneaux d'agglomérés, acier galvanisé bleu



N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903770	6,0	100	11,5	60	TX30 •	100
903771	6,0	120	11,5	70	TX30 •	100
903772	6,0	140	11,5	70	TX30 •	100
904540	6,0	160	11,5	70	TX30 •	100
904541	6,0	180	11,5	70	TX30 •	100
904542	6,0	200	11,5	70	TX30 •	100
904617	6,0	220	11,5	70	TX30 •	100
904618	6,0	240	11,5	70	TX30 •	100
904619	6,0	260	11,5	70	TX30 •	100
904620	6,0	280	11,5	70	TX30 •	100
904621	6,0	300	11,5	70	TX30 •	100

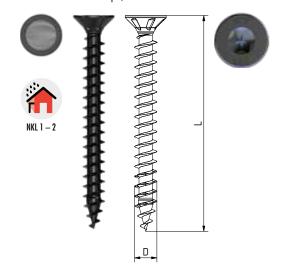
ATTENTION : les vis de \emptyset = 3,0 mm ne sont pas réglées selon ETA

EcoTec A2


Vis pour panneaux d'agglomérés, acier inoxydable A2

in the strong	
1/0024	
200	
ost _	
ost rei	

N° de réf.	Ød[mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903680*	3,0	16	6,0	Filetage complet	TX100	500
903681*	3,0	20	6,0	Filetage complet	TX10>	500
903682*	3,0	25	6,0	Filetage complet	TX100	500
903683*	3,0	30	6,0	18	TX100	500
903600*	3,0	35	6,0	Filetage complet	TX100	500
903684	3,5	16	7,0	Filetage complet	TX10>	500
903685	3,5	20	7,0	Filetage complet	TX10>	500
903686	3,5	25	7,0	Filetage complet	TX10>	500
903775	3,5	30	7,0	18	TX10>	500
903776	3,5	35	7,0	21	TX10>	500
903777	3,5	40	7,0	23	TX10>	200
903601	4,0	20	8,0	Filetage complet	TX20-	500
903602	4,0	25	8,0	Filetage complet	TX20-	500
903824	4,0	30	8,0	Filetage complet	TX20 -	500
903791	4,0	35	8,0	24	TX20 -	1000
903792	4,0	40	8,0	24	TX20 •	1000
903793	4,0	45	8,0	30	TX20 •	500
903794	4,0	50	8,0	30	TX20 -	500
903795	4,0	60	8,0	36	TX20 •	200
903796	4,0	70	8,0	42	TX20 -	200
903797	4,0	80	8,0	48	TX20 -	200
903836	4,5	20	9,0	Filetage complet	TX20 -	500
903837	4,5	25	9,0	Filetage complet	TX20 -	500
903838	4,5	30	9,0	Filetage complet	TX20 -	500
903839	4,5	35	9,0	Filetage complet	TX20 -	500
903840	4,5	40	9,0	23	TX20 -	500
903798	4,5	45	9,0	30	TX20 -	500
903799	4,5	50	9,0	30	TX20 -	500
903800	4,5	60	9,0	36	TX20 -	200
903801	4,5	70	9,0	42	TX20 -	200
903802	4,5	80	9,0	48	TX20 -	200
903841	5,0	40	10,0	23	TX25 •	500
903803	5,0	50	10,0	30	TX25 •	200
903804	5,0	60	10,0	36	TX25 •	200
903805	5,0	70	10,0	42	TX25 •	200
903806	5,0	80	10,0	48	TX25 •	200
	ementé selon ETA-11/0					


Eurotec | EcoTec

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903807	5,0	90	10,0	54	TX25 ●	200
903808	5,0	100	10,0	60	TX25 •	200
903809	5,0	120	10,0	70	TX25 •	200
903810	6,0	50	12,0	30	TX25 •	200
903811	6,0	60	12,0	36	TX25 •	200
903812	6,0	70	12,0	42	TX25 •	200
903813	6,0	80	12,0	48	TX25 •	200
903814	6,0	90	12,0	54	TX25 •	100
903815	6,0	100	12,0	70	TX25 •	100
903816	6,0	120	12,0	70	TX25 •	100
903817	6,0	140	12,0	70	TX25 •	100
903818	6,0	160	12,0	70	TX25 •	100
903825	6,0	180	12,0	70	TX25 •	100
903826	6,0	200	12,0	70	TX25 •	100

Eco-Black-Tec

Vis pour panneaux d'agglomérés, Acier au carbone trempé, revêtement noir

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	Empreinte	PU
903715/BLACK	3,0	16	6,0	TX10 O	200
903716/BLACK	3,0	20	6,0	TX10 o	200
903717/BLACK	3,0	25	6,0	TX10 °	200
903718/BLACK	3,0	30	6,0	TX10 O	200
903723/BLACK	3,5	16	7,0	TX20 -	200
903724/BLACK	3,5	20	7,0	TX20 •	200
903725/BLACK	3,5	25	7,0	TX20 -	200
903726/BLACK	3,5	30	7,0	TX20 •	200
903695/BLACK	3,5	40	7,0	TX20 -	200
903731/BLACK	4,0	16	7,5	TX20 •	200
903732/BLACK	4,0	20	7,5	TX20 -	200
903733/BLACK	4,0	25	7,5	TX20 •	200
903734/BLACK	4,0	30	7,5	TX20 -	200
903735/BLACK	4,0	35	7,5	TX20 •	200
903696/BLACK	4,0	40	7,5	TX20 -	200
903697/BLACK	4,0	50	7,5	TX20 •	200
903698/BLACK	4,5	40	8,5	TX20 -	200
903699/BLACK	4,5	50	8,5	TX20 •	200
903702/BLACK	5,0	40	9,5	TX20 -	200
903789/BLACK	5,0	50	9,5	TX20 •	200

VIS D'ASSEMBLAGE LBS

Vis en bois dur pour la fixation d'éléments en bois de placage stratifié de hêtre

La vis d'assemblage Eurotec LBS est une vis en bois qui permet d'assembler des éléments de construction en bois de placage stratifié de hêtre ou des pièces raccordées composées d'autres bois, de matériaux dérivés du bois et d'acier. La vis d'assemblage LBS est utilisée dans les structures porteuses dans les classes d'utilisation 1 et 2. Grâce à son revêtement glissant optimisé, elle est optimale pour être utilisée dans le bois dur. La géométrie spéciale du filet et le couple de rupture particulièrement élevé permet de positionner la vis sans pré-perçage.

Eurotec° | Vis d'assemblage LBS

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
904881	8,0	80	15	50	TX40 •	50
904882	8,0	100	15	80	TX40 •	50
904883	8,0	120	15	80	TX40 •	50
904884	8,0	140	15	80	TX40 •	50
904885	8,0	160	15	80	TX40 •	50
904886	8,0	180	15	80	TX40 •	50
904887	8,0	200	15	80	TX40 •	50
904888	8,0	220	15	80	TX40 •	50
904889	8,0	240	15	80	TX40 •	50

La vis d'assemblage LBS dans le bois de placage stratifié de hêtre

INFORMATIONS TECHNIQUES VIS D'ASSEMBLAGE LBS , TÊTE FRAISÉE, ACIER GALVANISÉ BLEU

	Dimens	ions		Résistance à l'arrachement	Résistance à la pénétration de la tête		Cisaillement bois-bois				Cisaillement acier-bois			
di			ET AD	N Fax,90,Rk	V Y Eax,head,Rk V	(α= 0°) (α= 0°)		ET AD	/ (a= 90°) / (a= 90°) / (a= 90°) / (a= 0°)	AD AD ET	V (α= · · · · · · · · · · · · · · · · · · ·	- - -	t	
dl x L [mm]	dk [mm]	AD [mm]	ET [mm]	F _{ax,90,Rk} [kN]	F _{ax,heod,Rk} [kN]		F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	t [mm]	F _{la,Rk} [kN]	F _{la,Rk} [kN]	
									$\alpha_{\text{AD}}\!=\!0^{\circ}$	$\alpha_{AD} = 90^{\circ}$				
							$\alpha = 0^{\circ}$	$\alpha^{AD} = 90^{\circ}$	$\alpha_{EI} = 90^{\circ}$	$\alpha_{\rm EI} = 0^{\circ}$		$\alpha = 0^{\circ}$	$\alpha = 90^{\circ}$	
8,0 x 80	15,0	40	40	9,60	9,93		9,58	8,37	9,58	8,37	3	9,58	8,37	
8,0 x 100	15,0	40	60	14,40	9,93		9,66	8,46	9,66	8,46	3	10,78	9,57	
80 x 120	15,0	40	80	19,20	9,93		9,66	8,46	9,66	8,46	3	11,98	10,77	
8,0 x 140	15,0	60	80	19,20	9,93		9,66	8,46	9,66	8,46	3	11,98	10,77	
8,0 x 160	15,0	80	80	19,20	9,93		9,66	8,46	9,66	8,46	3	11,98	10,77	
8,0 x 180	15,0	100	80	19,20	9,93		9,66	8,46	8,46	9,66	3	11,98	10,77	
8,0 x 200	15,0	120	80	19,20	9,93		9,66	8,46	8,46	9,66	3	11,98	10,77	
8,0 x 220	15,0	140	80	19,20	9,93		9,66	8,46	8,46	9,66	3	11,98	10,77	
8,0 x 240	15,0	160	80	19,20	9,93 ronéenne (FTE). Masse volumique du hois de n		9,66	8,46	8,46	9,66	3	11,98	10,77	

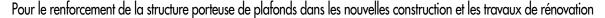
Dimensionnement selon les valeurs de test pour obtention d'une Évaluation Technique Européenne (ETE). Masse volumique du bois de placage stratifié de feuillus $\rho_k = 730 \text{ kg/m}^3$ (non pré-percé). Toutes les valeurs miniquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement $R_d : R_d = R_k \times k_{mod} / \gamma M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des effets E_d ($R_d \ge E_d$).

Exemple:

Valeur caractéristique pour l'effet permanent (propre charge) $G_k = 2,00$ kN et l'effet variable (p. ex. la charge de neige) $Q_k = 3,00$ kN. $k_{mod} = 0,9$. $\gamma_M = 1,3$.

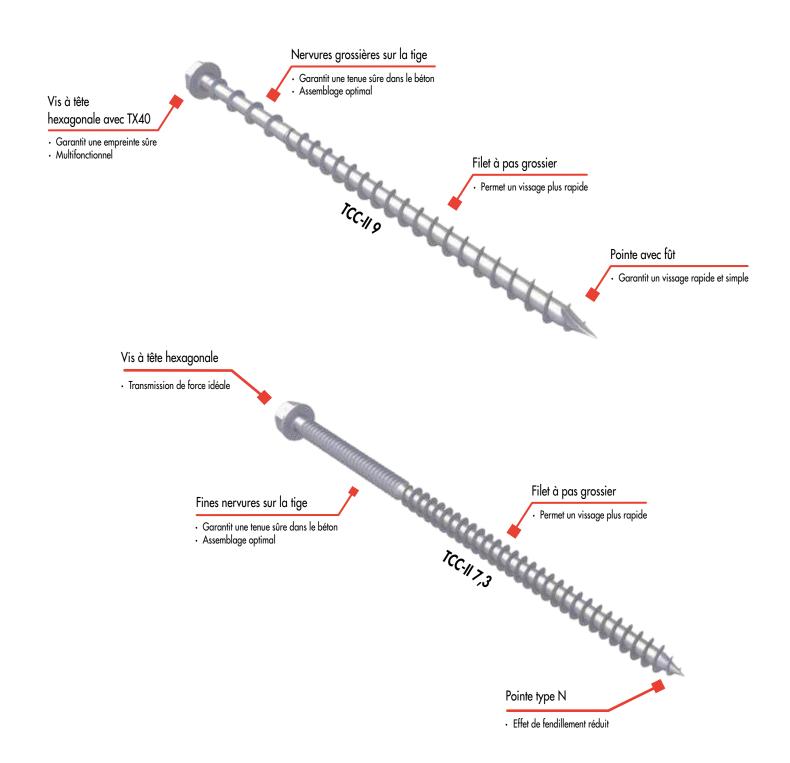
 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20$ kN.


La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M \, / \, k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_d \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = 10,40 \text{ kN} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$.

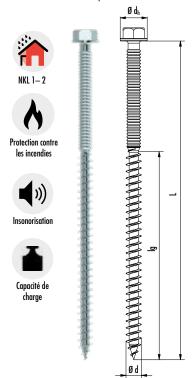
Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

Les valeurs indiquées ici sont des valeurs d'essai!


VIS D'ASSEMBLAGE BOIS-BÉTON

Les projets de construction de grande envergure et avec des charges utiles élevées requièrent une grande rigidité. Les plafonds à poutres arrivent rapidement à leurs limites. L'assemblage innovant bois-béton avec des vis d'assemblage permet de profiter efficacement des meilleures propriétés du bois et du béton armé, ce qui donne comme résultat une structure porteuse résistante.

Le système est utilisé dans les nouvelles constructions de grande envergure et dans les travaux de rénovation de bâtiments dont l'utilisation a changé. Les avantages sont une capacité de charge accrue, une rigidité plus importante, une protection acoustique améliorée et une résistance plus élevée au feu. Les travaux de rénovation profitent de la préservation des poutres existantes et souvent aussi du coffrage – ce qui est avantageux sur le plan économique et écologique. Le système d'assemblage bois-béton est un choix d'avenir pour des projets de construction ambitieux.


Eurotec° | Vis d'assemblage bois-béton

TCC-II 7,3

Vis à tête hexagonale, acier au carbone,revêtement spécial

N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	Pl
981841	7,3	150	12,7	98	Vis à tête hexagonale	20

Plafond HBV en détail

TCC-II 9

Protection contre les incendies

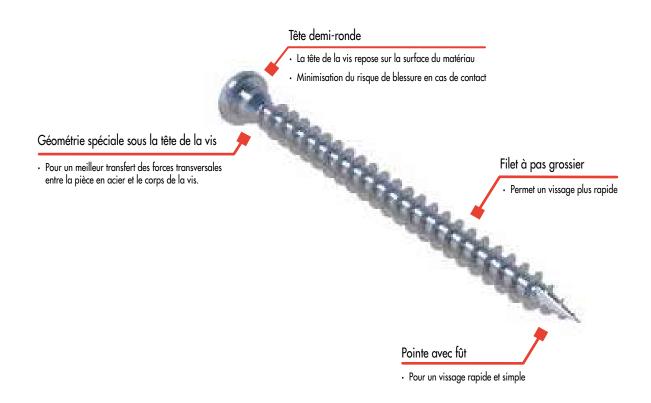
Insonorisation

Capacité de

charge

Vis à tête hexagonale, acier au carbone, revêtement spécial

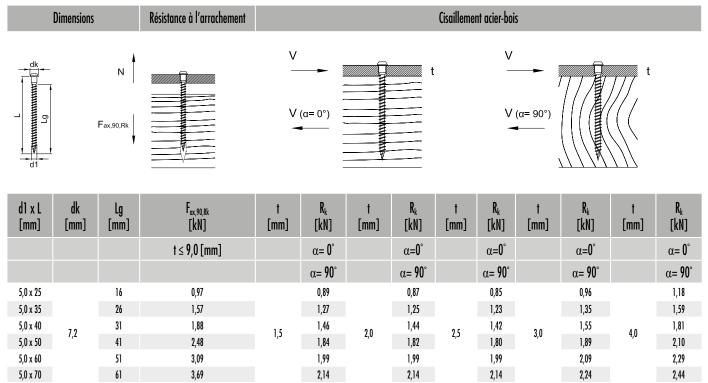
N° de réf.	Ø d [mm]	L[mm]	Ø dh [mm]	lg [mm]	Empreinte	PU
903592	9,0	180	15,5	125	TX40 •	200


Découplage du bruit de choc et chape sur le plafond HBV

VIS POUR ÉQUERRE (WBS)

Pour un vissage simple et rapide

La vis pour équerre Eurotec (WBS) est fabriquée en acier au carbone trempé et a été conçue spécialement pour assembler les tôles d'acier et le bois. Le fendillement dans le bois est réduit par la géométrie de la pointe de la vis. Par ailleurs, la vis se caractérise entre autres par la tige lisse au-dessous de la tête. Cette tige permet de transférer les forces lors du cisaillement.



Eurotec Vis pour équerre

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	PU
945343	5,0	25	16	7,2	TX20 •	250
945232	5,0	35	26	7,2	TX20 -	250
945241	5,0	40	31	7,2	TX20 -	250
945233	5,0	50	41	7,2	TX20 -	250
945344	5,0	60	51	7,2	TX20 -	250
945345	5,0	70	61	7,2	TX20 •	250

INFORMATIONS TECHNIQUES VIS POUR ÉQUERRE, ACIER GALVANISÉ BLEU

Dimensionnement selon ETA-11/0024. Masse volumique ρ_k = 350 kg/m³. Toutes les valeurs mécaniques indiquées doivent être considérées en fonction des hypothèses retenues et sont des exemples de dimensionnement. Toutes les valeurs sont des valeurs minimales calculées, sous réserve d'erreurs d'impression et de composition.

a) Les valeurs caractéristiques de la capacité de charge R_k ne sont pas équivalentes avec l'effet maximal possible (la force maximale). Les valeurs caractéristiques de la capacité de charge R_k sont, en ce qui concerne la classe d'utilisation et la classe de la durée d'effet de la charge, à réduire aux valeurs de dimensionnement R_d : $R_d = R_k \cdot k_{mod} / \gamma_M$. Les valeurs de dimensionnement de la capacité de charge R_d sont à comparer aux valeurs de dimensionnement des ffets E_d ($R_d \ge E_d$).

Exemple :

 $Valeur\ caractéristique\ pour\ l'effet\ permanent\ (propre\ charge)\ G_k=2,00\ kN\ et\ l'effet\ variable\ (p.\ ex.\ la\ charge\ de\ neige)\ Q_k=3,00\ kN\ .\ k_{med}=0,9.\ \gamma_{Nl}=1,3.$

 \rightarrow Valeur de dimensionnement de l'effet $E_d = 2,00 \cdot 1,35 + 3,00 \cdot 1,5 = 7,20 \text{ kN}$.

La capacité de charge de l'assemblage est réputée prouvée lorsque $R_d \ge E_d$. \longrightarrow min $R_k = R_d \cdot \gamma_M / k_{mod}$

C'est-à-dire que la valeur caractéristique minimale de la capacité de charge est dimensionnée comme suit : min $R_k = R_4 \cdot \gamma_M / k_{mod} \rightarrow R_k = 7,20 \text{ kN} \cdot 1,3/0,9 = \underline{10,40 \text{ kN}} \rightarrow \text{Mise en cohérence avec les valeurs du tableau}$

Attention : il s'agit d'outils d'aide à la planification. Les projets ne peuvent être dimensionnés que par des personnes autorisées.

Attention : vérifiez les hypothèses retenues. Les valeurs indiquées, le type et le nombre de moyens de fixation sont pré-dimensionnés. Les projets ne peuvent être dimensionnés que par des personnes autorisées selon le code de la construction du Land. Pour obtenir une attestation de stabilité (payante), veuillez vous adresser à un spécialiste de structures porteuses selon le code de construction du Land. N'hésitez pas à nous contacter si vous souhaitez obtenir un contact.

Empreinte

TX20

TX20

TX20

TX20

PU

250

250

250

250

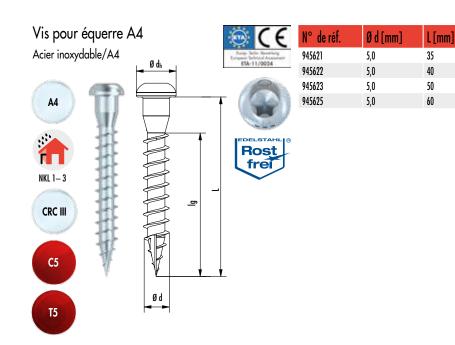
Ø dh [mm]

7,2

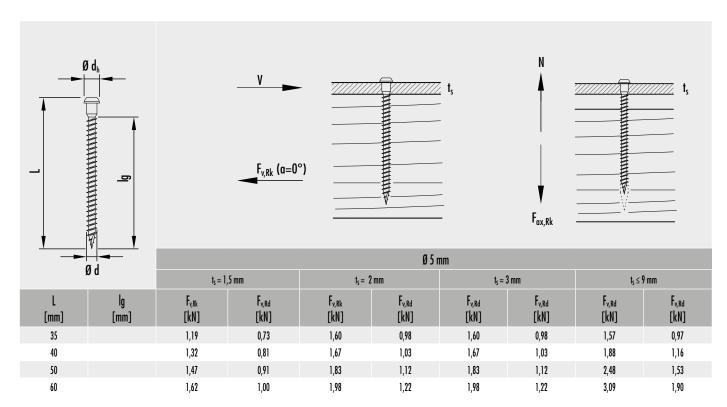
7,2

7,2

7,2


lg [mm]

26

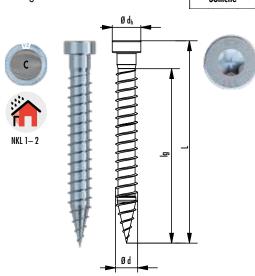

31

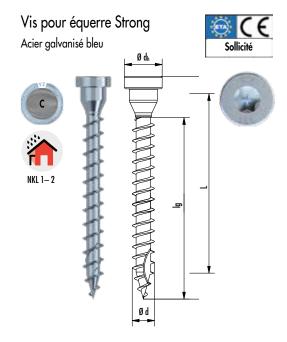
41

51

CAPACITÉS DE CHARGE DE VIS AVEC LONGUEURS MINIMUM REQUISES

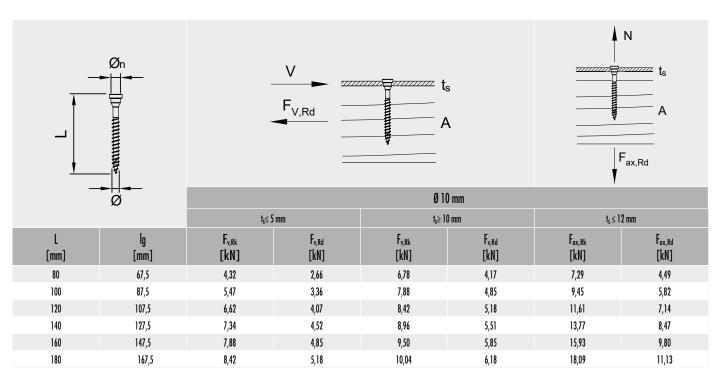
Calculé selon ETA-11/0024 compte tenu de l'absence de trous pré-percés et de la densité du bois $\rho_k = 350 \text{ kg/m}^3$. Les valeurs de dimensionnement F_{nd} ont été calculées compte tenu de $k_{mod} = 0.8$ et $\gamma_M = 1.3$. On entend par tôle épaisse une tôle en acier d'une épaisseur ts ≥ 2.0 mm selon ETA-11/0024. L est la longueur minimale de la vis pour atteindre la capacité de charge respective.


Veuillez tenir compte du fait qu'il s'agit d'outils d'aide à la planification. Seules des personnes habilitées peuvent procéder aux calculs nécessaires aux projets.


Eurotec | Vis pour équerre

Vis pour équerre ZK Hardwood Acier galvanisé bleu

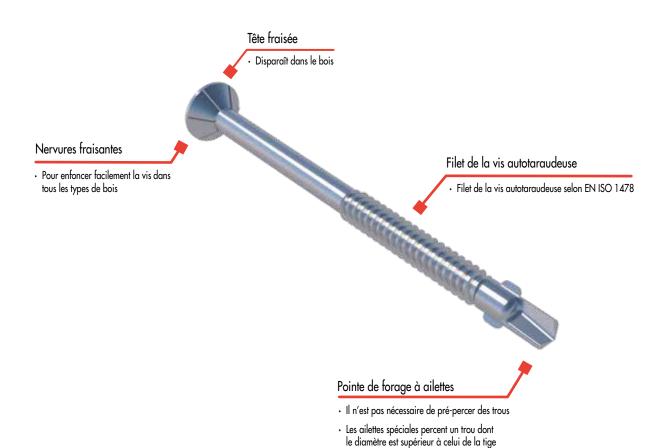
N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	PU
945383	5,5	35	31	7,2	TX20 •	250
945384	5,5	40	36	7,2	TX20 •	250
945385	5,5	50	46	7,2	TX20 -	250
945386	5,5	60	56	7,2	TX20 °	250
945387	5,5	70	61	7,2	TX20 •	250



N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	PU
975815	8,0	60	50	13,5	TX40 •	50
975816	8,0	80	70	13,5	TX40 •	50
975817	8,0	100	90	13,5	TX40 •	50
975818	8,0	120	110	13,5	TX40 •	50
975819	8,0	140	130	13,5	TX40 •	50
975820	8,0	160	150	13,5	TX40 •	50
975821	10,0	80	67,5	16,5	TX50 ●	50
975822	10,0	100	87,5	16,5	TX50 ●	50
975823	10,0	120	107,5	16,5	TX50 ●	50
975824	10,0	140	127,5	16,5	TX50 ●	50
975825	10,0	160	147,5	16,5	TX50 ●	50
975826	10,0	180	167,5	16,5	TX50 ●	50

INFORMATIONS TECHNIQUES VIS POUR ÉQUERRE STRONG, ACIER GALVANISÉ BLEU

Calculé selan ETA-11/0024 compte tenu de l'absence de trous pré-percés et de la densité du bois $\rho_k = 350 \text{ kg/m}^3$. Les valeurs de dimensionnement F_{red} ont été calculées compte tenu de $k_{mod} = 0.8$ et $\gamma_M = 1,3$. Pour différentes épaisseurs de tôle, il est possible d'interpoler la résistance au cisaillement entre les tôles d'acier fines et épaisses. L est la longueur minimale de la vis pour atteindre la capacité de charge respective.

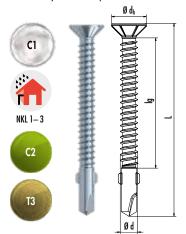

Veuillez tenir compte du fait qu'il s'agit d'outils d'aide à la planification. Seules des personnes habilitées peuvent procéder aux calculs nécessaires aux projets.


VIS DE FORAGE À AILETTES

Pour la fixation de profilés minces

La vis de forage à ailettes en acier inoxydable trempé ou en acier au carbone est une vis conçue spécialement pour la fixation de profilés minces. La vis dispose d'une pointe de forage avec des ailettes spéciales et une tête fraisée avec empreinte TX. Ces vis se caractérisent par le fait qu'elles peuvent être utilisées sans pré-perçage car les ailettes percent un trou supérieur au diamètre du filetage. Elles percent à la fois l'avant-trou et le contre-filetage dans l'acier même.

Il est important de savoir que que l'acier galvanisé et l'acier inoxydable trempé ne sont pas résistants aux acides et ne se prêtent donc pas à la fixation de bois contenant des tanins comme le chêne. À l'extérieur, nous recommandons l'utilisation de ces vis uniquement pour les fixations acier-bois.. Dans ce cas, une vis par point de fixation est suffisante.



Eurotec Vis de forage à ailettes

Vis de forage à ailettes

Acier inoxydable trempé

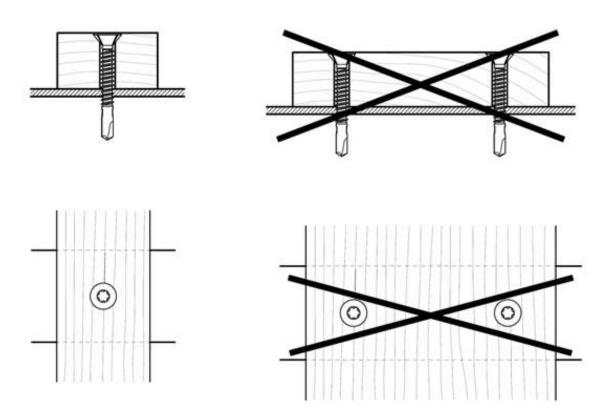
N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	Épaisseur de l'élément à fixer [mm] ^{a)}	Capacité de forage	PU
901990	4,8	38	22	9,5	TX25 •	20	3	200
111404	5,5	45	26,5	10,8	TX30 •	25	3	200
111405	5,5	50	32	10,8	TX30 •	30	3	200
111406	6,3	60	31	12,4	TX30 •	35	5	200
901585	6,3	70	41	12,4	TX30 •	45	5	200
904333	6,3	80	41	12,4	TX30 •	55	5	200
901581	6,3	85	46	12,4	TX30 •	60	5	100
901584	6,3	110	46	12,4	TX30 •	85	5	100

a) Épaisseur de l'élément à fixer = épaisseur de la pièce rapportée + épaisseur de la tôle t; t_{max} = capacité de forage

Vis de forage à ailettes

Acier galvanisé bleu

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	Empreinte	Épaisseur de l'élément à fixer [mm] ^{o)}	Capacité de forage	PU
111841	4,2	32	17	8,1	TX20 -	15	3	500
111842	4,2	38	23	8,1	TX20 -	20	3	500
111843	4,8	45	27	9,5	TX25 •	25	3	500
111844	5,5	50	32	10,8	TX30 •	30	3	200
111409	5,5	60	41	10,8	TX30 •	40	3	200
111410	5,5	70	51	10,8	TX30 •	50	3	200
111411	5,5	80	61	10,8	TX30 •	60	3	200
111412	5,5	100	81	10,8	TX30 •	80	3	200
111408	5,5	120	101	10,8	TX30 •	100	3	200
111845	6,3	50	31	12,4	TX30 •	25	5	200
111846	6,3	60	31	12,4	TX30 •	35	5	200
111847	6,3	70	41	12,4	TX30 •	45	5	200
111848	6,3	80	46	12,4	TX30 •	55	5	200
111414	6,3	100	46	12,4	TX30 •	75	5	200
111415	6,3	120	46	12,4	TX30 •	95	5	200


a) Épaisseur de l'élément à fixer = épaisseur de la pièce rapportée + épaisseur de la tôle t; t_{max} = capacité de forage

INFORMATIONS SUR LES APPLICATIONS

La vis de forage à ailettes est conçue uniquement pour la fixation de profilés minces, c'est-à-dire pour les applications avec une seule vis par point de fixation.

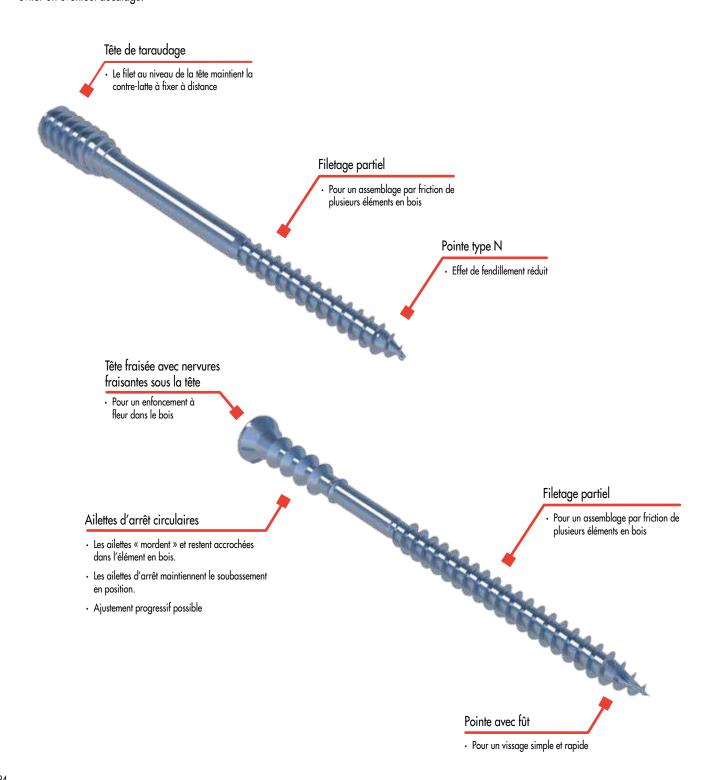
En cas de fixation d'éléments tels que des planches avec deux vis par point de fixation, il peut y avoir une perturbation réciproque si les vis ont tendance à se plier avec le bois « qui travaille » (qui bouge ou se déforme). Dans ce cas, les vis peuvent être arrachées, surtout si l'on utilise du bois de conifères relativement tendre.

La vis de forage à ailettes ne convient pas à la fixation d'assemblages bois-aluminium.

Mode de travail de la vis de forage à ailettes

MODE DE TRAVAIL DE LA VIS DE FORAGE À AILETTES

- Le trou percé dans le bois est plus grand que le diamètre du filetage de la vis, ce qui est dû aux ailettes spéciales.
- La pointe de forage pré-perce le trou central dans l'acier et donne sa forme au contre-filetage dans l'acier.
- Positionnement sûr du filet dans le support d'ancrage en acier.


VIS D'ÉCARTEMENT / MINI, JUSTITEC

Convient à la fixation d'ossatures bois en cas de revêtements de murs et de plafonds

La vis d'écartement permet de fixer des ossatures bois en cas de revêtements de murs et de plafonds et de monter des faîtes et des lattes d'arête de toit. Contrairement aux vis conventionnelles, la vis d'écartement est dotée de deux filets différents au niveau de la tête et de la pointe. Le filet au niveau de la tête maintient la contre-latte à fixer (à distance). Le filet au niveau de la pointe, plus fin, sert à fixer l'ossature.

Pour éviter que la contre-latte se fende, nous recommandons de pré-percer la contre-latte (diamètre du perçage = Ødh – 2 mm).

La latte en bois est positionnée en haut et en bas grâce à la vis Justitec. En complément, la vis d'écartement estutilisée pour maintenir la latte en position et éviter un éventuel décalage.

Vis d'écartement

Acier galvanisé, revêtement glissant

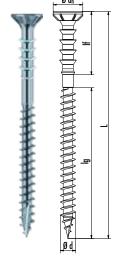
N° de réf.	Ød[mm]	L[mm]	lg [mm]	Ø dh [mm]	lf [mm]	Empreinte	Distance [mm]	PU
110099	6,0	60	40	10	20	TX25 •	0–15	200
110100	6,0	70	40	10	20	TX25 •	15-25	200
110101	6,0	80	40	10	20	TX25 •	15-35	200
110102	6,0	90	40	10	20	TX25 •	25-45	200
110103	6,0	100	40	10	20	TX25 •	35-55	200
110104	6,0	120	40	10	20	TX25 •	55-75	100
110105	6,0	135	40	10	20	TX25 •	70-90	100
110106	6,0	150	40	10	20	TX25 •	75–105	100
110107	6,0	180	40	10	20	TX25 •	100-135	100
110108	6,0	200	40	10	20	TX25 •	135-155	100
110109	6,0	250	40	10	20	TX25 •	180-205	100
110110	6,0	300	40	10	20	TX25 •	230-255	100

Vis d'écartement mini

Acier galvanisé, revêtement glissant

NKL 1-2

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	lf [mm]	Empreinte	Distance [mm]	PU
110121	4,5	60	30	8	22	TX25 •	0 – 15	100
110122	4,5	80	30	8	22	TX25 •	15 – 35	100
110123	4,5	100	30	8	22	TX25 •	35 – 55	100
110124	4,5	120	30	8	22	TX25 •	55 – 75	100


Justitec

Acier galvanisé, revêtement glissant, tête fraisée

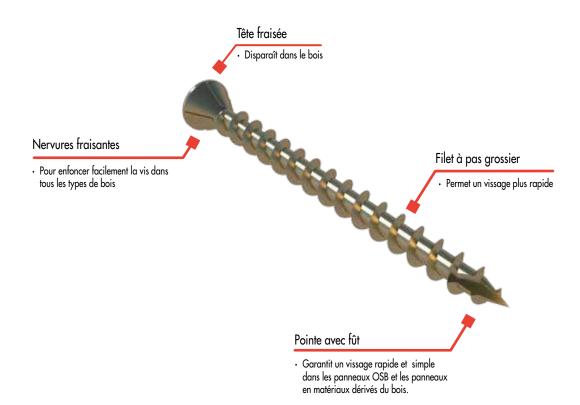
NKL 1-2

N° de réf.	Ø d [mm]	L[mm]	lg [mm]	Ø dh [mm]	If [mm]	Empreinte	Plage de réglage [mm]	PU
111804	6,0	60	25	10	25	TX25 •	0-10	200
111805	6,0	70	30	10	25	TX25 •	0 – 20	200
111806	6,0	80	30	10	25	TX25 •	0 - 30	200
111807	6,0	90	40	10	25	TX25 •	0 – 40	100
111808	6,0	100	60	10	25	TX25 •	0 – 50	100
111824	6,0	110	60	10	25	TX25 •	0 – 60	100
111809	6,0	120	60	10	25	TX25 •	0 – 70	100
905632	6,0	130	60	10	25	TX25 •	0 – 80	100
905633	6,0	145	60	10	25	TX25 •	0 – 95	100
905634	6,0	160	60	10	25	TX25 •	0-110	100

AVANTAGES

- · Il n'est pas nécessaire de pré-percer des trous ; ajustable progressivement
- · Il n'est pas nécessaire d'utiliser des cales Traitement bois sur bois

Alignement rapide d'un soubassement avec la vis Justitec.


Fixation d'une latte de bois à l'aide de la vis d'écartement (en bas) et de la vis Justitec (en haut).

Eurotec | OSB Fix

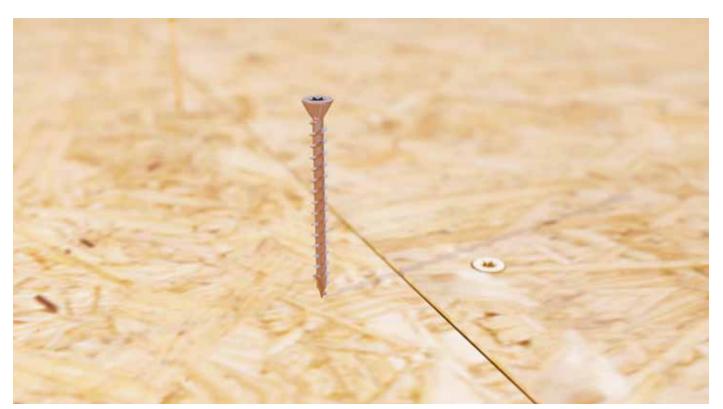
OSB FIX

Vis en acier au carbone, galvanisée jaune

L'OSB Fix est une visgalvanisée jaune en acier au carbone, avec tête fraisée et filetage complet. La vis à filetage complet dispose d'une tête fraisée 60 °avec des nervures fraisantes et une empreinte TX ainsi que d'une pointe avec fût (type 17). La géométrie spéciale de la vis garantit une réduction de l'effet de fendillement lors du vissage.

OSB Fix

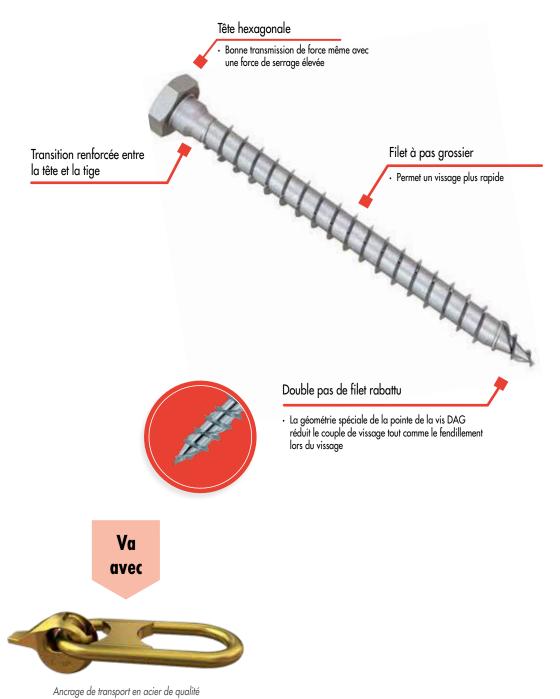
Tête fraisée, acier galvanisé jaune



N° de réf.	Dimensions [mm]	Empreinte	PU
900690	4,3 x 40	TX20 •	250
900691	4,3 x 45	TX20 •	250
900692	4,3 x 50	TX20 •	250
900693	4,3 x 60	TX20 •	250
900694	4,3 x 80	TX20 •	250

PROPRIÉTÉS

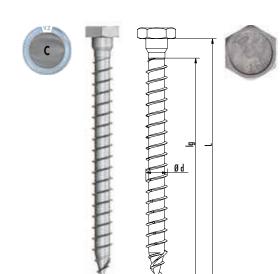
- · Le filetage complet maintient le panneau en place
- · Prévient les bruits de grincement
- · Convient à tous les matériaux dérivés du bois
- · Surface galvanisée jaune Cr3



OSB Fix pour la fixation de panneaux OSB

VIS POUR ANCRE DE TRANSPORT

Acier de qualité, avec pointe à FE


Les ancres de transport du groupe de charge allant jusqu'à 1,3 tonne sont à utiliser expressément uniquement en relation avec la vis d'ancre de transport Eurotec de Ø11x160mm certifiée selon l'homologation technique européenne ETA-11/0024. La vis d'ancre de transport Eurotec Ø 11x160mm n'est à utiliser qu'une fois! Elle est à visser sans forage préalable dans le bois plein (bois résineux), le contreplaqué en couches laminées, le bois en couches laminées et le bois de poutres lamellées. Une utilisation dans le bois dur n'est pas autorisée! Les positions de montage possibles resp. autorisées sont représentées dans nos instructions d'emploi. Nous mettons volontiers ces dernières à votre disposition.

Vis pour ancre de transport

Acier de qualité

N° de réf.	Dimensions [mm]	Empreinte	PU
110359	11,0 x 125	SW 17	20
110360	11,0 x 160	SW 17	20
110371	11,0 x 200	SW 17	20
110372	11,0 x 250	SW 17	20
110373	11,0 x 300	SW 17	20

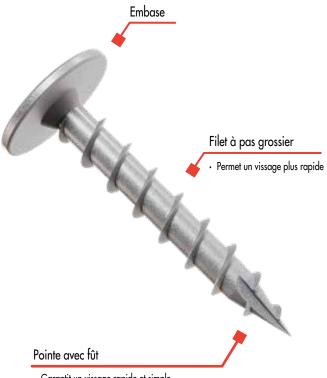
PROPRIÉTÉS

- · Capacité de charge élevée
- · Levage, transport et déplacement faciles de composants en bois de grandes dimensions
- Peut être montée de trois façons différentes, pour la sollicitation de la vis pour ancre de transport en :
- → Traction axiale
- ightarrow Traction oblique
- → Traction oblique avec fraisage ajusté de la tête d'accouplement

CONSIGNES DE SÉCURITÉ

• Lire impérativement la notice d'utilisation avant toute utilisation:

Fiche de données de produit



- · Les utilisateurs doivent être formés avant la première mise en service
- · Ne pas effectuer de pré-perçage pour les vis
- N'utiliser les vis qu'une seule fois
- La charge représentée par le composant à lever ne doit pas dépasser la valeur admissible
- Au moins deux points d'arrimage sont nécessaires par composant à lever
- · Vérifier les ancres de transport avant chaque utilisation pour voir si elles présentent des dommages. Les mettre de côté le cas échéant

VIS DE CONNEXION DE POTEAUX

La vis à bois pour assembler le bois à la tôle d'acier

La vis d'assemblage pour poteaux est une vis à embase auto-foreuse utilisée pour assembler la tôle d'acier au bois. Elle est notamment utilisée pour assembler des poteaux en bois à des pièces moulées en acier telles que des sabots de solive, des pieds de support ou des ancrages de support. La géométrie spéciale de la pointe de la vis empêche tout fendillement. Il n'est donc plus nécessaire de pré-percer!

Vis de connexion de poteaux 1000 revêtement spécial

N° de réf.	Dimensions [mm]	Empreinte	PU
r903056	8 x 40	TX40 •	100
r903057	8 x 50	TX40 •	100
975594	10 x 40	TX40 •	50
975595	10 x 50	TX40 ●	50

Empreinte

TX40 •

TX40 •

TX40 •

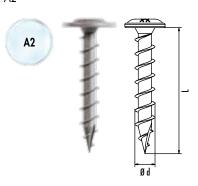
AVANTAGES

- · Vis à tête bombée Ø 8 mm, diamètre de tête Ø 22 mm
- · La géométrie spéciale de pointe réduit l'effet de fission, un forage préalable n'est pas nécessaire
- · Particulièrement protégé contre la corrosion
- Emploi p. ex. dans la construction de clôtures et de pergolas

Dimensions [mm]

8 x 40

8 x 50


8 x 60

· Non approprié pour les bois à teneur en tanin.

Important

Non approprié pour bois à teneur en tanin.

Vis de connexion de poteaux Α2

N° de réf.

975570

975571

975585

- · Vis à tête bombée Ø 8 mm, diamètre de tête Ø 16 mm
- · La géométrie spéciale de pointe réduit l'effet de fission, un forage préalable n'est pas nécessaire
- · Résistance limitée aux acides

Important

Non approprié pour bois à teneur en tanin.

PU

100

100

100

Vis d'assemblage pour poteaux solidement ancrée dans le bois - pour une stabilité maximale dans la construction en bois.

Limiteur de couple

N° d'art.	Version	Empreintes	Longueur totale [mm]	Logement embouts	UE
100885	Limiteur de couple 18 Nm	Vis à six pans 11 mm	120,5	TX40 ● ou TX50 ●	1
100886	Limiteur de couple 32 Nm	Vis à six pans 11 mm	120,5	TX40 ● ou TX50 ●	1

AVANTAGES

- · Réduit l'endommagement des vis : empêche le foirage et l'arrachement de vis particulièrement important sur les assemblages métal-bois et les vis à embase.
- Qualité constante : couple de serrage sûr et reproductible à chaque vissage.
- · Sans entretien : le mandrin qui est graissé en continu ne requiert pas d'entretien régulier.

INFORMATION

Les mandrins de serrage sont livrés avec un couple pré-ajusté de 18 Nm ou de 32 Nm et peuvent, si besoin est, être ajustés à un couple spécifique au projet.

Pour une durée de vie maximale et un fonctionnement fiable, il est recommandé d'utiliser les adaptateurs pour embouts qui conviennent et de les utiliser dans la plage de couple indiquée.

Visseuse

N° d'art.	Version	Logement de l'outil	Longueur [mm]	Empreintes	Diamètre (extérieur)	Compatibilité	UE
100883	Petite visseuse ESW8	Vis à six pans 1/4" (mandrin de serrage intérieur)	env. 65	TX40 ● ou TX50 ●	41,5	Vis avec empreinte TX40 (p. ex. Paneltwistec TK Ø8xL)	1
100884	Grande visseuse ESW13	Vis à six pans 1/4" (mandrin de serrage intérieur)	env. 65	TX40 ● ou TX50 ●	41,5	Vis avec empreinte TX40 (p. ex. Paneltwistec TK Ø10xL)	1

AVANTAGES

- · Version robuste et durable pour l'utilisation sur des chantiers
- · Adhérence sûre grâce à un ajustement précis
- · Prévention de tout dérapage ou blocage lors du vissage
- · Convient au pré-montage et au montage final dans la construction en bois, la construction de façades, d'ossatures porteuses, etc.

INFORMATIONS SUR L'UTILISATION

L'outil est conçu pour être utilisé avec des visseuses sans fil ou des perceuses avec logement pour embouts 1/4". Lors de l'utilisation, veiller à une pose exacte, perpendiculaire, pour ne pas endommager le raccord vissé. En cas de montages en série, il est recommandé d'utiliser le mandrin de serrage.

STOCKAGE ET ENTRETIEN

Pour garantir le bon fonctionnement dans le long terme, il est recommandé de stocker l'outil dans un endroit sec et de le nettoyer régulièrement de toute saleté et abrasion métallique. La surface brunie offre une bonne protection contre la formation de rouille si la manipulation se fait dans les règles de l'art.

ÉTAGÈRE DE VENTE EUROTEC

Petits emballages

AVANTAGES

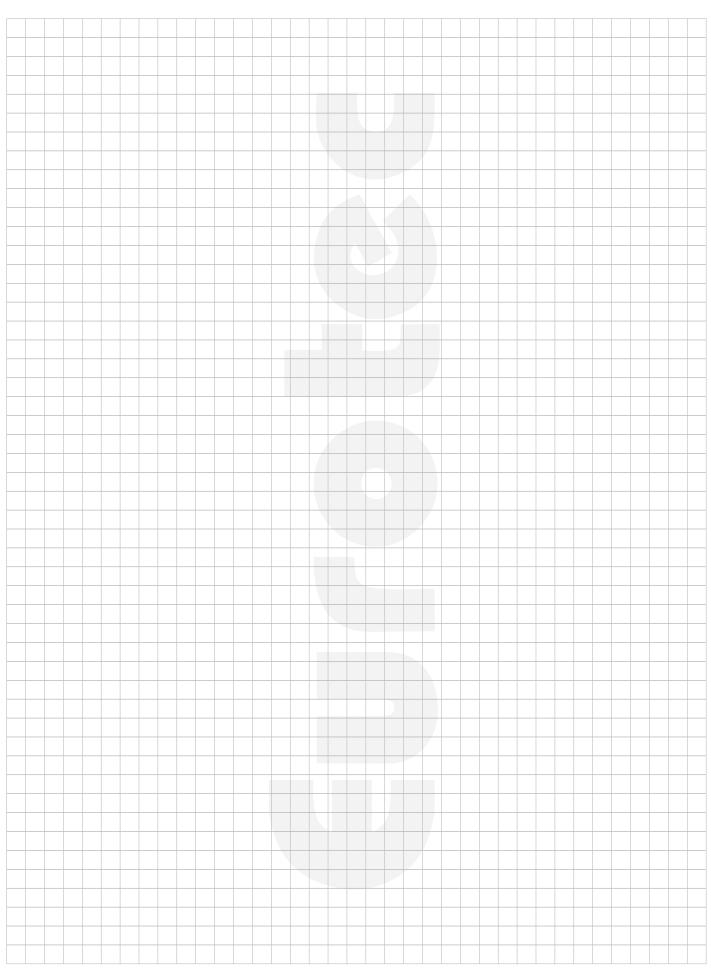
Avec l'étagère de vente d'Eurotec, vous obtenez des vis dans les dimensions et les matériaux les plus courants, bien triés dans une étagère. Vous avez ainsi la possibilité d'équiper vos clients pour les applications quotidiennes dans la construction en bois avec une seule étagère.

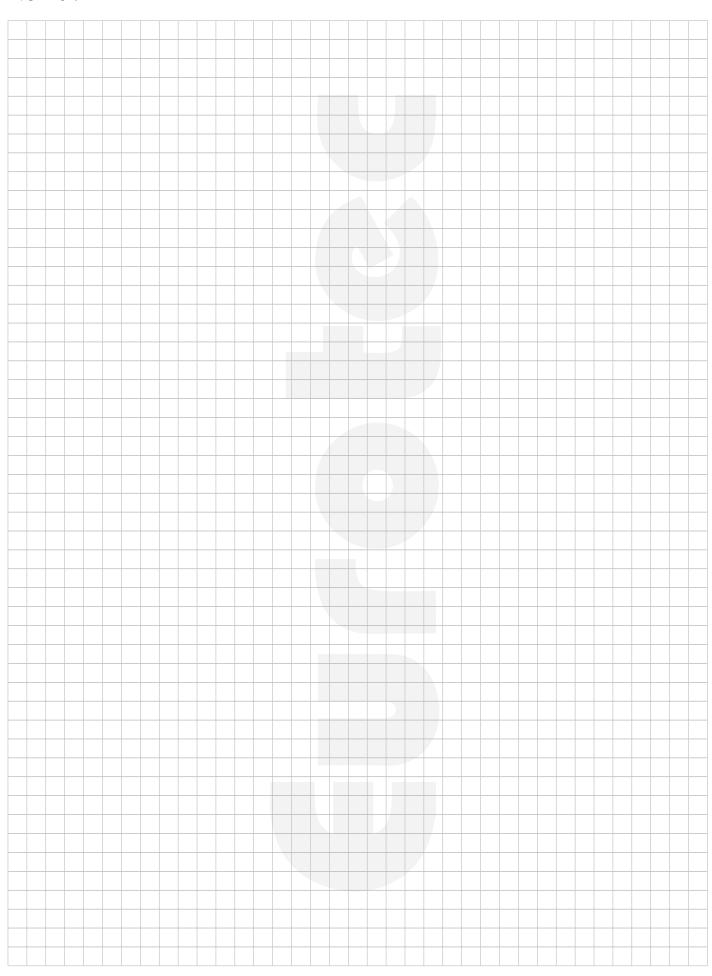
- Dans la partie supérieure de l'étagère, vous trouverez des sachets contenant 10, 15, 20 ou 45 vis.
- Dans la partie inférieure de l'étagère, vous trouverez des cartons contenant 50 et/ou 100 vis. Tous les cartons ont un bec serveur qui peut refermé.
- Des embouts, embouts longs et boîtes d'embouts avec les tailles TX assorties, le tout avec système de codage couleur, font également partie de cette étagère bien garnie.

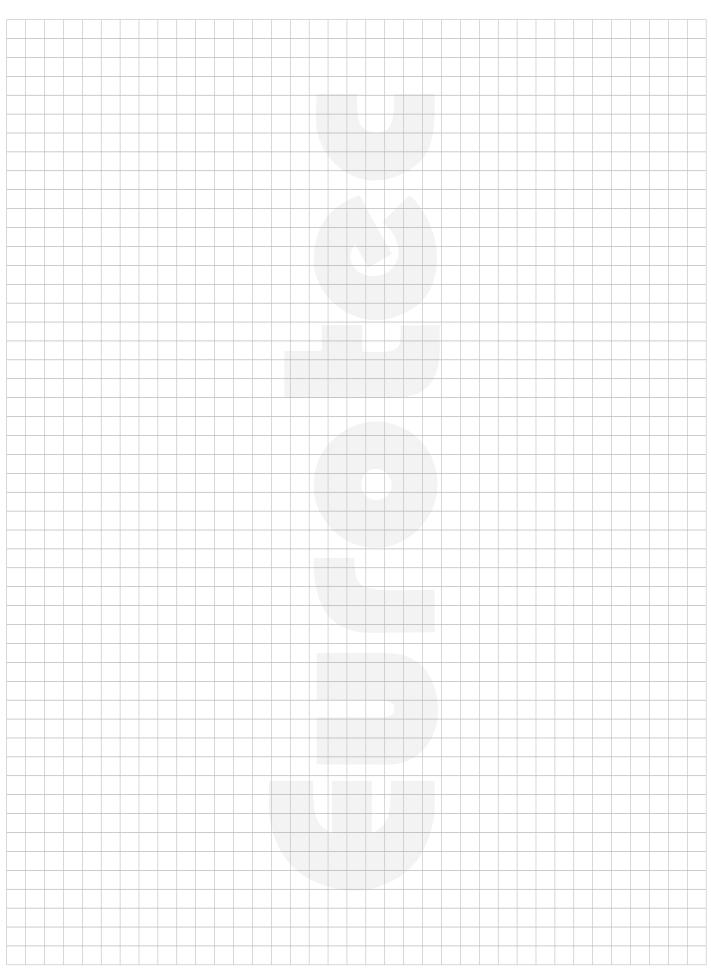
VOUS TROUVEREZ DANS CETTE ÉTAGÈRE LES TYPES ET LES DIMENSIONS DE VIS COMME SUIT:

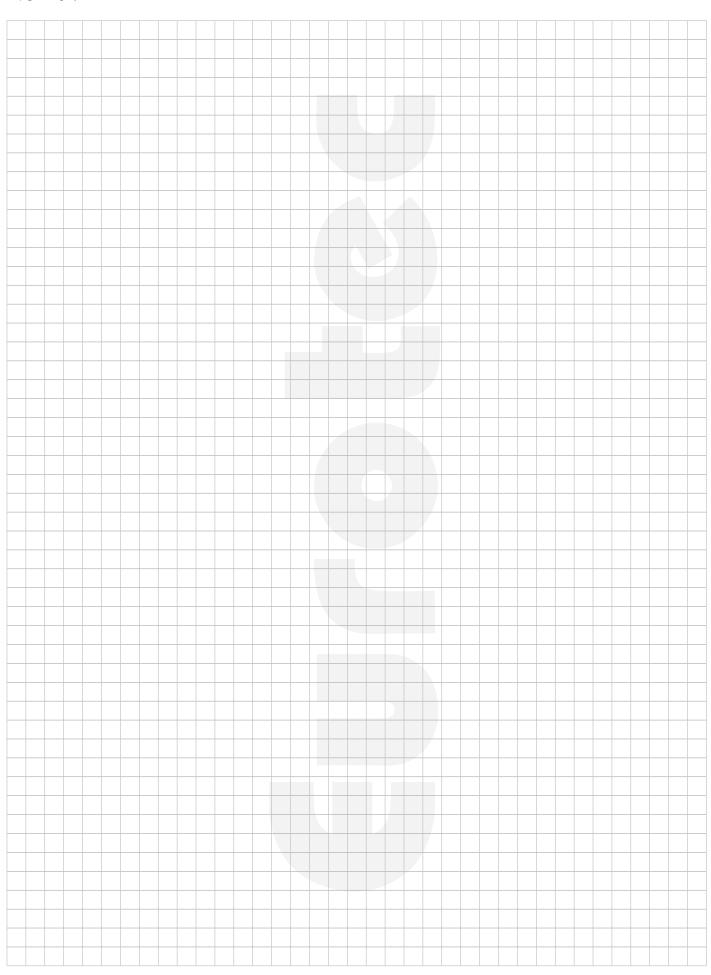
- Paneltwistec AG avec revêtement spécial, tête fraisée \varnothing 3,5 x 30 mm à \varnothing 6,0 x 120 mm
- Vis pour panneau d'agglomérés EcoTec A2, tête fraisée Ø 4,0 x 40 mm à Ø 6,0 x 120 mm
- Hapatec en acier inoxydable trempé,
 tête décorative Ø 4,0 x 30 mm à Ø 5,0 x 80 mm

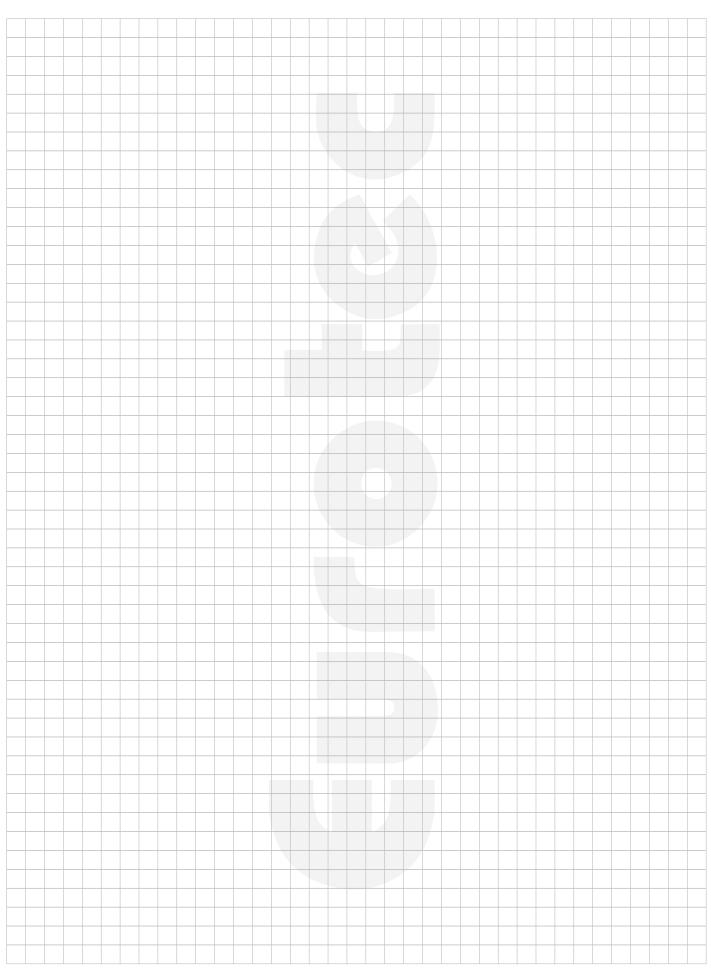
EUROPALETTES ET EMBALLAGES DE GRANDE TAILLE Avec 8, 16 ou 24 emballages Eurotec de grande taille




Eurotec Vis pour constructions en bois


INDEX


Eco-Black-Tec, Vis pour panneaux d'agglomérés	176
EcoTec A2, Vis pour panneaux d'agglomérés, acier inoxydable A2	
EcoTec, Vis pour panneaux d'agglomérés, acier galvanisé bleu	174
Étagère de vente Eurotec	
HBS, en bande, acier galvanisé bleu	1/19
Hobotec, acier galvanisé bleu	171
Hobotec, acier galvanisé pieu	
Hobotec, acier inoxydable durci	100
Justitec, acier galvanisé, revêtement glissant, tête fraisée	196
V VDIIO	100
KonstruX DUO	128
KonstruX ST, Vis à filetage complet	
KonstruX, 13 mm E12	
KonstruX, Vis à filetage complet, acier inoxydable A4	88
Limiteur de couple	205
OSB Fix, Tête fraisée, acier galvanisé jaune	199
Paneltwistec 1000, acier avec revêtement spécial	72
Paneltwistec AG	
Paneltwistec AG, acier inoxydable trempé	56
Paneltwistec en bande, acier galvanisé bleu, Tête fraisée	
Paneltwistec en bande, filetage court, acier galvanisé bleu	
Paneltwistec en bande, acier inoxydable trempé	
Paneltwistec TK AG Stronghead	
Paneltwistec, acier galvanisé bleu	
Paneltwistec, acier galvanisé jaune	
Paneltwistec, acier inoxydable A2	
Paneltwistec, acier inoxydable A4	00
SawTec	140
TCC-II 7,3, Vis d'assemblage bois-béton	182
TCC-II 9, Vis d'assemblage bois-béton	
Tige filetée BRUTUS	
TopDuo, Vis pour construction de toits	152
- Ar al a	1.0
Vis Blue-Power	100
Vis de connexion de poteaux A2	203
Vis de connexion de poteaux 1000, revêtement spécial	203
Vis de forage à ailettes, acier galvanisé bleu	192
Vis de forage à ailettes, acier inoxydable trempé	
Vis d'assemblage LBS	177
Vis d'écartement mini, acier galvanisé	
Vis d'écartement, acier galvanisé	
Vis pour ancre de transport, acier de qualité	
Vis pour équerre A4, acier inoxydable / A4	
Vis pour équerre Strong	
Vis pour équerre ZK Hardwood	188
Vis pour équerre, acier galvanisé , bleu	186
Visseuse	200



Editeur: Euro. Teg Embl. Mise à pour 10 / 2025

Sous réserve d'erreurs, de modifications et de complements techniques.

Toutes les dimensions sont approximatives. Sous réserve d'écars de modièles et de formes ainsi que d'erreurs.

Nous déclinons boule responsabilité quant oux erreurs d'impression. Le document frieire cous forme d'extraits) ne peut être lous déclinons boule responsabilité quant oux erreurs d'impression. Le document frieire cous forme d'extraits) ne peut être

E.u.r.o.Tec GmbHUnter dem Hofe 5 · D-58099 Hagen
Tél. +49 2331 62 45-0

Fax +49 2331 62 45-200 Courriel : info@eurotec.team

